NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner
Abstract
:1. Introduction
2. Methods
2.1. Growth Conditions
2.2. Pigment Extraction and HPLC
2.3. Protein Extraction, SDS-PAGE, and Immunodetection
2.4. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR
2.5. ALAD Activity Assay
2.6. ALA Synthesis Capacity Measurement
2.7. Virus-Induced Gene Silencing
3. Results
3.1. The Double Knockout of NTRC and TRX-f1 Uncovers an Additive Effect on TBS
3.2. Combined NTRC and TRX-f1 Deficiencies Lead to Lower Accumulation of Several TBS Enzymes in an Additive Manner
3.3. The Enzyme Activities of Early TBS Enzymes Are Decreased in Plants with an Additive Combined Effect of NTRC and TRX-f1 Deficiency
3.4. High Light Leads to an Increase in GluTR Levels and Attenuates a Decrease in GluTR Content in Response to NTRC/TRXf-1 Deficiency
3.5. Redox-Dependent Stability of TBS Proteins and the Importance of the Clp Protease for TBS Enzyme Degradation
3.6. Influence of 2-Cysteine Peroxiredoxins on the Stability of TBS Enzymes
4. Discussion
4.1. Different Concepts of Redox Control: Regulation of Protein Degradation vs. Regulation of Enzyme Activity
4.2. TRXs Are Involved in the Regulation of Redox-Sensitive TBS Enzymes
4.3. Is the Light-Dependent Fluctuation of GluTR1 and ALAD Content Caused by Redox-Switches?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nikkanen, L.; Rintamaki, E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochem. J. 2019, 476, 1159–1172. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, B.B.; Schurmann, P.; Wolosiuk, R.A.; Jacquot, J.P. The ferredoxin/thioredoxin system: From discovery to molecular structures and beyond. Photosynth. Res. 2002, 73, 215–222. [Google Scholar] [CrossRef]
- Couturier, J.; Chibani, K.; Jacquot, J.-P.; Rouhier, N. Cysteine–based redox regulation and signaling in plants. Front. Plant Sci. 2013, 4, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geigenberger, P.; Thormahlen, I.; Daloso, D.M.; Fernie, A.R. The Unprecedented Versatility of the Plant Thioredoxin System. Trends Plant Sci. 2017, 22, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, F.J.; Ojeda, V.; Delgado-Requerey, V.; González, M.; Pérez-Ruiz, J.M. Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. Front. Plant Sci. 2019, 10, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, T.C.; Moore, E.C.; Reichard, P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli, B.J. Biol. Chem. 1964, 239, 3436–3444. [Google Scholar] [CrossRef]
- Jacquot, J.P.; Eklund, H.; Rouhier, N.; Schurmann, P. Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci. 2009, 14, 336–343. [Google Scholar] [CrossRef]
- Serrato, A.J.; Perez-Ruiz, J.M.; Spinola, M.C.; Cejudo, F.J. A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 2004, 279, 43821–43827. [Google Scholar] [CrossRef] [Green Version]
- Michalska, J.; Zauber, H.; Buchanan, B.B.; Cejudo, F.J.; Geigenberger, P. NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Nat. Acad. Sci. USA 2009, 106, 9908–9913. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ruiz, J.M.; Guinea, M.; Puerto-Galán, L.; Cejudo, F.J. NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Mol. Plant 2014, 7, 1252–1255. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.S.; Peter, E.; Rothbart, M.; Schlicke, H.; Toivola, J.; Rintamaki, E.; Grimm, B. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol. 2013, 162, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, J.; Liu, B.; Da, Q.; Feng, D.; Su, J.; Zhang, Y.; Wang, J.; Wang, H.B. Ferredoxin: Thioredoxin reductase is required for proper chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis thaliana. Mol. Plant 2014, 7, 1586–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pérez, M.E.; Mauries, A.; Maes, A.; Tourasse, N.J.; Hamon, M.; Lemaire, S.D.; Marchand, C.H. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. Mol. Plant 2017, 10, 1107–1125. [Google Scholar] [CrossRef]
- Gonzalez, M.; Delgado-Requerey, V.; Ferrandez, J.; Serna, A.; Cejudo, F.J. Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. J. Exp. Bot. 2019, 70, 5787–5798. [Google Scholar] [CrossRef] [Green Version]
- Montrichard, F.; Alkhalfioui, F.; Yano, H.; Vensel, W.H.; Hurkman, W.J.; Buchanan, B.B. Thioredoxin targets in plants: The first 30 years. J. Proteom. 2009, 72, 452–474. [Google Scholar] [CrossRef]
- Cejudo, F.J.; Gonzalez, M.C.; Perez-Ruiz, J.M. Redox regulation of chloroplast metabolism. Plant Physiol. 2020, 186, 9–21. [Google Scholar] [CrossRef]
- Buchanan, B.B. The Path to Thioredoxin and Redox Regulation in Chloroplasts. Ann. Rev. Plant Biol. 2016, 67, 1–24. [Google Scholar] [CrossRef]
- Skryhan, K.; Gurrieri, L.; Sparla, F.; Trost, P.; Blennow, A. Redox Regulation of Starch Metabolism. Front. Plant Sci. 2018, 9, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, A.S.; Grimm, B. Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. Front. Plant Sci. 2013, 4, 371. [Google Scholar] [CrossRef] [Green Version]
- Arsova, B.; Hoja, U.; Wimmelbacher, M.; Greiner, E.; Ustun, S.; Melzer, M.; Petersen, K.; Lein, W.; Bornke, F. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: Evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 2010, 22, 1498–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmelbacher, M.; Bornke, F. Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. J. Exp. Bot 2014, 65, 2405–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danon, A.; Mayfield, S. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 1994, 266, 1717–1719. [Google Scholar] [CrossRef] [PubMed]
- Trebitsh, T.; Danon, A. Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc. Nat. Acad. Sci. USA 2001, 98, 12289–12294. [Google Scholar] [CrossRef] [Green Version]
- Mata-Perez, C.; Spoel, S.H. Thioredoxin-mediated redox signalling in plant immunity. Plant Sci. 2019, 279, 27–33. [Google Scholar] [CrossRef]
- Ikegami, A.; Yoshimura, N.; Motohashi, K.; Takahashi, S.; Romano, P.G.; Hisabori, T.; Takamiya, K.; Masuda, T. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J. Biol. Chem. 2007, 282, 19282–19291. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.S.; Wang, P.; Grimm, B. Arabidopsis Mg-Protoporphyrin IX Methyltransferase Activity and Redox Regulation Depend on Conserved Cysteines. Plant Cell Physiol. 2016, 57, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, Q.; Wang, P.; Wang, M.; Sun, T.; Jin, H.; Liu, B.; Wang, J.; Grimm, B.; Wang, H.B. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis. Plant Physiol. 2017, 175, 652–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, D.; Klove, S.; Wang, P.; Grimm, B. Towards Initial Indications for a Thiol-Based Redox Control of Arabidopsis 5-Aminolevulinic Acid Dehydratase. Antioxidants 2018, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Thormählen, I.; Meitzel, T.; Groysman, J.; Ochsner, A.B.; von Roepenack-Lahaye, E.; Naranjo, B.; Cejudo, F.J.; Geigenberger, P. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. Plant Physiol. 2015, 169, 1766–1786. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ruiz, J.M.; Naranjo, B.; Ojeda, V.; Guinea, M.; Cejudo, F.J. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc. Nat. Acad. Sci. USA 2017, 114, 12069–12074. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, V.; Perez-Ruiz, J.M.; Cejudo, F.J. 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. Mol. Plant 2018, 11, 1377–1388. [Google Scholar] [CrossRef] [Green Version]
- Vaseghi, M.J.; Chibani, K.; Telman, W.; Liebthal, M.F.; Gerken, M.; Schnitzer, H.; Mueller, S.M.; Dietz, K.J. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 2018, 7, e38194. [Google Scholar] [CrossRef]
- Yoshida, K.; Hara, A.; Sugiura, K.; Fukaya, Y.; Hisabori, T. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc. Nat. Acad. Sci. USA 2018, 115, E8296–E8304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, A.S.; Perez-Ruiz, J.M.; Cejudo, F.J.; Grimm, B. Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Lett. 2018, 592, 3111–3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarnecki, O.; Peter, E.; Grimm, B. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Methods Mol. Biol. 2011, 775, 357–385. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Fan, T.; Liu, Y.; Rothbart, M.; Yu, J.; Zhou, S.; Grimm, B.; Luo, M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol. 2012, 159, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Alawady, A.; Reski, R.; Yaronskaya, E.; Grimm, B. Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol. Biol. 2005, 57, 679–691. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Y.; Hedtke, B.; Grimm, B. Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamyl-tRNA reductase during light exposure. Plant J. 2019, 97, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, O.; Hedtke, B.; Melzer, M.; Rothbart, M.; Richter, A.; Schröter, Y.; Pfannschmidt, T.; Grimm, B. An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts. Plant Cell 2011, 23, 4476–4491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedtke, B.; Alawady, A.; Chen, S.; Börnke, F.; Grimm, B. HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Mol. Biol. 2007, 64, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Grimm, B.; Bull, A.; Welinder, K.G.; Gough, S.P.; Kannangara, C.G. Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and synechococcus. Carlsberg. Res. Commun. 1989, 54, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lermontova, I.; Kruse, E.; Mock, H.P.; Grimm, B. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc. Natl. Acad. Sci. USA 1997, 94, 8895–8900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onate-Sanchez, L.; Vicente-Carbajosa, J. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res. Notes 2008, 1, 93. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mauzerall, D.; Granick, S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J. Biol. Chem. 1956, 219, 435–446. [Google Scholar] [CrossRef]
- Burch-Smith, T.M.; Schiff, M.; Liu, Y.; Dinesh-Kumar, S.P. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 2006, 142, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Da, Q.; Sun, T.; Wang, M.; Jin, H.; Li, M.; Feng, D.; Wang, J.; Wang, H.B.; Liu, B. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. Plant Cell Rep. 2018, 37, 279–291. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Liu, B.; Feng, D.; Da, Q.; Shu, S.; Su, J.; Zhang, Y.; Wang, J.; Wang, H.B. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol. 2013, 163, 1710–1728. [Google Scholar] [CrossRef] [Green Version]
- Perez-Ruiz, J.M.; Spinola, M.C.; Kirchsteiger, K.; Moreno, J.; Sahrawy, M.; Cejudo, F.J. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 2006, 18, 2356–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepistö, A.; Kangasjärvi, S.; Luomala, E.-M.; Brader, G.; Sipari, N.; Keränen, M.; Keinänen, M.; Rintamäki, E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol. 2009, 149, 1261–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, L.R.; Froehlich, J.E.; Cruz, J.A.; Savage, L.; Kramer, D.M. Multi-level regulation of the chloroplast ATP synthase: The chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant J. 2006, 87, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Thormahlen, I.; Ruber, J.; von Roepenack-Lahaye, E.; Ehrlich, S.M.; Massot, V.; Hummer, C.; Tezycka, J.; Issakidis-Bourguet, E.; Geigenberger, P. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant Cell Environ. 2013, 36, 16–29. [Google Scholar] [CrossRef]
- Yoshida, K.; Hara, S.; Hisabori, T. Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J. Biol. Chem. 2015, 290, 14278–14288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, D.; Sinha, N.; Grimm, B. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biol. Chem. 2020, 402, 379–397. [Google Scholar] [CrossRef]
- Pontoppidan, B.; Kannangara, C.G. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur. J. Biochem. 1994, 225, 529–537. [Google Scholar] [CrossRef]
- Balange, A.P.; Lambert, C. In vitro activation of δ-aminolevulinate dehydratase from far-red irradiated radish (Raphanus sativus L.) seedlings by thioredoxin f. Plant Sci. Lett. 1983, 32, 253–259. [Google Scholar] [CrossRef]
- Dall’Osto, L.; Bressan, M.; Bassi, R. Biogenesis of light harvesting proteins. Biochim. Biophys Acta 2015, 1847, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Grimm, B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth. Res. 2015, 126, 189–202. [Google Scholar] [CrossRef]
- Pospíšil, P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Front. Plant Sci. 2016, 7, 3852. [Google Scholar] [CrossRef] [Green Version]
- Keren, N.; Berg, A.; van Kan, P.J.; Levanon, H.; Ohad, I. Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc. Nat. Acad. Sci. USA 1997, 94, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmied, J.; Hou, Z.; Hedtke, B.; Grimm, B. Controlled Partitioning of Glutamyl-tRNA Reductase in Stroma- and Membrane-Associated Fractions Affects the Synthesis of 5-Aminolevulinic Acid. Plant Cell Physiol. 2018, 59, 2204–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, F.; Obayashi, T.; Sasaki-Sekimoto, Y.; Ohta, H.; Takamiya, K.; Masuda, T. Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol. 2004, 135, 2379–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Masuda, T. Transcriptional Regulation of Tetrapyrrole Biosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 1811. [Google Scholar] [CrossRef] [Green Version]
- McCormac, A.C.; Fischer, A.; Kumar, A.M.; Soll, D.; Terry, M.J. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 2001, 25, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, B.; Diaz-Espejo, A.; Lindahl, M.; Cejudo, F.J. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 1951–1964. [Google Scholar] [CrossRef] [Green Version]
- Toivola, J.; Nikkanen, L.; Dahlstrom, K.M.; Salminen, T.A.; Lepisto, A.; Vignols, H.F.; Rintamaki, E. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Front. Plant Sci. 2013, 4, 389. [Google Scholar] [CrossRef] [Green Version]
- Apitz, J.; Nishimura, K.; Schmied, J.; Wolf, A.; Hedtke, B.; van Wijk, K.J.; Grimm, B. Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein. Plant Physiol. 2016, 170, 2040–2051. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.S.; Banse, C.; Grimm, B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife 2019, 8, e46300. [Google Scholar] [CrossRef]
- Nishimura, K.; Apitz, J.; Friso, G.; Kim, J.; Ponnala, L.; Grimm, B.; van Wijk, K.J. Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Plant Cell 2015, 27, 2677–2691. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Asakura, Y.; Friso, G.; Kim, J.; Oh, S.H.; Rutschow, H.; Ponnala, L.; van Wijk, K.J. ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 2013, 25, 2276–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, M.G.; Hernandez-Verdeja, T.; Kremnev, D.; Crawford, T.; Dubreuil, C.; Strand, A. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat. Commun. 2018, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zerges, W. Translational regulation in chloroplasts for development and homeostasis. Biochim. Biophys. Acta 2015, 1847, 809–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, S.; Monnet, J.; Selbach, K.; Quigley, F.; Gray, J.; Wettstein, D.V.; Reinbothe, S.; Reinbothe, C. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc. Nat. Acad. Sci. USA 2008, 105, 4933–4938. [Google Scholar] [CrossRef] [Green Version]
- Balsera, M.; Goetze, T.A.; Kovacs-Bogdan, E.; Schurmann, P.; Wagner, R.; Buchanan, B.B.; Soll, J.; Bolter, B. Characterization of Tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to Ca2+ and a stromal regulatory disulfide bridge. J. Biol. Chem. 2009, 284, 2603–2616. [Google Scholar] [CrossRef] [Green Version]
- Balsera, M.; Soll, J.; Buchanan, B.B. Redox extends its regulatory reach to chloroplast protein import. Trends Plant Sci. 2010, 15, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibody | Dilution | Reference |
---|---|---|
Primary antibodies without HRP | ||
α-Actin | 1:5000 | Agrisera (AS13 2640) |
α-ALAD1 | 1:2000 | Wittmann et al. (2018) [28] |
α-CHLI | 1:5000 | Luo et al. (2012) [37] |
α-CHLM | 1:2000 | Alawady and Grimm (2005) [38] |
α-ClpC | 1:5000 | Agrisera (AS01 001) |
α-FLUTPR | 1:500 | Hou et al. (2019) [39] |
α-GBP | 1:2500 | Czarnecki et al. (2011) [40] |
α-GluTR | 1:2500 | Hedtke et al. (2007) [41] |
α-GSAAT | 1:2000 | Grimm et al. (1989) [42] |
α-PORA/B | 1:2000 | Agrisera (AS05 067) |
α-PPOX1 | 1:1000 | Lermontova et al. (1997) [43] |
Secondary antibody with HRP | ||
α-rabbit | 1:20,000 | Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany. |
% | Chl a | Chl b | Chl a + b | Heme | MgP | MME | PChlide | Chlide |
---|---|---|---|---|---|---|---|---|
Col-0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
ntrc | 51 | 51 | 51 | 52 | 34 | 58 | 41 | 26 |
trxf1 | 86 | 85 | 85 | 85 | 60 | 74 | 78 | 92 |
ntrc/trxf1 | 31 | 33 | 32 | 38 | 22 | 42 | 35 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wittmann, D.; Geigenberger, P.; Grimm, B. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells 2023, 12, 1670. https://doi.org/10.3390/cells12121670
Wittmann D, Geigenberger P, Grimm B. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells. 2023; 12(12):1670. https://doi.org/10.3390/cells12121670
Chicago/Turabian StyleWittmann, Daniel, Peter Geigenberger, and Bernhard Grimm. 2023. "NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner" Cells 12, no. 12: 1670. https://doi.org/10.3390/cells12121670
APA StyleWittmann, D., Geigenberger, P., & Grimm, B. (2023). NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells, 12(12), 1670. https://doi.org/10.3390/cells12121670