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Abstract: Redox regulation of plastid gene expression and different metabolic pathways promotes
many activities of redox-sensitive proteins. We address the question of how the plastid redox state
and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In
higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential
end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of
TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent
the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS
enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under
oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent
thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1
and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase
(GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme
activity. This effect was dependent on light conditions and strongly attenuated after transfer to high
light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters
leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic
activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by
using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double
mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive
activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and
heme levels in ntrc could be reverted to WT levels in the ntrc/∆2cp triple mutant. The decreased
synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/∆2cp
and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.

Keywords: thioredoxin; NADPH-dependent thioredoxin reductase; chlorophyll synthesis;
5-aminolevulinic acid synthesis; chloroplast biogenesis; photosynthesis

1. Introduction

Plants are exposed to the diurnal light–night rhythm, which is one of the fundamental
exogenous regularities in nature. As sessile organisms, plants have adapted to the essential
part of their metabolism to immediate, mostly post-translational responses to the constantly
fluctuating light conditions and regularly changing environmental stimuli. This competence
enables plants to have an optimized use of light as a vital energy resource and adaptability
and viability during environmental changes. When photosynthesis evolved, protective
mechanisms against excessive light excitation and a direct response to the transition from
light to dark became crucial to prevent photooxidative damage. During excessive light
intensities, the overexcitation of the light-harvesting complexes, the overreduction in the
photosynthetic electron transport chain, and the excessive chlorophyll synthesis with
accumulating free chlorophyll and tetrapyrrole intermediates have to be prevented [1].
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During photosynthesis, electrons are transferred to the final electron acceptors, such
as NADPH and thioredoxins (TRX) [2]. TRXs are small oxidoreductases that transfer the
received electrons to redox-sensitive disulfide bonds between two cysteine residues of
target proteins to reduce them to free thiol groups. The conformational changes in the
tertiary and quaternary structure of the target proteins are induced by the opening of the
disulfide bonds, which affects the activity or stability of the proteins [3,4].

Chloroplasts experience a strong change in reducing and oxidizing conditions
during the daily photoperiodic cycles. Due to the diurnally changing photosynthetic
activities, the chloroplasts are extremely exposed to varying redox conditions in light
and darkness. It was observed that the reduced form of the redox-regulated proteins is
usually the active form [5].

TRXs were first described in E. coli [6] and later in numerous other organisms. In
heterotrophic cell compartments and organisms, TRXs are exclusively activated via
NADPH-dependent thioredoxin reductases (NTR) [2,7]. The TRXs in photoautotrophic
plastids differ from non-photosynthetic compartments of the cell. Plastidic TRXs are
light-dependently reduced via ferredoxin:TRX reductase (FTR), and thereby act indepen-
dently from the reduction of NADP+ [2,7].

Nevertheless, a C-type NTR (NTRC) also functions in chloroplasts [8] and, similar
to TRX, can also reduce target proteins [9–11]. While plants lacking NTRC are viable, the
knockout of FTR is lethal [12], emphasizing the importance of the TRX system for the
development and maintenance of the metabolism.

Half of the 20 TRXs found in Arabidopsis and several TRX-like proteins are lo-
calized in the chloroplasts [4]. The plastid-localized TRXs can be subdivided into five
groups: f-type TRX (f1-2) with two, m-type (m1-4) with four, y-type (y1-2) with two
isoforms, and x- and z-type TRX with one representative each [4]. Several potential
plastid-localized target proteins of redox control were identified in in vitro and in vivo
interaction screens [13–15]. So far, the interaction of TRX to its redox-controlled target
proteins and the regulatory impact of a few redox-controlled proteins have been ana-
lyzed in detail [16]. Some of the redox targets belong to metabolic processes, such as
the Calvin–Benson Cycle (CBC) [17], starch synthesis [18], or tetrapyrrole biosynthesis
(TBS) [17,19], but transcriptional [20,21] and translational regulation [22,23], antiox-
idant defense [16], and signaling in plant immune responses [24] are controlled by
TRX-mediated redox activities.

Some enzymes of TBS have already been reported as redox-controlled proteins
and interact with TRX and NTRC. The first redox-active cysteine residues of TBS en-
zymes were determined for the magnesium chelatase (MgCh) subunit CHLI and the
Mg-protoporphyrin IX methyltransferase (CHLM) [25,26]. TRX- and NTRC-deficient
mutants exhibited lower chlorophyll, and heme contents reflecting impaired TBS. Simul-
taneous knockouts of several TRX isoforms always have a stronger phenotypic impact
on TBS and plant pigment content. The protein stabilities of various TBS enzymes,
such as glutamyl-tRNA reductase (GluTR), glutamate-1-semialdehyde aminotransferase
(GSAAT), 5-aminolevulinate dehydratase (ALAD), and CHLM or protochlorophyllide
oxidoreductase (POR), were shown to be decreased to a different extent in NTRC, TRX-f,
and TRX-m-deficient mutants [11,27,28]. Interestingly, the increased content of GluTR in
TRX-m-deficient Arabidopsis plants is an exception [27].

Based on the additive negative effects on growth, chlorophyll content, and photosyn-
thetic rates, as well as the lower activity of some redox-regulated enzymes in ntrc/trxf1 [29]
and ntrc/trxf1/trxf2 mutants [30], a redundant functional overlap between the control mech-
anisms of FTR/TRX and NTRC has been suggested. However, recent evidence suggests
that other TRXs, rather than NTRC directly, compensate for the absence of f-type TRXs in
regulating CBC [30].

However, the absence of NTRC has, indirectly, a serious impact on the redox sta-
tus of the entire TRX system due to its role as the primary electron donor of 2-cysteine
peroxiredoxins (2-CPs). In the absence of NTRC, oxidized 2-CPs function as a sink for
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electrons from TRXs, leading to a tendency to oxidize and inactive TRX target enzymes [30].
The chlorotic ntrc phenotype was almost completely compensated by the simultaneous
knockout of NTRC and 2-CPB, combined with the knockdown of 2-CPA (ntrc/∆2cp) [30].
It is proposed that TRXs normally provide compensatory electrons for oxidized 2-CPs in
the ntrc background. The drastically decreased content of 2-CPs in the ntrc/∆2cp triple
mutant corresponds to a lower need for electrons for 2-CP reduction, which would com-
pensatorily allow sufficient use of the TRX-dependent reducing power to activate the target
proteins [30]. The redox balance of 2-CPs is apparently important for the oxidative inacti-
vation of reduced target enzymes in darkness [31–33]. In these studies, the oxidized 2-CP
pool in darkness was identified as an electron sink of reduced target enzymes connected
via oxidized TRXs or TRX-like proteins (reviewed by [16]).

This manuscript focuses on NTRC and the TRX-driven redox control of TBS enzymes.
The aim of the presented studies was to investigate the combined impact of deficient
TRX-f1 and NTRC on the stability of TBS enzymes under different light conditions. In
continuation of previous reports on the effect of redox-sensitive CBC enzymes [30] and
first TBS enzymes [34], we also examined whether the decreased enzyme stabilities and
activities of TBS enzymes, such as GluTR and ALAD, can be restored in the NTRC-deficient
mutants by additional downregulation of 2-CPs. Moreover, first hints are presented for the
role of the Clp protease in the redox-dependent degradation of TBS enzymes by analyzing
TBS protein levels after the inactivation of the TRXm genes in the clpc1-1 background.

2. Methods
2.1. Growth Conditions

The Arabidopsis thaliana plants were grown on GS-90 standard soil mixed with vermi-
culite in a 3:1 ratio. Seeds placed on soil were stratified for 2 days at 4 ◦C and then grown
under short-day conditions (SD; 8–10 h light, 21 ◦C) and different light intensities. The
plants were grown at normal light (NL; 100–160 µmol photons m−2 s−1), high light (HL;
220–500 µmol photons m−2 s−1), or low light (LL; 20–40 µmol photons m−2 s−1).

2.2. Pigment Extraction and HPLC

For pigment extraction, the homogenized leaf material was resuspended in basic
acetone (80% acetone, 10% 0.2 M NH4OH, 10% ddH2O (v/v)). Pigment extraction was
carried out, avoiding light exposure. Afterward, the pigment extracts were centrifuged
(16,100× g, 4 ◦C, 10 min), the supernatants were collected, and an aliquot was loaded
onto the HPLC columns. From the extracts obtained, chlorophyll a and b, the tetrapyrrole
intermediates Mg-protoporphyrin IX (MgP), MgP monomethylester (MME), protochloro-
phyllide (PChlide), and chlorophyllide (Chlide) were quantitatively determined. The
extraction of non-covalently bound heme was performed from the white pellet of the
pigment extraction (see above) by incubation with acidic acetone (80% acetone, 4% HCl,
16% DMSO (v/v)) at room temperature. See [35] for the details.

2.3. Protein Extraction, SDS-PAGE, and Immunodetection

The leaf material was homogenized in liquid nitrogen and resuspended in protein
extraction buffer (2% SDS (w/v), 56 mM NaCO3, 12% sucrose (w/v), 2 mM EDTA, pH 8.0).
The extracts were incubated at 70 ◦C for 20 min and then centrifuged at 16,100× g for 10 min.
The supernatant was transferred to a new reaction tube, and the protein concentration was
determined using the Pierce™ Bicinchoninic Acid (BCA) Protein Assay Kit (Thermo Fisher,
Norcross, GA, USA). The samples were adjusted to 1–2 µg/µL and supplemented with
DTT (final concentration 100 mM). The samples were boiled, and 15–20 µg total protein
was loaded onto the SDS polyacrylamide gel. After immunoblot transfer and incubation
of the nitrocellulose membranes with specific antibodies (Table 1), immunodetection of
the proteins was performed by a CCD camera (ChemoStar Imager, Intas, Gujarat, India).
The protein content was quantified by [36], https://lukemiller.org/index.php/2010/11/
analyzing-gels-and-western-blots-with-image-j/ (accessed on 16 November 2021). The
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means and standard deviations were determined from three biological replicates at least.
Significant changes in protein content compared to the WT were marked with asterisks in
the figures (*, p ≤ 0.05 > 0.01 and **, p ≤ 0.01, t-test).

Table 1. List of all antibodies used in this work.

Antibody Dilution Reference

Primary antibodies without HRP
α-Actin 1:5000 Agrisera (AS13 2640)
α-ALAD1 1:2000 Wittmann et al. (2018) [28]
α-CHLI 1:5000 Luo et al. (2012) [37]
α-CHLM 1:2000 Alawady and Grimm (2005) [38]
α-ClpC 1:5000 Agrisera (AS01 001)
α-FLUTPR 1:500 Hou et al. (2019) [39]
α-GBP 1:2500 Czarnecki et al. (2011) [40]
α-GluTR 1:2500 Hedtke et al. (2007) [41]
α-GSAAT 1:2000 Grimm et al. (1989) [42]
α-PORA/B 1:2000 Agrisera (AS05 067)
α-PPOX1 1:1000 Lermontova et al. (1997) [43]
Secondary antibody with HRP

α-rabbit 1:20,000 Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany.

2.4. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR

The method for extraction from plant leaf tissue was described by [44]. For cDNA
synthesis, RNA was treated with DNaseI (Thermo Fisher, Norcross, GA, USA) and subse-
quently transferred to a RevertAid Reverse Transcriptase reaction mixture (Thermo Fisher,
Norcross, GA, USA) with Oligo(dT)18-Primers according to the manufacturer’s protocol.
qPCR was carried out in a real-time PCR detection system (CFX96-C1000, Bio-Rad, Her-
cules, CA, USA) with SYBR green dye (Bio-Rad Laboratories GmbH, D-85622 Feldkirchen,
Germany). The qPCR primers are listed in Table S1. Relative gene expression was calculated
using the 2−∆∆Ct method [45].

2.5. ALAD Activity Assay

For the determination of ALAD activity from leaf extracts, leaf material was homoge-
nized in liquid nitrogen and resuspended in extraction buffer (25 mM Tris-HCl (pH 8.2)).
After centrifugation (16,100× g, 4 ◦C, 10 min), the supernatants were transferred to new
reaction tubes. The protein content of the extracts was quantified using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher). The reaction was started by adding one volume of 2-fold
reaction buffer (50 mM Tris-HCl (pH 8.2), 20 mM MgCl2, and 10 mM 5-aminovelulinic
acid). The samples were incubated for 90 min at 37 ◦C with constant shaking (600 rpm),
and the reaction was stopped by adding one volume of cold TCA (10%). After centrifu-
gation (16,100× g, 4 ◦C, 10 min), the supernatants were mixed with 1 volume of Ehrlich’s
reagent (12.7% perchloric acid (v/v), 76.4% glacial acid (v/v), 67 mM HgCl2, 1.82% para-
dimethylaminobenzaldehyde (w/v), diluted with ddH2O to 100%). The samples were
briefly centrifuged (2500× g, RT, 3 min), and the formation of porphobilinogen was photo-
metrically quantified at 555 nm. For the calculation of the porphobilinogen concentration,
the specific extinction coefficient (60,200 M−1cm−1) was used [46].

2.6. ALA Synthesis Capacity Measurement

Leaves from 4-week-old plants were covered with incubation buffer (50 mM Tris,
40 mM levulinic acid, pH 7.2) and incubated for 3–4 h under their respective light
conditions. The samples were homogenized, resuspended in extraction buffer (20 mM
KH2PO4, pH 6.8), and centrifuged (16,100× g, RT, 20 min). Then, 100 µL of ethyl
acetoacetate (EAA) was added to 400 µL of the supernatant, and the samples were boiled
for 10 min at 95 ◦C. A fraction of the remaining supernatant was used to determine the
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protein concentration by the BCA assay kit (Thermo Fisher). The boiled samples were
briefly cooled on ice, and one volume of Ehrlich’s reagent (see ALAD activity assay)
was added. The samples were incubated for 5 min at RT and subsequently centrifuged
(2500× g, RT, 3 min). The absorption was measured photometrically at 553 nm. The ALA
concentration was calculated using an ALA calibration line.

2.7. Virus-Induced Gene Silencing

The gene-encoded TRX-m1, -m2-, and -4 were downregulated via the VIGS ap-
proach [47–49]. For this purpose, the pTRV2 vector with the coding sequences of TRXm2
and TRXm4, which also significantly downregulates TRXm1, was transformed into
Col-0 WT and clpc1-1 (SALK_014058) leaves according to [49].

3. Results
3.1. The Double Knockout of NTRC and TRX-f1 Uncovers an Additive Effect on TBS

The knockout mutant of the Arabidopsis thaliana NTRC gene (SALK_012208) [8,50–52]
and the TRX-f1 gene (SALK_128365) [29,53,54] have been well-characterized on mul-
tiple levels in previous studies. NTRC deficiency results in a growth-retarded, pale
green mutant phenotype with 49% less chlorophyll compared to WT (Col-0, Figure 1A,B,
Table 2, confirmed as previously described [8,50–52]). trxf1 exhibits a 15% reduced chloro-
phyll content compared to WT plants but is phenotypically indistinguishable from WT
(Figure 1A,B, Table 2). The ntrc/trxf1 double mutant [29] shows a more remarkable de-
crease in chlorophyll content and slower growth than the two respective single mutants
(Figure 1A). This observation confirms the additive effect of the missing two reductant
genes [29]. The chlorophyll content of ntrc/trxf1 diminished by 68% under SD conditions
compared to WT. The chlorophyll a/b ratio in leaves hardly changes under the selected
growth conditions in these three mutant genotypes compared to WT (2.9:1) and amounts
to 3.0:1 (trxf1), 2.9:1 (ntrc), and 2.7:1 (ntrc/trxf1; Figure 1C). The accumulation of non-
covalently bound heme and the steady-state levels of selected TBS intermediates are
decreased to a relatively similar extent as chlorophyll levels in ntrc, trxf1, and ntrc/trxf1
(Table 2, Figure 1D–G). We consider that the attenuated accumulation of tetrapyrrole
end-products is generally the result of the compromised synthesis of tetrapyrroles and
chlorophyll- and heme-binding proteins. Here, we focus on the effects of the absence of
either or both of the reductants, NTRC and TRX-f1, on the overall TBS pathway.

3.2. Combined NTRC and TRX-f1 Deficiencies Lead to Lower Accumulation of Several TBS
Enzymes in an Additive Manner

To compare the levels of TBS proteins in NTRC and TRX-f1-deficient seedlings with
Col-0 WT, protein extracts of two-week-old seedlings were separated on SDS polyacry-
lamide gels and immunologically analyzed. Several TBS enzymes were less abundant in
the ntrc mutant than the WT, confirming previous studies [11]. The accumulation of TBS
enzymes was more drastically impaired in the ntrc/trxf1 double mutant, while there were
only minor effects in trxf1 (Figure 2A,B). Compared to the WT, specifically, the contents of
GluTR1, CHLM, and PORA/B decreased by 58%, 79%, and 86%, respectively, in ntrc/trxf1,
but only by 13%, 37%, and 31%, respectively, in ntrc. Apart from these three most desta-
bilized TBS enzymes in the double mutant, significantly diminished content (**, p ≤ 0.01,
t-test) was determined for ALAD (34% less) and protoporphyrinogen oxidase (30% less),
two other potential redox-dependent enzymes [55]. It should be noted that only slightly
decreased contents for CHLM, GSAAT, and ALAD (12%, 18%, and 23%, respectively) were
determined in trxf1 compared to the WT (*, p ≤ 0.05, t-test).
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Figure 1. (A): Representative 28-day-old wild type (Col-0), ntrc, trxf1, and ntrc/trxf1 seedlings grown
under short-day (SD) conditions (10 h light, 14 h dark) and 100 µmol photons m−2 s−1. (B–G): analysis
of TBS end-products and intermediates in ntrc, trxf1, and ntrc/trxf1 compared to wild type. The
pigments were extracted from the leaves of two-week-old seedlings grown under SD. (B): Chlorophyll
content. (C): Chl a/b ratio. (D): non-covalently bound heme. (E): magnesium protoporphyrin
IX (MgP) and magnesium protoporphyrin IX monomethyl ester (MME). (F): protochlorophyllide
(Pchlide) and chlorophyllide (Chlide). (G): carotenoids violaxanthin (vio), antheraxanthin (anth),
zeaxanthin (zea), lutein (lut), neoxanthin (neo), and β-carotene (β-car). Each result is the mean of at
least three biological replicates.
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Table 2. Relative pigment- and steady-state levels of selected TBS intermediates in ntrc, trxf1, and
ntrc/trxf1 in comparison to wild type (WT, Col-0, data in %). Samples were harvested during light
exposure. The absolute values of tetrapyrrole end-products and intermediates are given in Figure 1.

% Chl a Chl b Chl a + b Heme MgP MME PChlide Chlide

Col-0 100 100 100 100 100 100 100 100

ntrc 51 51 51 52 34 58 41 26

trxf1 86 85 85 85 60 74 78 92

ntrc/trxf1 31 33 32 38 22 42 35 10
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Figure 2. (A): The accumulation of selected TBS enzymes in ntrc, trxf1, and ntrc/trxf1 compared to WT
(Col-0). The protein samples were harvested from 14-day-old seedlings grown under SD conditions
(120 µM photons m−2 s−1). (B): The protein content was quantified by determining the intensity of
the immune-reacting protein band using ImageJ [36] and is displayed relative to the WT value. The
means and standard deviations were determined from three biological replicates. Significant changes
in protein content compared to WT were marked with asterisks in the figure (*, p ≤ 0.05 > 0.01 and
**, p ≤ 0.01, t-test). (C): Determination of the relative transcript accumulation of different TBS genes
in the mutants compared to WT by qPCR. The samples come from 14-day-old plants, which were
grown in SD. The relative transcription levels compared to WT were calculated using the 2−∆∆Ct

method after normalization with SAND as the reference gene. Means and standard deviations refer
to four biological replicates.
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Quantitative real-time PCR (qPCR) was used to analyze whether the decreased
content of TBS enzymes in the ntrc and trxf1 mutants is caused by decreased transcrip-
tional activity of the corresponding genes (Figure 2C). However, the results showed
that the transcript levels were not decreased in response to the lower capacity of the
plastid-localized reductants. The examined mRNA levels in the mutants were WT-like
or slightly increased, except the decreased transcript contents of GBP (encodes the
GluTR-binding protein) and CHLI1 (encodes the CHLI subunit of MgCh) in ntrc/trxf1.
These results indicate that the lower protein accumulation results from translational or
post-translational modifications of the TBS proteins in response to a combined lack of
NTRC and TRXf-1. Based on these results, it is concluded that the absence of TRX-f1 and
NTRC affects the stability of the redox-controlled TBS enzymes GluTR1, GSAAT, ALAD,
CHLM, and PORA/B in an additive manner. The sole lack of TRX-f1 has no obvious
negative impact on the stability of GluTR and POR, which could be explained by the
potential redundant activity of other plastid-localized TRX isoforms.

3.3. The Enzyme Activities of Early TBS Enzymes Are Decreased in Plants with an Additive
Combined Effect of NTRC and TRX-f1 Deficiency

As shown previously, ntrc and trxf1 single and double mutants showed decreased
reduction states and activities of CBC enzymes, while their protein contents were not or
only slightly decreased compared to the WT [29]. Therefore, we were interested in assessing
the activities of TBS enzymes in these mutants. We assayed in planta the ALA synthesis
rate, a combined assay of the enzyme capacity of GluTR and GSAAT, because there is
no routine in vitro assay available for GluTR activity alone [56]. The ALA synthesis rate
decreased by 28% in ntrc and 48% in ntrc/trxf1 compared to the WT (Figure 3A). In contrast,
trxf1 had a WT-like ALA synthesis capacity (Figure 3A). The lower ALA synthesis rate
correlates with the lower content of both TBS proteins in the mutants relative to the WT.
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Figure 3. (A): ALA synthesis capacity of ntrc, trxf1, and ntrc/trxf1 compared to WT(Col-0). The plants
were grown for 4 weeks under SD (120 µmol photons m−2 s−1). (B): ALAD activity of soluble protein
extracts from two-week-old SD-grown seedlings. Leaves were harvested at the end of the light period
(after 10 h light). The results are given as means and standard deviations from at least three biological
replicates. Significant changes from Col-0 enzyme activities were marked with asterisks in the figure
(*, p ≤ 0.05 > 0.01 and **, p ≤ 0.01, t-test).

ALAD follows the ALA synthesizing enzymes in the TBS pathway and belongs to the
redox-controlled enzymes [28,57]. The ALAD activity assay of light-exposed ntrc extracts
showed an 11% decreased activity compared to the WT control; the ALAD activity in the
double mutant was significantly decreased by 20%, while trxf1 extracts contain WT-like
activity (Figure 3B). The lower ALAD activity of the ntrc and ntrc/trxf1 extracts correlates
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with the lower ALAD levels of these mutants. However, as a result of lower reducing
power, ALAD activity is apparently less decreased than the accumulating ALAD contents
in ntrc and ntrc/trxf1 (Figures 2 and 3). The decreased protein stability and activity of
CHLM have already been reported for ntrc compared to WT plants [11]. These observations
were confirmed. While the CHLM activity of ntrc decreased by 38% relative to the WT,
the decline of its activity was more pronounced in the ntrc/trxf1 double mutant (64% less
compared to the WT).

3.4. High Light Leads to an Increase in GluTR Levels and Attenuates a Decrease in GluTR Content
in Response to NTRC/TRXf-1 Deficiency

When the photosynthesis complexes in green leaves of adult plants are established,
the need for new chlorophyll synthesis is mainly coupled to the turnover of chlorophyll-
binding proteins of photosystem I and II (PSI and PSII). This turnover was mainly studied
at the levels of the repair cycle of the D1 protein in PSII and the regular adjustment of the
peripheral antenna complexes [58,59]. During high light (HL) stress, the reaction centers
can be detrimentally excited, leading to over-reduced electron acceptors (Qa and the
plastoquinone pool). When excess excitation energy cannot be dissipated via carotenoids
to heat (NPQ), more ROS is formed at PSII [60]. In particular, the D1 subunit and attached
pigments are susceptible to photooxidative damage. Consequently, HL induces an increase
in D1 turnover and an increased demand for chlorophyll [61]. Consequently, increasing
light intensities also trigger increased ALA synthesis capacity [62].

Thus, the redox-dependent levels of TBS enzymes should be examined at the end of
the light phase, during the dark phase, and with increasing light intensity in ntrc, trxf1, and
the double mutant. It was hypothesized that the photoperiodic growth of the NTRC/TRXf-
1-deficient lines influenced the diurnal content of redox-dependent TBS proteins, and HL
stress likely caused a shift between the reduced and oxidized forms of these enzymes, thus
altering their redox-dependent stability.

As a result of photoperiodic growth under the short-day condition, trxf1, ntrc, and
the double mutant had gradually decreased levels of GluTR, CHLM, and POR, and
increased mutant phenotypes under both light and dark conditions. Since ntrc also
contains less reduced TRXs in the stroma during the day than the WT [30], the lower
reductive TRX pool could be a reason for the decreased content of these TBS proteins in
the NTRC-deficient background.

Of the selected TBS proteins, GluTR1 content was most decreased at the end of the dark
phase compared with the middle of the high light phase (HL, 500 µmol photons m−2 s−1)
in all lines analyzed (WT, ntrc, trxf1, and ntrc/trxf1, Figure 4A). GluTR1 levels in ntrc
and ntrc/trxf1 changed between day and night but to a lesser extent compared to the
WT and trxf1 (Figure 4A). Apart from the varying GluTR accumulations during the day,
only dark accumulation of ALAD was slightly lower than during light exposure of the
plants (Figure 4A). Thus, ALAD might also be a candidate for light- and redox-dependent
regulation of protein stability. The levels of other TBS enzymes, such as GSAAT, CHLM,
and CHLI, did not vary between the light and dark phases. The use of an antiserum raised
against the two POR isoforms A and B reveals that POR accumulates more strongly in the
dark than in HL (Figure 4A).

In addition, the levels of the TBS enzymes were compared between HL and low light
conditions (LL, 40 µmol photons m−2 s−1). Among the enzymes analyzed, only GluTR
accumulation was more abundant under HL than LL (Figure 4B), while PORA/B was less
abundant. The light-dependent increase in the GluTR content was observed in the WT
and the three selected mutants. In ntrc, trxf1, and ntrc/trxf1, the effect on GluTR content
was even stronger between HL- and LL-grown seedlings. This indicates that the effects of
combined and single deficiencies of NTRC and TRXf-1 to decrease GluTR levels in LL are
clearly attenuated under HL conditions.
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Figure 4. Immune analysis of TBS proteins and other plastid-localized proteins (as references)
in light-exposed WT (Col-0), ntrc, trxf1, and ntrc/trxf1 plants under different growth conditions.
(A,B): The plants were initially grown for 3 weeks under SD (8 h light/16 h dark, normal light (NL,
160 µmol photons m−2 s−1). (A) Then, the SD-grown seedlings were exposed for an additional
week to high light (HL 500 µmol photons m−2 s−1). Samples were harvested after 4 h of light and
16 h of darkness. (B) The SD-grown three-week-old seedlings were exposed to low (LL, 40 µmol
photons m−2 s−1) or high light (HL) for a week and then, samples were harvested 4 h after the start
of the light phase. (C): Expression of selected TBS genes in WT (Col-0) grown under different light
conditions. SD-grown three-week-old plants under NL were either left in NL or transferred to HL
or LL for another week. The gene expression of the different growth conditions is given relative to
the expression under NL (dashed line), with ACT2 (AT3G18780) as the reference gene. The leaf
samples were harvested in the middle of the light period (4 h after the start of light exposure) or at
the end of the dark period (16 h) of NL-exposed plants. The relative transcription was calculated
using the 2−∆∆Ct method. Means and standard deviations refer to four biological replicates.
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Since the transcription of several genes encoded in TBS enzymes is also light-dependently
regulated [63–65], the mRNA levels of the WT plants grown under different light intensities
were examined by qPCR. Except for HEMB1 (encoding ALAD1) and PORB, the TBS tran-
script levels of dark samples did not significantly differ from NL samples. In tendency, the
HL-transcript levels of several TBS-related genes were higher than NL and LL samples, ex-
cept for the PORB mRNA content. The observed slightly increased HEMA1 gene expression
in HL-exposed samples compared to NL/LL cannot explain the increased abundance of
GluTR1 under HL conditions (Figure 4C). WT-HEMB1 expression hardly differed between
the dark phase and HL, but a transcript level that was two times higher was determined
in comparison to NL/LL samples. However, these altered HEMB1 transcript levels are
unlikely to account for the difference in ALAD content in dark- and light-exposed samples.

3.5. Redox-Dependent Stability of TBS Proteins and the Importance of the Clp Protease for TBS
Enzyme Degradation

Reduced content of several TBS proteins was determined in response to deficient
TRX and/or NTRC expression compared to the WT as well as in LL- and dark-grown
WT seedlings compared to HL-exposed seedlings (Figures 2 and 4). We hypothesize
that a lack of reducing power, as well as oxidizing conditions, promotes the degradation
of redox-dependent TBS enzymes. One of the dominant plastidal proteases is the Clp
protease. Therefore, we addressed the question of the extent to which Clp-dependent
proteolysis of TBS proteins is a redox-regulated process. To investigate whether Clp-
dependent degradation in TBS is controlled by TRX, we assayed the wild type and the
clpc1-1 mutants after virus-induced gene silencing (VIGS)-mediated inactivation of the
three genes: TRXm1, TRXm2, and TRXm4 [49]. A GFP silencing sequence was used as
negative control control.

The TBS proteins, which were less abundant in the ntrc/trxf1 single and double mutants
compared to the WT (Figure 2), accumulated to a lower extent in VIGS-TRXm2m4/m1(Col-0)
relative to the control line (VIGS-GFP(Col-0)). In contrast, a higher amount of GluTR
accumulated in TRX-m deficient leaves. In VIGS-GFP(clpc1-1) seedlings, GSAAT, ALAD,
GBP, and CHLI accumulated more than the VIGS-GFP(Col-0) control. However, with
the exception of CHLI, GluTR, and CHLM, the other TBS proteins had lower content
under TRX-m deficiency in clpc1-1 (VIGS-TRXm2m4/m1(clpc1-1, Figure 5a) compared to
VIGS-GFP(clpc1-1). The decreased protein levels of these enzymes resemble the protein
instability in the ntrc/trxf1 mutant. This finding suggests that the lower proteolysis of
TBS proteins (enhanced stability of the TBS proteins) in clpc1-1 is sometimes supported
and sometimes compromised by TRX-m deficiency. In the absence of TRX-m isoforms,
the accumulation of GSAAT, ALAD, and GBP decreased in clpc1-1, whereas the levels of
GluTR, CHLI, and CHLM slightly increased compared to the VIGS-GFP control plants in
the clpc1-1 background.

As an exception, VIGS-induced TRX-m deficiency caused a particular effect on
GluTR content, when a more than twofold GluTR accumulation was observed in
VIGS-TRXm2m4/m1(Col-0) compared to the VIGS-GFP(Col-0) control lines (Figure 5B
and already presented in [27]). In contrast to the decreased GluTR content in ntrc/trxf1
(Figure 2), the elevated GluTR accumulation in TRX-m-deficient plants is suggested
to be due to a prevention of Clp-dependent degradation of GluTR1. This would result
in an additional accumulation of GluTR in the VIGS-TRXm2m4/m1(Col-0) lines. How-
ever, a lower GluTR content was observed in the clpc1-1 seedlings (with and without
TRX-m deficiency relative to VIGS-TRXm2m4/m1(Col-0), which could be explained by
the diminished HEMA1 expression (Figure 5C; further explanation will be given in the
discussion section).
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Figure 5. (A) Four-week-old representative plants that were grown under the long-day condition.
(B) Western blot analysis of different TBS protein levels from VIGS-TRXm2m4/m1-(VIGS-TRXm) and
VIGS-GFP plants in WT (Col-0) and clpc1-1. Plants were grown after infiltration for 3 weeks under
long-day conditions at 120 µmol photons m−2 s−1. For the experiments, the light green leaves of the
VIGS-TRXm plants were used. (C) Expression analysis of HEMA1 and HEMB1, as well as the three
silenced m-type TRX genes, via qPCR. The calculation of relative transcription was performed using
the 2−∆∆Ct method with SAND as the reference gene. Mean values and standard deviations were
determined using three biological replicates.

In general, it can be concluded—apart from a principled individual regulation of TBS
enzymes as observed for GluTR—that the accumulation and stability of some analyzed
TBS proteins, mainly in the early steps of TBS, in the clpc1-1 mutant with reduced TRX
activity point to a Clp system-induced post-translational control that has a redox-regulated
effect on oxidized TBS proteins.

3.6. Influence of 2-Cysteine Peroxiredoxins on the Stability of TBS Enzymes

Our results above show that both NTRC and TRX-f thiol redox systems have overlap-
ping functions and coordinately participate in the regulation of TBS protein levels. It has
been shown previously that NTRC and TRX-f1 interact in an indirect manner via the redox
balance of 2CPs. Pérez-Ruiz et al. (2017) [30] showed that the pale green, slow-growing
phenotype of the ntrc mutant is suppressed by a simultaneous knockout of 2-CPB and
knockdown of 2-CPA in a triple mutant (ntrc/∆2cp). The enzymes FBPase, phosphoribuloki-
nase, and the f-type TRXs, which are mainly oxidized in ntrc even under light exposure,
are predominantly reduced in ntrc/∆2cp, similar to the WT [30]. In a previous report, less
abundant GluTR and CHLM contents of ntrc were shown to be recovered in ntrc/∆2cp
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compared to the WT [34], indicating that similar mechanisms are acting in the regulation of
TBS enzymes.

To verify this for other TBS proteins, their redox-dependently restored accumula-
tion was analyzed in ntrc/∆2cp compared to the WT, ntrc, and ∆2cp. Careful quantifica-
tion of protein content from three biological replicates is displayed and combined with
enzyme activities for redox-controlled proteins. The phenotypical growth of ntrc/∆2cp
was WT-like, and its chlorophyll and heme contents confirmed the recovery in compari-
son to ntrc (Figure 6A–C). As a confirmatory positive control for the redox-dependent
protein accumulation [30,34], lower and WT-like CHLM values were indicated in ntrc
and ntrc/∆2cp. Normalized to actin, the GluTR and GSAAT levels decreased in ntrc by
34% and 23%, respectively, compared to the WT, while in ntrc/∆2cp, the protein amounts
increased by 19% and 16%, respectively, relative to the WT (Figure 6D). The ALAD
content was 29% lower in ntrc relative to the WT (Figure 6D), while ∆2cp and ntrc/∆2cp
extracts showed an increased ALAD accumulation. The modified protein contents in
the analyzed lines correspond to the ALA synthesis capacity and ALAD activity. While
the ALA synthesis capacity was decreased by 39% in ntrc, the WT activity was restored
in ntrc/∆2cp (Figure 6E). The ALAD activity decreased by 27% in ntrc and reached WT
levels in ntrc/∆2cp (Figure 6F). It is obvious that the WT-like restored accumulation
of redox-dependent TBS enzymes correlates with their activities in ntrc/∆2cp, which
always results in a WT-like steady-state level of the TBS end-products chlorophyll and
heme (Figure 6B,C).
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Figure 6. (A): Representative image of four-week-old WT (Col-0), ntrc, ∆2cp, and ntrc/∆2cp plants
grown under SD and SL conditions (120 µmol photons m−2 s−1). For the following experiments,
the seedlings were harvested after 2 weeks. (B,C): Chlorophyll and heme contents of the mutants
described in A compared to Col-0 analyzed by HPLC. (D): Western blot analysis to quantify selected
TBS enzymes. (E): Determination of ALA synthesis capacity. The means and the standard deviations
of four biological replicates per line are given. (F): Determination of the ALAD activity of the leaf
extracts. The means and the standard deviations of three biological replicates are indicated. The
statistical significance of the activity differences to the WT from E and F was determined using
Student’s t-test and marked with an asterisk (**, p ≤ 0.01).
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4. Discussion
4.1. Different Concepts of Redox Control: Regulation of Protein Degradation vs. Regulation of
Enzyme Activity

Except for the pale green ntrc [8] or the severe albino phenotype of the trxz mutant [20],
a macroscopic phenotype of impaired seedling growth was only observed in the simulta-
neous inactivation or absence of more than one plastid-localized TRX isoform. Previous
examples have been reported, such as the pale green leaf phenotype obtained by the VIGS
of three different TRXM genes encoding the TRX-m isoforms [12,27] or the trxf1/trxf2
mutant, whose growth is impaired under short-day conditions due to an impaired CBC
activation [66]. In ntrc/trxf1, the redox state of redox-sensitive enzymes, such as FBPase, is
shifted to an oxidized state, which clearly correlates with decreased enzyme activity [29].

In contrast to these observations, these TRX-deficient mutants display a different
impact of the redox-dependent control on TBS enzymes. It is striking that no oxidized
forms of TBS proteins were detectable in the TRX- and NTRC-deficient single and double
mutants (Supplemental Figure S1). This is consistent with previous observations in ntrc [11],
ntrc/trxf1 [28], and the inducible VIGS-TRXm2m4/m1 mutants [27]. It is obvious that the
redox control of TBS enzymes does not primarily affect their activity, but their stability.

While these observations point to functional redundancies of TRX isoforms and NTRC
on TBS enzyme stability, they also highlight a different regulatory concept of these thiol-
redox modulators on their target proteins in TBS compared to CBC and other described
redox-regulated pathways. Firstly, the presented results about the content of TBS enzymes
and their activities in TRX-f1 and NTRC single and double knock-out mutants do not rule
out the overlapping function of TRX-f1 and NTRC in the direct regulation of these enzymes
involved in TBS metabolism. The common positive surface charge of the two f-type TRX
isoforms and the TRXd from NTRC refers to similar substrate specificity [67]. This potential
structural resemblance could explain the decreased accumulation of several TBS enzymes
in trxf1 and ntrc in comparison to the WT.

These analyses also point to a different mode of action of the redox control. While
the activities of the redox-sensitive CBC enzymes are regulated by their redox state [17],
the redox control of TBS enzymes dominantly affects their stability, since combined
deficiency of NTRC and TRX results in a redox-dependent proteolysis of these target
proteins (Figures 2A and 4A,B). This refers to a different concept of redox control, which
does not directly determine the active state of TBS proteins but links the redox state of
TBS enzymes with a pathway to protein degradation. Due to decreased TBS enzyme
levels in the trxf1 and ntrc mutants, it is also evident that lower enzyme activity, and
consequently, lower chlorophyll and heme accumulation, are observed. Moreover, since
the GSAAT content is also slightly decreased in the single and double TRX-f1- and NTRC-
deficient mutants, additive effects of reductants on GluTR and GSAAT content and the
ALA synthesis capacity could not be ruled out. The decreased ALA synthesis capacity
and the ALAD activity in ntrc (Figure 3A) are additionally diminished in ntrc/trxf1
(Figure 3A). Thus, it can be concluded that both, TRX variants and NTRC, control the
turnover of enzymes of several TBS steps.

The degradation of GluTR in darkness has been verifiably described at the end of the
dark period, an observation that was linked to Clp-dependent degradation [68,69]. Dark
degradation of ALAD was also observed but was not as pronounced as GluTR (Figure 4A,
Supplemental Figure S2). The target proteins of the Clp protease are detected by the adaptor
complex consisting of ClpS1 and ClpF [70,71]. Using affinity purification, GluTR and ALAD
have already been identified as potential targets of ClpS1 [68,71], and GluTR was confirmed
later as a Clp substrate [68]. To demonstrate how oxidizing conditions make TBS proteins
more accessible to a redox-based proteolytic degradation and cause a redox-dependent
proteolytic cleavage, VIGS of TRXm2m4/m1 genes were silenced in WT and clpc1-1 plants.
We showed that several TBS proteins (GSAAT, ALAD, CHLI, GBP) accumulated in the
clpc1-1 mutants compared to the wild type. In the absence of TRX isoforms, such as the
m-type TRX, GSAAT, ALAD, GBP, and FLU, the content was diminished (Figure 5B). Thus,
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the TRX isoforms and NTRC are proposed to be involved in the reduction in GSAT, ALAD,
and some other TBS proteins, whose Clp protease-dependent degradation are prevented.

Because the amount of ALAD, GSAAT, and other TBS enzymes decreased in ntrc, trxf1,
and VIGS-TRXm seedlings, as well as in LL- and dark-grown plants compared to light-
exposed plants (Figures 2, 4 and 5), it can be assumed that part of the pool of these TBS
proteins can be oxidized, triggering a degradation signal for the Clp protease and other plastid
proteases. Eventually, the oxidized state would lead to immediate protein degradation. Thus,
the accumulation and stability of the analyzed TBS enzymes in the clpc1-1 mutant could
explain that the Clp-dependent proteolysis is a redox-regulated process.

The increased stability of GluTR1 in the VIGS-TRXm2m4/m1 plants contrasts with the
decreased accumulations of other TBS enzymes, such as GSAAT, ALAD, CHLI, and CHLM
in TRX-deficient plants. When the oxidized state of the redox-controlled TBS proteins
promotes their degradation, then we assume that GluTR remains in the reduced state in
the TRX-m-deficient seedlings during light exposure (Figure 5). Therefore, we speculate
that TRX-m could serve as an electron acceptor for GluTR, which could explain the higher
GluTR accumulation in TRX-m-deficient plants (Figure 5) and its enhanced degradation
during dark incubation. The TRX-m function for GluTR oxidation possibly occurs in
concert with the regulation of GluTR via the GBP or the cpSRP43 interactions [59], which
protect the protein from degradation and oligomerization/aggregation. However, the
TRX-m activities require further investigations and are contrary to the role of TRX-f and
NTRC, which are detectable in their single and double mutants, as well as in dark-grown
seedlings, when the amount of GluTR is diminished compared to the light-exposed wild
type. Then, the oxidized portion of GluTR would be increased, facilitating the proportional
degradation of GluTR.

We propose that GluTR is one of the main targets of redox control. Decreased
GluTR content in the mutants is likely responsible for the lower ALA synthesis rate, and,
consequently, affects the accumulation of the metabolic intermediates and end-products.
However, we have to keep in mind that not only the total amount of GluTR but also
the subplastidal localization of GluTR determines the ALA synthesis rate. Previous
reports emphasize that the soluble GluTR located in the stroma correlates with ALA
synthesis [62]. It is currently not clarified whether the GluTR transition between the
subplastidal compartments of stroma and membrane is also redox-controlled. However,
with regard to the previous paragraph, the soluble Clp protease degrades GluTR, and it
is suggested that the oxidized GluTR portion is recognized as a target of the Clp selector
and the chaperone subunits.

Finally, it cannot be excluded that the deficiency of parts of the thiol-redox system
in plastids leads to modified plastid-derived retrograde signaling affecting the nuclear
gene expression, or a decreased supply of the substrate glutamate or glutamyl-tRNAGlu

for ALA synthesis, since other metabolic processes in the chloroplasts of the mutants are
also impaired. Due to the mainly oxidized TRXs, especially in ntrc [30], and the plastidal
transcription (e.g., tRNAGlu) [20,21,72], the plastid-localized translation [22,73] and the
protein import into plastids [74–76] are affected.

4.2. TRXs Are Involved in the Regulation of Redox-Sensitive TBS Enzymes

Interestingly, the absence of 2-CPs rescues the NTRC-deficient phenotype to WT-like
plants, which was also observed at the level of CBS enzymes and their activity [30]. The
analyses of ntrc/∆2cp confirm that the lower levels of GluTR and CHLM and the resulting
lower accumulations of chlorophyll observed in ntrc leaves are remedied [34]. Here, we
showed that the stability of GluTR and ALAD, and thus the corresponding rate of ALA and
porphobilinogen synthesis, is mainly regulated by TRXs and, to a lesser extent, by NTRC
(Figure 6D–F). Following the proposed model [30], ALA synthesis capacity and ALAD
activity were restored to WT levels due to the WT-like contents of GluTR, GSAAT, and
ALAD accumulations in ntrc/∆2cp (Figure 6D). These observations confirm the previous
concept that the pool of oxidized TRX isoforms is the result of their reduced activity on
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2-CP, which appears to be required in the absence of NTRC and thus is the main cause of
the decreased chlorophyll and heme synthesis. This also would imply that NTRC itself is
not directly involved in the regulation of TBS but acts on TBS by maintaining the reduced
2-CP pool. However, based on the observed direct interactions between NTRC and TBS
enzymes, as well as the in vitro stimulation of CHLM and CHLI by NTRC [10,11], it is not
completely excluded that NTRC may temporally have a direct reductive effect on these
targets, e.g., in darkness, during stress, or at certain developmental stages when the effect
of TRX is limited.

4.3. Is the Light-Dependent Fluctuation of GluTR1 and ALAD Content Caused by Redox-Switches?

Our results show that HL acclimation leads to increased GluTR protein levels, sug-
gesting that chlorophyll biosynthesis is promoted when environmental light intensities
are increased. Indeed, enhanced turnover of chlorophyll-containing photosynthetic pro-
teins under these conditions requires increased chlorophyll synthesis [61]. Consequently,
increasing light intensities also trigger increased ALA synthesis capacity [62]. Interestingly,
the effect of NTRC/TRX-f1 deficiency to decrease GluTR protein levels is dependent on
light intensity and is mainly found in LL conditions but is strongly attenuated during HL
acclimation. Obviously, in ntrc/trxf1, GluTR is more stable in plants grown in HL than LL.
These differences in the GluTR content between HL and LL could occur because the TBS
enzymes in the NTRC- and TRX-f1-deficient mutants are proposed to be relatively more
abundant in their reduced form in HL than LL (Figure 4B). This has already been observed
for the redox status of the plastidial FBPase in trxf1. In normal light, FBPase was found to
be mostly oxidized in trxf1, while it was mainly reduced in the WT. In HL, the FBPase in
trxf1 was mainly reduced, although not as completely as in the WT [66]. In confirmation of
this, trxf1 single and ntrc/trxf1 double mutants were found to be more strongly inhibited in
photosynthetic growth under LL compared to HL conditions [29].

However, the contents of TBS enzymes should always be related to the transcript
levels of the corresponding genes. As previously described for GluTR (HEMA [68]), HEMB
expression is also not considered to be the cause of the decreased ALAD levels in the dark
compared to HL samples (Figure 4A). Thus, it is evident that proteolytic degradation is
responsible for the decreased GluTR and ALAD accumulation during dark incubation.
Regarding the ClpC subunit of the Clp protease, the protein levels between HL and dark,
as well as between HL and LL, were unchanged in the WT and the mutants examined
(Figure 4A,B). This suggests that the turnover of ClpC is not subject to a light-dependent
change. However, it remains currently unclear whether the activity of the Clp protease or
substrate availability is light- or redox-dependently regulated.

5. Conclusions

NTRC and TRX-f thiol redox systems have overlapping functions and coordinately
participate in the regulation of TBS proteins and end-product synthesis. We summarize
that not the activity but the stability of TBS enzymes, such as GluTR, ALAD, GSAAT,
CHLM, and POR, is the main target for redox regulation in response to different light
intensities. The redox-dependent control of TBS protein stability contrasts with the
redox regulation of enzyme activity observed in other plastid metabolic pathways,
such as the Calvin–Benson cycle. We hypothesize that TBS enzymes are sensitized to
protein degradation by their oxidation mediated by redox control. Moreover, the redox-
dependent compensation in ntrc/∆2cp leading to WT-like accumulation of TBS enzymes
indicates that TBS is controlled by FDX-TRXs and that NTRC is interacting in an indirect
manner via the redox balance of 2-CPs.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells12121670/s1, Figure S1: AMS labeling of total leaf protein
extracts to determine the light-dependent redox state of selected TBS enzymes in the WT (Col-0),
ntrc, trxf1, and ntrc/trxf1 plants. The redox-sensitive CBC enzyme FBPase was used as a control. The
seedlings were grown under SD conditions (100 µmol photons m−2 s−1) for 2 weeks. The samples
were harvested after 30 min of incubation at higher light intensity (220 µmol photons m−2 s−1) before
harvesting. The dark extracts were obtained from plants harvested at the end of the dark period
(16 h of darkness). Total protein extracts were labeled with AMS (+), separated by non-reducing
SDS-PAGE, and transferred to a nitrocellulose membrane. Detection was carried out using specific
antibodies indicated on the right; Figure S2: Stability of early TBS enzymes after dark incubation
of the WT (Col-0) seedlings. The seedlings were grown in soil for 2 weeks under SD conditions
(120 µmol photons m−2 s−1). The initial sample (0 h) was harvested in the middle of the light phase
(5 h light), and the seedlings were incubated for up to 48 h in darkness. The leaves were harvested at
indicated time points under a green light. The qPCR primers are listed in Table S1.
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Abbreviations

2CP: two-cysteine peroxiredoxin; ALA, 5-aminolevulinic acid; ALAD, 5-aminolevulinic acid
dehydratase; anth, antheraxanthin; β-car, β-carotene; CBC, Calvin–Benson Cycle; Chl, chlorophyll;
Chl27, encoding a subunit of magnesium protoporphyrin IX monomethyl ester cyclase; CHLI, subunit
of magnesium chelatase; Chlide, chlorophyllide; CHLG, Chl synthase; CHLM, Mg-protoporphyrin
IX methyltransferase; Col(0), Columbia (0) ecotype of Arabidopsis thaliana; FBPase, fructose-1,6-
bisphosphatase; FLU, fluoresence in blue; GBP, GluTR-binding protein; GFP, green fluorescence
protein; FTR, ferredoxin:TRX reductase; GluTR, glutamyl-tRNA reductase; GSAAT, glutamate-1-
semialdehyde aminotransferase; HEMA, encoding GluTR; HEMB, encoding ALAD; HL, high light;
LL, low light; lut, lutein; MgCh, magnesium chelatase; MgP, magnesium protoporphyrin IX; MME,
magnesium protoporphyrin IX monomethyl ester; NL, normal light; NPQ, nonchemical quenching;
NTRC, NADPH-dependent thioredoxin reductase; neo, neoxanthin; Pchlide, protochlorophyllide;
POR, protochlorophyllide oxidoreductase; PS, photosystem; qPCR, quantitative real-time PCR; ROS,
reactive oxygen species; SD, short-day condition, SDS, sodium dodecylsulfate; TBS, tetrapyrrole
biosynthesis; TRX, thioredoxin; VIGS, virus-induced gene silencing; vio, violaxanthin; WT, wild type;
zea, zeaxanthin.
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