A Blood-Based Molecular Clock for Biological Age Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Samples Preparation
2.3. ELOVL2 Pyrosequencing Analysis
2.4. qPCR Assays
2.5. Statistical Analysis
3. Results
3.1. Methylation of ELOVL2 Gene Promoter and Chronological Age
3.2. sjTREC Levels and Chronological Age
3.3. Development of a Blood-Based Molecular Clock
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meißner, C.; von Wurmb, N.; Oehmichen, M. Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. Int. J. Leg. Med. 1997, 110, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Li, C.; Xi, H.; Wen, Y.; Huang, K. Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. Am. J. Forensic Med. Pathol. 2009, 30, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Greis, F.; Reckert, A.; Fischer, K.; Ritz-Timme, S. Analysis of advanced glycation end products (AGEs) in dentine: Useful for age estimation? Int. J. Leg. Med. 2018, 132, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Waite, E.R.; Collins, M.J.; Ritz-Timme, S.; Schutz, H.W.; Cattaneo, C.; Borrman, H.I.M. A review of the methodological aspects of aspartic acid racemization analysis for use in forensic science. Forensic Sci. Int. 1999, 103, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018, 10, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Weidner, C.I.; Lin, Q.; Koch, C.M.; Eisele, L.; Beier, F.; Ziegler, P.; Bauerschlag, D.O.; Jöckel, K.H.; Erbel, R.; Mühleisen, T.W.; et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014, 15, R24. [Google Scholar] [CrossRef] [Green Version]
- Perna, L.; Zhang, Y.; Mons, U.; Holleczek, B.; Saum, K.U.; Brenner, H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 2016, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef]
- Christiansen, L.; Lenart, A.; Tan, Q.H.; Vaupel, J.W.; Aviv, A.; McGue, M.; Christensen, K. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 2016, 15, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.; Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging (Albany NY) 2016, 8, 1844–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugue, P.A.; Bassett, J.K.; Joo, J.E.; Baglietto, L.; Jung, C.H.; Wong, E.M.; Fiorito, G.; Schmidt, D.; Makalic, E.; Li, S.; et al. Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. Am. J. Epidemiol. 2018, 187, 529–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitling, L.P.; Saum, K.U.; Perna, L.; Schottker, B.; Holleczek, B.; Brenner, H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin. Epigenetics 2016, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marioni, R.E.; Shah, S.; Mcrae, A.F.; Ritchie, S.J.; Muniz-Terrera, G.; Harris, S.E.; Gibson, J.; Redmond, P.; Cox, S.R.; Pattie, A.; et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 2015, 44, 1388–1396. [Google Scholar] [CrossRef] [Green Version]
- Degerman, S.; Josefsson, M.; Adolfsson, A.N.; Wennstedt, S.; Landfors, M.; Haider, Z.; Pudas, S.; Hultdin, M.; Nyberg, L.; Adolfsson, R. Maintained memory in aging is associated with young epigenetic age. Neurobiol. Aging 2017, 55, 167–171. [Google Scholar] [CrossRef]
- Simpkin, A.J.; Cooper, R.; Howe, L.D.; Relton, C.L.; Davey Smith, G.; Teschendorff, A.; Widschwendter, M.; Wong, A.; Kuh, D.; Hardy, R. Are objective measures of physical capability related to accelerated epigenetic age? Findings from a British birth cohort. BMJ Open 2017, 7, e016708. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Marioni, R.E.; Cukic, I.; Chastin, S.F.; Dall, P.M.; Dontje, M.L.; Skelton, D.A.; Deary, I.J.; Seniors USP Team. The epigenetic clock and objectively measured sedentary and walking behavior in older adults: The Lothian Birth Cohort 1936. Clin. Epigenetics 2018, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sillanpaa, E.; Laakkonen, E.K.; Vaara, E.; Rantanen, T.; Kovanen, V.; Sipila, S.; Kaprio, J.; Ollikainen, M. Biological clocks and physical functioning in monozygotic female twins. BMC Geriatr. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Garagnani, P.; Bacalini, M.G.; Pirazzini, C.; Gori, D.; Giuliani, C.; Mari, D.; Di Blasio, A.M.; Gentilini, D.; Vitale, G.; Collino, S.; et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 2012, 11, 1132–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daunay, A.; Baudrin, L.G.; Deleuze, J.F.; How-Kit, A. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci. Rep. 2019, 9, 8862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbieć-Piekarska, R.; Spólnicka, M.; Kupiec, T.; Makowska, Ż.; Spas, A.; Parys-Proszek, A.; Kucharczyk, K.; Płoski, R.; Branicki, W. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci. Int. Genet. 2015, 14, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Garali, I.; Sahbatou, M.; Daunay, A.; Baudrin, L.G.; Renault, V.; Bouyacoub, Y.; Deleuze, J.F.; How-Kit, A. Improvements and inter-laboratory implementation and optimization of blood-based single-locus age prediction models using DNA methylation of the ELOVL2 promoter. Sci. Rep. 2020, 10, 15652. [Google Scholar] [CrossRef] [PubMed]
- Slieker, R.C.; Relton, C.L.; Gaunt, T.R.; Slagboom, P.E.; Heijmans, B.T. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.K.; Cleland, L.G.; James, M.J. Molecular basis for differential elongation of omega-3 docosapentaenoic acid by the rat Elovl5 and Elovl2. J. Lipid Res. 2013, 54, 2851–2857. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, J.; Wang, L.; Gao, Y.; Feng, G.; Li, G.; Zou, J.; Yu, M.; Li, Y.F.; Liu, C.; et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct. Target. Ther. 2022, 7, 162. [Google Scholar] [CrossRef]
- Ou, X.L.; Gao, J.; Wang, H.; Wang, H.S.; Lu, H.L.; Sun, H.Y. Predicting human age with bloodstains by sjTREC quantification. PLoS ONE 2012, 7, e42412. [Google Scholar] [CrossRef] [Green Version]
- Zubakov, D.; Liu, F.; van Zelm, M.C.; Vermeulen, J.; Oostra, B.A.; van Duijn, C.M.; Driessen, G.J.; van Dongen, J.J.; Kayser, M.; Langerak, A.W. Estimating human age from T-cell DNA rearrangements. Curr. Biol. 2010, 20, R970–R971. [Google Scholar] [CrossRef] [Green Version]
- Yamanoi, E.; Uchiyama, S.; Sakurada, M.; Ueno, Y. sjTREC quantification using SYBR quantitative PCR for age estimation of bloodstains in a Japanese population. Leg. Med. (Tokyo) 2018, 32, 71–74. [Google Scholar] [CrossRef]
- Manasatienkij, C.; Nimnual, A. Forensic blood stain aging using reverse transcription real-time PCR. Forensic Sci. Int. 2021, 3, 100205. [Google Scholar] [CrossRef]
- Falci, C.; Gianesin, K.; Sergi, G.; Giunco, S.; De Ronch, I.; Valpione, S.; Soldà, C.; Fiduccia, P.; Lonardi, S.; Zanchetta, M.; et al. Immune senescence and cancer in elderly patients: Results from an exploratory study. Exp. Gerontol. 2013, 48, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Ventevogel, M.S.; Sempowski, G.D. Thymic rejuvenation and aging. Curr. Opin. Immunol. 2013, 25, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goronzy, J.J.; Weyand, C.M. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res. Ther. 2003, 5, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Zhang, D.; Wang, C.; Wu, Z.; Liang, C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int. J. Med. Sci. 2018, 15, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrando-Martínez, S.; Romero-Sánchez, M.C.; Solana, R.; Delgado, J.; de la Rosa, R.; Muñoz-Fernández, M.A.; Ruiz-Mateos, E.; Leal, M. Thymic function failure and C-reactive protein levels are independent predictors of all-cause mortality in healthy elderly humans. Age (Dordr) 2013, 35, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Jung, S.E.; Hong, S.R.; Lee, E.H.; Lee, J.H.; Lee, S.D.; Lee, H.Y. Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci. Int. Genet. 2017, 29, 250–256. [Google Scholar] [CrossRef]
- Montesanto, A.; D’Aquila, P.; Lagani, V.; Paparazzo, E.; Geracitano, S.; Formentini, L.; Giacconi, R.; Cardelli, M.; Provinciali, M.; Bellizzi, D.; et al. A New Robust Epigenetic Model for Forensic Age Prediction. J. Forensic Sci. 2020, 65, 1424–1431. [Google Scholar] [CrossRef]
- De Rango, F.; Montesanto, A.; Berardelli, M.; Mazzei, B.; Mari, V.; Lattanzio, F.; Corsonello, A.; Passarino, G. To grow old in southern Italy: A comprehensive description of the old and oldest old in Calabria. Gerontology 2011, 57, 327–334. [Google Scholar] [CrossRef]
- Tsamardinos, I.; Charonyktakis, P.; Papoutsoglou, G.; Borboudakis, G.; Lakiotaki, K.; Zenklusen, J.C.; Juhl, H.; Chatzaki, E.; Lagani, V. Just Add Data: Automated predictive modeling for knowledge discovery and feature selection. NPJ Precis. Oncol. 2022, 6, 38. [Google Scholar] [CrossRef]
- Tsamardinos, I.; Rakhshani, A.; Lagani, V. Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization. In Artificial Intelligence: Methods and Applications; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Bekaert, B.; Kamalandua, A.; Zapico, S.C.; Van de Voorde, W.; Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 2015, 10, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Naue, J.; Hoefsloot, H.C.J.; Mook, O.R.F.; Rijlaarsdam-Hoekstra, L.; van der Zwalm, M.C.H.; Henneman, P.; Kloosterman, A.D.; Verschure, P.J. Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. Forensic Sci. Int. Genet. 2017, 31, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbiec-Piekarska, R.; Spolnicka, M.; Kupiec, T.; Parys-Proszek, A.; Makowska, Z.; Paleczka, A.; Kucharczyk, K.; Ploski, R.; Branicki, W. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 2015, 17, 173–179. [Google Scholar] [CrossRef]
- Vidaki, A.; Ballard, D.; Aliferi, A.; Miller, T.H.; Barron, L.P.; Syndercombe Court, D. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci. Int. Genet. 2017, 28, 225–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daunay, A.; Hardy, L.M.; Bouyacoub, Y.; Sahbatou, M.; Touvier, M.; Blanche, H.; Deleuze, J.F.; How-Kit, A. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites. Aging (Albany NY) 2022, 14, 7718–7733. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Pirazzini, C.; Bacalini, M.G.; Gentilini, D.; Di Blasio, A.M.; Delledonne, M.; Mari, D.; Arosio, B.; Monti, D.; Passarino, G.; et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 2015, 7, 1159–1170. [Google Scholar] [CrossRef] [Green Version]
- Ogata, A.; Kondo, M.; Yoshikawa, M.; Okano, M.; Tsutsumi, T.; Aboshi, H. Dental age estimation based on DNA methylation using real-time methylation-specific PCR. Forensic Sci. Int. 2022, 340, 111445. [Google Scholar] [CrossRef]
- Kondo, M.; Aboshi, H.; Yoshikawa, M.; Ogata, A.; Murayama, R.; Takei, M.; Aizawa, S. A newly developed age estimation method based on CpG methylation of teeth-derived DNA using real-time methylation-specific PCR. J. Oral Sci. 2020, 63, 54–58. [Google Scholar] [CrossRef]
- Manco, L.; Dias, H.C. DNA methylation analysis of ELOVL2 gene using droplet digital PCR for age estimation purposes. Forensic Sci. Int. 2022, 333, 111206. [Google Scholar] [CrossRef]
- Ou, X.; Zhao, H.; Sun, H.; Yang, Z.; Xie, B.; Shi, Y.; Wu, X. Detection and quantification of the age-related sjTREC decline in human peripheral blood. Int. J. Legal Med. 2011, 125, 603–608. [Google Scholar] [CrossRef]
- Jung, S.E.; Lim, S.M.; Hong, S.R.; Lee, E.H.; Shin, K.J.; Lee, H.Y. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci. Int. Genet. 2019, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.C.; Cordeiro, C.; Pereira, J.; Pinto, C.; Real, F.C.; Cunha, E.; Manco, L. DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay. Forensic Sci. Int. 2020, 311, 110267. [Google Scholar] [CrossRef] [PubMed]
- Vetter, V.M.; Kalies, C.H.; Sommerer, Y.; Bertram, L.; Demuth, I. Seven-CpG DNA Methylation Age Determined by Single Nucleotide Primer Extension and Illumina’s Infinium MethylationEPIC Array Provide Highly Comparable Results. Front. Genet. 2021, 12, 759357. [Google Scholar] [CrossRef] [PubMed]
- Franzen, J.; Nüchtern, S.; Tharmapalan, V.; Vieri, M.; Nikolić, M.; Han, Y.; Balfanz, P.; Marx, N.; Dreher, M.; Brümmendorf, T.H.; et al. Epigenetic Clocks Are Not Accelerated in COVID-19 Patients. Int. J. Mol. Sci. 2021, 22, 9306. [Google Scholar] [CrossRef]
Cpg Site | Men (N = 90) | Women (N = 104) | Total Sample (N = 194) |
---|---|---|---|
Mean age (SD) | 64.3 (15.7) | 62.8 (16.9) | 63.5 (16.3) |
Median age | 65.4 | 63.8 | 65.0 |
Age range | 21.0–93.6 | 20.0–93.1 | 20.0–93.6 |
CpG Site | Chromosome Location (GRCh38) | r | p-Value |
---|---|---|---|
1 | Chr6: 11,044,661 | 0.692 | <0.001 |
2 | Chr6: 11,044,655 | 0.758 | <0.001 |
3 | Chr6: 11,044,647 | 0.773 | <0.001 |
4 | Chr6: 11,044,644 | 0.811 | <0.001 |
5 | Chr6: 11,044,642 | 0.801 | <0.001 |
6 | Chr6: 11,044,640 | 0.793 | <0.001 |
7 | Chr6: 11,044,634 | 0.852 | <0.001 |
8 | Chr6: 11,044,631 | 0.751 | <0.001 |
9 | Chr6: 11,044,628 | 0.825 | <0.001 |
Mean CpG value | Chr6: 11,044,661–11,044,628 | 0.860 | <0.001 |
Metric | Model without sjTREC | Model with sjTREC |
---|---|---|
Mean Performance (95% CI) | Mean Performance (95% CI) | |
R-squared | 0.805 (0.745, 0.844) | 0.839 (0.753, 0.884) |
Mean Absolute Error | 4.954 (4.622, 5.278) | 4.449 (4.069, 4.841) |
Mean Squared Error | 40.342 (35.192, 45.791) | 33.119 (27.604, 39.339) |
Relative Absolute Error | 0.447 (0.399, 0.500) | 0.404 (0.340, 0.471) |
Correlation Coefficient | 0.904(0.874, 0.927) | 0.925 (0.894, 0.949) |
Age Range (years) | N | Model without sjTREC | Model with sjTREC |
---|---|---|---|
age < 40 | 18 | 2.27 | 2.47 |
40 < age <= 50 | 18 | 4.17 | 3.89 |
50 < age <= 60 | 40 | 4.33 | 4.06 |
60 < age <= 70 | 44 | 5.05 | 4.60 |
70 < age <= 80 | 42 | 4.46 | 3.79 |
age > 80 | 32 | 8.21 | 6.90 |
All subjects | 194 | 4.95 | 4.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparazzo, E.; Geracitano, S.; Lagani, V.; Bartolomeo, D.; Aceto, M.A.; D’Aquila, P.; Citrigno, L.; Bellizzi, D.; Passarino, G.; Montesanto, A. A Blood-Based Molecular Clock for Biological Age Estimation. Cells 2023, 12, 32. https://doi.org/10.3390/cells12010032
Paparazzo E, Geracitano S, Lagani V, Bartolomeo D, Aceto MA, D’Aquila P, Citrigno L, Bellizzi D, Passarino G, Montesanto A. A Blood-Based Molecular Clock for Biological Age Estimation. Cells. 2023; 12(1):32. https://doi.org/10.3390/cells12010032
Chicago/Turabian StylePaparazzo, Ersilia, Silvana Geracitano, Vincenzo Lagani, Denise Bartolomeo, Mirella Aurora Aceto, Patrizia D’Aquila, Luigi Citrigno, Dina Bellizzi, Giuseppe Passarino, and Alberto Montesanto. 2023. "A Blood-Based Molecular Clock for Biological Age Estimation" Cells 12, no. 1: 32. https://doi.org/10.3390/cells12010032
APA StylePaparazzo, E., Geracitano, S., Lagani, V., Bartolomeo, D., Aceto, M. A., D’Aquila, P., Citrigno, L., Bellizzi, D., Passarino, G., & Montesanto, A. (2023). A Blood-Based Molecular Clock for Biological Age Estimation. Cells, 12(1), 32. https://doi.org/10.3390/cells12010032