A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable
Abstract
:1. Rediscovering Old Concepts
“Predictions of the unpredictable are encouraged by the same history of NGF, which may be defined as a long sequence of unanticipated events, which each time resulted in a new turn in the NGF uncharted route and opened new vistas on an ever-changing panorama. One can at present only predict where future developments are most likely to occur. The main causes of unpredictability of the findings reside in the intricacy of the new surroundings where NGF is moving—the CNS and the immune system—rather than in NGF itself. The enormous complexity of these two networks, which on the basis of recent findings are closely interrelated and influence each other through bidirectional signals, opens endless possibilities for NGF activation of distinct repertoires of cells belonging to one or the other system.” [3].
2. Nerve Growth Factor: Caught in between Neuroscience and Immunology
Cell type | Main Finding | Ref. |
---|---|---|
Monocyte/Macrophages | LPS increases both NGF and NGF receptors expression | [46] |
NGF decreases the inflammatory response | [47] | |
NGF dependent increase in CXCR4 expression and chemotactic response | [48,49] | |
NGF dependent increase phagocytosis, enhanced parasite-killing activity and IL-1 | [50] | |
NGF dependent increase TNF-α, IL-8 secretion | [38] | |
NGF is an autocrine factor involved in survival | [39] | |
NGF and proNGF differentially regulate macrophage phenotype | [40] | |
T cells | Expression of NGF mRNA | [51] |
Activated T cells express NGF and TrkA | [52] | |
NGF expression increased in T cells after injury | optic nerve crush | [53] | |
Expression of NGF receptors | [54] | |
B cells | NGF and TrkA expression | [55] |
NGF dependent differentiation and increase IgM production | [37] | |
Increase in proliferation | [56] | |
Increased NGF expression after stimulation | [57] | |
NGF expression and secretion | [34] | |
Mast cells | NGF dependent increase in tryptase, IgE receptors and histamine | [58] |
NGF dependent increase in cyclooxygenase2 (COX2) and prostaglandin D2 | [59] | |
Mast cells proliferate in the presence of NGF | [33] | |
Mast cells express NGF | [34] | |
NGF dependent IL-6 induction, decrease TNF α | [60] | |
NGF induces degranulation | [61] | |
NGF dependent histamine release | [62] | |
NGF dependent increase in chemotaxis | [63] |
3. Microglia: A Duplicitous Nature
4. A Microglial Function for the Nerve Growth Factor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blinzinger, K.; Kreutzberg, G. Displacement of Synaptic Terminals from Regenerating Motoneurons by Microglial Cells. Z. Zellforsch. Mikrosk. Anat. 1968, 85, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Allen, N.J.; Vazquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007, 131, 1164–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi-Montalcini, R. The Nerve Growth Factor 35 Years Later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Conroy, J.N.; Coulson, E.J. High-Affinity TrkA and p75 Neurotrophin Receptor Complexes: A Twisted Affair. J. Biol. Chem. 2022, 298, 101568. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, M. Recent Advances in Understanding Neurotrophin Signaling. F1000Res. 2016, 5. [Google Scholar] [CrossRef]
- Chao, M.V.; Hempstead, B.L. p75 and Trk: A Two-Receptor System. Trends Neurosci. 1995, 18, 321–326. [Google Scholar] [CrossRef]
- Chao, M.V. Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Bothwell, M. Evolution of the Neurotrophin Signaling System in Invertebrates. Brain Behav. Evol. 2006, 68, 124–132. [Google Scholar] [CrossRef]
- Levi-Montalcini, R.; Hamburger, V. A Diffusible Agent of Mouse Sarcoma, Producing Hyperplasia of Sympathetic Ganglia and Hyperneurotization of Viscera in the Chick Embryo. J. Exp. Zool. 1953, 123, 233–287. [Google Scholar] [CrossRef]
- Otten, U.; Schwab, M.; Gagnon, C.; Thoenen, H. Selective Induction of Tyrosine Hydroxylase and Dopamine β-Hydroxylase by Nerve Growth Factor: Comparison between Adrenal Medulla and Sympathetic Ganglia of Adult and Newborn Rats. Brain Res. 1977, 133, 291–303. [Google Scholar] [CrossRef]
- Mearow, K.M.; Kril, Y. Anti-NGF Treatment Blocks the Upregulation of NGF Receptor mRNA Expression Associated with Collateral Sprouting of Rat Dorsal Root Ganglion Neurons. Neurosci. Lett. 1995, 184, 55–58. [Google Scholar] [CrossRef]
- Verge, V.M.; Richardson, P.M.; Wiesenfeld-Hallin, Z.; Hökfelt, T. Differential Influence of Nerve Growth Factor on Neuropeptide Expression in Vivo: A Novel Role in Peptide Suppression in Adult Sensory Neurons. J. Neurosci. 1995, 15, 2081–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, B.G.; Cornblath, D.R.; Adornato, B.T.; Chaudhry, V.; Flexner, C.; Wachsman, M.; Sinicropi, D.; Burton, L.E.; Peroutka, S.J. The Effect of Systemically Administered Recombinant Human Nerve Growth Factor in Healthy Human Subjects. Ann. Neurol. 1994, 36, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Cattaneo, A.; Capsoni, S. Understanding Pain Perception through Genetic Painlessness Diseases: The Role of NGF and proNGF. Pharmacol. Res. 2021, 169, 105662. [Google Scholar] [CrossRef]
- Seiler, M.; Schwab, M.E. Specific Retrograde Transport of Nerve Growth Factor (NGF) from Neocortex to Nucleus Basalis in the Rat. Brain Res. 1984, 300, 33–39. [Google Scholar] [CrossRef]
- Isaev, N.K.; Stelmashook, E.V.; Genrikhs, E.E. Role of Nerve Growth Factor in Plasticity of Forebrain Cholinergic Neurons. Biochemistry 2017, 82, 291–300. [Google Scholar] [CrossRef]
- Hefti, F. Nerve Growth Factor Promotes Survival of Septal Cholinergic Neurons after Fimbrial Transections. J. Neurosci. 1986, 6, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Friden, P.M.; Walus, L.R.; Watson, P.; Doctrow, S.R.; Kozarich, J.W.; Bäckman, C.; Bergman, H.; Hoffer, B.; Bloom, F.; Granholm, A.C. Blood-Brain Barrier Penetration and in Vivo Activity of an NGF Conjugate. Science 1993, 259, 373–377. [Google Scholar] [CrossRef]
- Korsching, S. The Role of Nerve Growth Factor in the CNS. Trends Neurosci. 1986, 9, 570–573. [Google Scholar] [CrossRef]
- Korsching, S.; Auburger, G.; Heumann, R.; Scott, J.; Thoenen, H. Levels of Nerve Growth Factor and Its mRNA in the Central Nervous System of the Rat Correlate with Cholinergic Innervation. Embo J. 1985, 4, 1389–1393. [Google Scholar] [CrossRef]
- Biane, J.; Conner, J.M.; Tuszynski, M.H. Nerve Growth Factor Is Primarily Produced by GABAergic Neurons of the Adult Rat Cortex. Front. Cell. Neurosci. 2014, 8, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.S.; Nishimura, M.C.; Armanini, M.P.; Crowley, C.; Spencer, S.D.; Phillips, H.S. Disruption of a Single Allele of the Nerve Growth Factor Gene Results in Atrophy of Basal Forebrain Cholinergic Neurons and Memory Deficits. J. Neurosci. 1997, 17, 7288–7296. [Google Scholar] [CrossRef] [PubMed]
- Ruberti, F.; Capsoni, S.; Comparini, A.; Di Daniel, E.; Franzot, J.; Gonfloni, S.; Rossi, G.; Berardi, N.; Cattaneo, A. Phenotypic Knockout of Nerve Growth Factor in Adult Transgenic Mice Reveals Severe Deficits in Basal Forebrain Cholinergic Neurons, Cell Death in the Spleen, and Skeletal Muscle Dystrophy. J. Neurosci. 2000, 20, 2589–2601. [Google Scholar] [CrossRef] [PubMed]
- Capsoni, S.; Ugolini, G.; Comparini, A.; Ruberti, F.; Berardi, N.; Cattaneo, A. Alzheimer-like Neurodegeneration in Aged Antinerve Growth Factor Transgenic Mice. Proc. Natl. Acad. Sci. USA 2000, 97, 6826–6831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capsoni, S.; Tiveron, C.; Vignone, D.; Amato, G.; Cattaneo, A. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 12299–12304. [Google Scholar] [CrossRef] [Green Version]
- Auld, D.S.; Mennicken, F.; Quirion, R. Nerve Growth Factor Rapidly Induces Prolonged Acetylcholine Release from Cultured Basal Forebrain Neurons: Differentiation between Neuromodulatory and Neurotrophic Influences. J. Neurosci. 2001, 21, 3375–3382. [Google Scholar] [CrossRef] [Green Version]
- Huh, C.Y.L.; Danik, M.; Manseau, F.; Trudeau, L.-E.; Williams, S. Chronic Exposure to Nerve Growth Factor Increases Acetylcholine and Glutamate Release from Cholinergic Neurons of the Rat Medial Septum and Diagonal Band of Broca via Mechanisms Mediated by p75NTR. J. Neurosci. 2008, 28, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Kioussis, D.; Pachnis, V. Immune and Nervous Systems: More than Just a Superficial Similarity? Immunity 2009, 31, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Madden, K.S.; Felten, D.L. Experimental Basis for Neural-Immune Interactions. Physiol. Rev. 1995, 75, 77–106. [Google Scholar] [CrossRef]
- Xanthos, D.N.; Sandkühler, J. Neurogenic Neuroinflammation: Inflammatory CNS Reactions in Response to Neuronal Activity. Nat. Rev. Neurosci. 2014, 15, 43–53. [Google Scholar] [CrossRef]
- Aloe, L.; Tuveri, M.A. Nerve Growth Factor and Autoimmune Rheumatic Diseases. Clin. Exp. Rheumatol. 1997, 15, 433–438. [Google Scholar] [PubMed]
- Aloe, L.; Bracci-Laudiero, L.; Bonini, S.; Manni, L. The Expanding Role of Nerve Growth Factor: From Neurotrophic Activity to Immunologic Diseases. Allergy 1997, 52, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Levi-Montalcini, R. Mast Cells Increase in Tissues of Neonatal Rats Injected with the Nerve Growth Factor. Brain Res. 1977, 133, 358–366. [Google Scholar] [CrossRef]
- Leon, A.; Buriani, A.; Dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R. Mast Cells Synthesize, Store, and Release Nerve Growth Factor. Proc. Natl. Acad. Sci. USA 1994, 91, 3739–3743. [Google Scholar] [CrossRef] [Green Version]
- Brodie, C.; Gelfand, E.W. Regulation of Immunoglobulin Production by Nerve Growth Factor: Comparison with Anti-CD40. J. Neuroimmunol. 1994, 52, 87–96. [Google Scholar] [CrossRef]
- Coppola, V.; Barrick, C.A.; Southon, E.A.; Celeste, A.; Wang, K.; Chen, B.; Haddad, E.-B.; Yin, J.; Nussenzweig, A.; Subramaniam, A.; et al. Ablation of TrkA Function in the Immune System Causes B Cell Abnormalities. Development 2004, 131, 5185–5195. [Google Scholar] [CrossRef] [Green Version]
- Otten, U.; Ehrhard, P.; Peck, R. Nerve Growth Factor Induces Growth and Differentiation of Human B Lymphocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 10059–10063. [Google Scholar] [CrossRef] [Green Version]
- Barouch, R.; Kazimirsky, G.; Appel, E.; Brodie, C. Nerve Growth Factor Regulates TNF-Alpha Production in Mouse Macrophages via MAP Kinase Activation. J. Leukoc. Biol. 2001, 69, 1019–1026. [Google Scholar]
- Garaci, E.; Caroleo, M.C.; Aloe, L.; Aquaro, S.; Piacentini, M.; Costa, N.; Amendola, A.; Micera, A.; Caliò, R.; Perno, C.F.; et al. Nerve Growth Factor Is an Autocrine Factor Essential for the Survival of Macrophages Infected with HIV. Proc. Natl. Acad. Sci. USA 1999, 96, 14013–14018. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.S.; Killebrew, D.A.; Clary, G.P.; Seawell, J.A.; Meeker, R.B. Differential Regulation of Macrophage Phenotype by Mature and pro-Nerve Growth Factor. J. Neuroimmunol. 2015, 285, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, G.; Foldi, I.; Aurikko, J.; Wentzell, J.S.; Lim, M.A.; Fenton, J.C.; Gay, N.J.; Hidalgo, A. Toll-6 and Toll-7 Function as Neurotrophin Receptors in the Drosophila Melanogaster CNS. Nat. Neurosci. 2013, 16, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foldi, I.; Anthoney, N.; Harrison, N.; Gangloff, M.; Verstak, B.; Nallasivan, M.P.; AlAhmed, S.; Zhu, B.; Phizacklea, M.; Losada-Perez, M.; et al. Three-Tier Regulation of Cell Number Plasticity by Neurotrophins and Tolls in Drosophila. J. Cell Biol. 2017, 216, 1421–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi-Montalcini, R.; Skaper, S.D.; Dal Toso, R.; Petrelli, L.; Leon, A. Nerve Growth Factor: From Neurotrophin to Neurokine. Trends Neurosci. 1996, 19, 514–520. [Google Scholar] [CrossRef]
- Skaper, S.D. Nerve Growth Factor: A Neuroimmune Crosstalk Mediator for All Seasons. Immunology 2017, 151, 1–15. [Google Scholar] [CrossRef]
- Caroleo, M.C.; Costa, N.; Bracci-Laudiero, L.; Aloe, L. Human Monocyte/macrophages Activate by Exposure to LPS Overexpress NGF and NGF Receptors. J. Neuroimmunol. 2001, 113, 193–201. [Google Scholar] [CrossRef]
- Prencipe, G.; Minnone, G.; Strippoli, R.; De Pasquale, L.; Petrini, S.; Caiello, I.; Manni, L.; De Benedetti, F.; Bracci-Laudiero, L. Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA. J. Immunol. 2014, 192, 3345–3354. [Google Scholar] [CrossRef]
- Kobayashi, H.; Mizisin, A.P. Nerve Growth Factor and Neurotrophin-3 Promote Chemotaxis of Mouse Macrophages in Vitro. Neurosci. Lett. 2001, 305, 157–160. [Google Scholar] [CrossRef]
- Samah, B.; Porcheray, F.; Gras, G. Neurotrophins Modulate Monocyte Chemotaxis without Affecting Macrophage Function. Clin. Exp. Immunol. 2008, 151, 476–486. [Google Scholar] [CrossRef]
- Susaki, Y.; Shimizu, S.; Katakura, K.; Watanabe, N.; Kawamoto, K.; Matsumoto, M.; Tsudzuki, M.; Furusaka, T.; Kitamura, Y.; Matsuda, H. Functional Properties of Murine Macrophages Promoted by Nerve Growth Factor. Blood 1996, 88, 4630–4637. [Google Scholar] [CrossRef]
- Santambrogio, L.; Benedetti, M.; Chao, M.V.; Muzaffar, R.; Kulig, K.; Gabellini, N.; Hochwald, G. Nerve Growth Factor Production by Lymphocytes. J. Immunol. 1994, 153, 4488–4495. [Google Scholar] [PubMed]
- Ehrhard, P.B.; Erb, P.; Graumann, U.; Otten, U. Expression of Nerve Growth Factor and Nerve Growth Factor Receptor Tyrosine Kinase Trk in Activated CD4-Positive T-Cell Clones. Proc. Natl. Acad. Sci. USA 1993, 90, 10984–10988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barouch, R.; Schwartz, M. Autoreactive T Cells Induce Neurotrophin Production by Immune and Neural Cells in Injured Rat Optic Nerve: Implications for Protective Autoimmunity. Faseb J. 2002, 16, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A. Thymocytes as Potential Target Cells for Nerve Growth Factor. Mol. Asp. Neurobiol. 1986, 31–36. [Google Scholar]
- Melamed, I.; Turner, C.E.; Aktories, K.; Kaplan, D.R.; Gelfand, E.W. Nerve Growth Factor Triggers Microfilament Assembly and Paxillin Phosphorylation in Human B Lymphocytes. J. Exp. Med. 1995, 181, 1071–1079. [Google Scholar] [CrossRef] [Green Version]
- Brodie, C.; Oshiba, A.; Renz, H.; Bradley, K.; Gelfand, E.W. Nerve Growth-Factor and Anti-CD40 Provide Opposite Signals for the Production of IgE in Interleukin-4-Treated Lymphocytes. Eur. J. Immunol. 1996, 26, 171–178. [Google Scholar] [CrossRef]
- Barouch, R.; Appel, E.; Kazimirsky, G.; Braun, A.; Renz, H.; Brodie, C. Differential Regulation of Neurotrophin Expression by Mitogens and Neurotransmitters in Mouse Lymphocytes. J. Neuroimmunol. 2000, 103, 112–121. [Google Scholar] [CrossRef]
- Welker, P.; Grabbe, J.; Grützkau, A.; Henz, B.M. Effects of Nerve Growth Factor (NGF) and Other Fibroblast-Derived Growth Factors on Immature Human Mast Cells (HMC-1). Immunology 1998, 94, 310–317. [Google Scholar]
- Murakami, M.; Tada, K.; Nakajima, K.; Kudo, I. Cyclooxygenase-2-Dependent Delayed Prostaglandin D2 Generation Is Initiated by Nerve Growth Factor in Rat Peritoneal Mast Cells: Its Augmentation by Extracellular Type II Secretory Phospholipase A2. J. Immunol. 1997, 159, 439–446. [Google Scholar]
- Marshall, J.S.; Gomi, K.; Blennerhassett, M.G.; Bienenstock, J. Nerve Growth Factor Modifies the Expression of Inflammatory Cytokines by Mast Cells via a Prostanoid-Dependent Mechanism. J. Immunol. 1999, 162, 4271–4276. [Google Scholar]
- Mazurek, N.; Weskamp, G.; Erne, P.; Otten, U. Nerve Growth Factor Induces Mast Cell Degranulation without Changing Intracellular Calcium Levels. Febs Lett. 1986, 198, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Horigome, K.; Pryor, J.C.; Bullock, E.D.; Johnson, E.M., Jr. Mediator Release from Mast Cells by Nerve Growth Factor. Neurotrophin Specificity and Receptor Mediation. J. Biol. Chem. 1993, 268, 14881–14887. [Google Scholar] [CrossRef]
- Sawada, J.; Itakura, A.; Tanaka, A.; Furusaka, T.; Matsuda, H. Nerve Growth Factor Functions as a Chemoattractant for Mast Cells through Both Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Signaling Pathways. Blood 2000, 95, 2052–2058. [Google Scholar] [CrossRef]
- Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.-B. ATP Mediates Rapid Microglial Response to Local Brain Injury in Vivo. Nat. Neurosci. 2005, 8, 752–758. [Google Scholar] [CrossRef]
- Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science 2005, 308, 1314–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanisch, U.-K.; Kettenmann, H. Microglia: Active Sensor and Versatile Effector Cells in the Normal and Pathologic Brain. Nat. Neurosci. 2007, 10, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Minghetti, L.; Levi, G. Microglia as Effector Cells in Brain Damage and Repair: Focus on Prostanoids and Nitric Oxide. Prog. Neurobiol. 1998, 54, 99–125. [Google Scholar] [CrossRef]
- Gosselin, D.; Skola, D.; Coufal, N.G.; Holtman, I.R.; Schlachetzki, J.C.M.; Sajti, E.; Jaeger, B.N.; O’Connor, C.; Fitzpatrick, C.; Pasillas, M.P.; et al. An Environment-Dependent Transcriptional Network Specifies Human Microglia Identity. Science 2017, 356. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Barres, B.A. Microglia and Macrophages in Brain Homeostasis and Disease. Nat. Rev. Immunol. 2018, 18, 225–242. [Google Scholar] [CrossRef]
- Amit, I.; Winter, D.R.; Jung, S. The Role of the Local Environment and Epigenetics in Shaping Macrophage Identity and Their Effect on Tissue Homeostasis. Nat. Immunol. 2016, 17, 18–25. [Google Scholar] [CrossRef]
- Matcovitch-Natan, O.; Winter, D.R.; Giladi, A.; Vargas Aguilar, S.; Spinrad, A.; Sarrazin, S.; Ben-Yehuda, H.; David, E.; Zelada Gonzalez, F.; Perrin, P.; et al. Microglia Development Follows a Stepwise Program to Regulate Brain Homeostasis. Science 2016, 353, aad8670. [Google Scholar] [CrossRef] [PubMed]
- Thion, M.S.; Low, D.; Silvin, A.; Chen, J.; Grisel, P.; Schulte-Schrepping, J.; Blecher, R.; Ulas, T.; Squarzoni, P.; Hoeffel, G.; et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2018, 172, 500–516.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanamsagar, R.; Alter, M.D.; Block, C.S.; Sullivan, H.; Bolton, J.L.; Bilbo, S.D. Generation of a Microglial Developmental Index in Mice and in Humans Reveals a Sex Difference in Maturation and Immune Reactivity. Glia 2018, 66, 460. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Ginhoux, F.; Prinz, M. Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harb. Perspect. Biol. 2015, 7, a020537. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cheng, Z.; Zhou, L.; Darmanis, S.; Neff, N.F.; Okamoto, J.; Gulati, G.; Bennett, M.L.; Sun, L.O.; Clarke, L.E.; et al. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron 2019, 101, 207–223.e10. [Google Scholar] [CrossRef] [Green Version]
- Thion, M.S.; Ginhoux, F.; Garel, S. Microglia and Early Brain Development: An Intimate Journey. Science 2018, 362, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Bessis, A.; Béchade, C.; Bernard, D.; Roumier, A. Microglial Control of Neuronal Death and Synaptic Properties. Glia 2007, 55, 233–238. [Google Scholar] [CrossRef]
- Ferrer, I.; Bernet, E.; Soriano, E.; del Rio, T.; Fonseca, M. Naturally Occurring Cell Death in the Cerebral Cortex of the Rat and Removal of Dead Cells by Transitory Phagocytes. Neuroscience 1990, 39, 451–458. [Google Scholar] [CrossRef]
- Marín-Teva, J.L.; Dusart, I.; Colin, C.; Gervais, A.; van Rooijen, N.; Mallat, M. Microglia Promote the Death of Developing Purkinje Cells. Neuron 2004, 41, 535–547. [Google Scholar] [CrossRef]
- Neniskyte, U.; Vilalta, A.; Brown, G.C. Tumour Necrosis Factor Alpha-Induced Neuronal Loss Is Mediated by Microglial Phagocytosis. Febs Lett. 2014, 588, 2952–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukovic, J.; Colditz, M.J.; Blackmore, D.G.; Ruitenberg, M.J.; Bartlett, P.F. Microglia Modulate Hippocampal Neural Precursor Activity in Response to Exercise and Aging. J. Neurosci. 2012, 32, 6435–6443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.-S.; Cho, H.-Y.; Hoyt, K.R.; Naegele, J.R.; Obrietan, K. IGF-1 Receptor-Mediated ERK/MAPK Signaling Couples Status Epilepticus to Progenitor Cell Proliferation in the Subgranular Layer of the Dentate Gyrus. Glia 2008, 56, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Stevens, B. Microglia: Phagocytosing to Clear, Sculpt, and Eliminate. Dev. Cell 2016, 38, 126–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron 2012, 74, 691–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehrman, E.K.; Wilton, D.K.; Litvina, E.Y.; Welsh, C.A.; Chang, S.T.; Frouin, A.; Walker, A.J.; Heller, M.D.; Umemori, H.; Chen, C.; et al. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron 2018, 100, 120–134.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takimoto, C.H.; Chao, M.P.; Gibbs, C.; McCamish, M.A.; Liu, J.; Chen, J.Y.; Majeti, R.; Weissman, I.L. The Macrophage “Do Not Eat Me” Signal, CD47, Is a Clinically Validated Cancer Immunotherapy Target. Ann. Oncol. 2019, 30, 486–489.e9. [Google Scholar] [CrossRef]
- Cheadle, L.; Rivera, S.A.; Phelps, J.S.; Ennis, K.A.; Stevens, B.; Burkly, L.C.; Lee, W.-C.A.; Greenberg, M.E. Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron 2020, 108, 451–468.e9. [Google Scholar] [CrossRef]
- Miyamoto, A.; Wake, H.; Ishikawa, A.W.; Eto, K.; Shibata, K.; Murakoshi, H.; Koizumi, S.; Moorhouse, A.J.; Yoshimura, Y.; Nabekura, J. Microglia Contact Induces Synapse Formation in Developing Somatosensory Cortex. Nat. Commun. 2016, 7, 12540. [Google Scholar] [CrossRef] [Green Version]
- Weinhard, L.; di Bartolomei, G.; Bolasco, G.; Machado, P.; Schieber, N.L.; Neniskyte, U.; Exiga, M.; Vadisiute, A.; Raggioli, A.; Schertel, A.; et al. Microglia Remodel Synapses by Presynaptic Trogocytosis and Spine Head Filopodia Induction. Nat. Commun. 2018, 9, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wake, H.; Moorhouse, A.J.; Jinno, S.; Kohsaka, S.; Nabekura, J. Resting Microglia Directly Monitor the Functional State of Synapses in Vivo and Determine the Fate of Ischemic Terminals. J. Neurosci. 2009, 29, 3974–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.-È.; Lowery, R.L.; Majewska, A.K. Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biol. 2010, 8, e1000527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-Neuron Crosstalk: Signaling Mechanism and Control of Synaptic Transmission. Semin. Cell Dev. Biol. 2019, 94, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Ragozzino, D.; Di Angelantonio, S.; Trettel, F.; Bertollini, C.; Maggi, L.; Gross, C.; Charo, I.F.; Limatola, C.; Eusebi, F. Chemokine fractalkine/CX3CL1 Negatively Modulates Active Glutamatergic Synapses in Rat Hippocampal Neurons. J. Neurosci. 2006, 26, 10488–10498. [Google Scholar] [CrossRef] [PubMed]
- Akiyoshi, R.; Wake, H.; Kato, D.; Horiuchi, H.; Ono, R.; Ikegami, A.; Haruwaka, K.; Omori, T.; Tachibana, Y.; Moorhouse, A.J.; et al. Microglia Enhance Synapse Activity to Promote Local Network Synchronization. eNeuro 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Stowell, R.D.; Sipe, G.O.; Dawes, R.P.; Batchelor, H.N.; Lordy, K.A.; Whitelaw, B.S.; Stoessel, M.B.; Bidlack, J.M.; Brown, E.; Sur, M.; et al. Noradrenergic Signaling in the Wakeful State Inhibits Microglial Surveillance and Synaptic Plasticity in the Mouse Visual Cortex. Nat. Neurosci. 2019, 22, 1782–1792. [Google Scholar] [CrossRef]
- Liu, Y.U.; Ying, Y.; Li, Y.; Eyo, U.B.; Chen, T.; Zheng, J.; Umpierre, A.D.; Zhu, J.; Bosco, D.B.; Dong, H.; et al. Neuronal Network Activity Controls Microglial Process Surveillance in Awake Mice via Norepinephrine Signaling. Nat. Neurosci. 2019, 22, 1771–1781. [Google Scholar] [CrossRef]
- Shytle, R.D.; Mori, T.; Townsend, K.; Vendrame, M.; Sun, N.; Zeng, J.; Ehrhart, J.; Silver, A.A.; Sanberg, P.R.; Tan, J. Cholinergic Modulation of Microglial Activation by Alpha 7 Nicotinic Receptors. J. Neurochem. 2004, 89, 337–343. [Google Scholar] [CrossRef]
- Suzuki, T.; Hide, I.; Matsubara, A.; Hama, C.; Harada, K.; Miyano, K.; Andrä, M.; Matsubayashi, H.; Sakai, N.; Kohsaka, S.; et al. Microglial alpha7 Nicotinic Acetylcholine Receptors Drive a Phospholipase C/IP3 Pathway and Modulate the Cell Activation toward a Neuroprotective Role. J. Neurosci. Res. 2006, 83, 1461–1470. [Google Scholar] [CrossRef]
- Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., 3rd; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.-B. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simone, R.; Ambrosini, E.; Carnevale, D.; Ajmone-Cat, M.A.; Minghetti, L. NGF Promotes Microglial Migration through the Activation of Its High Affinity Receptor: Modulation by TGF-Beta. J. Neuroimmunol. 2007, 190, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Geula, C.; Lu, C.; Koziel, H.; Hatcher, L.M.; Roisen, F.J. Neurotrophins Regulate Proliferation and Survival of Two Microglial Cell Lines in Vitro. Exp. Neurol. 2003, 183, 469–481. [Google Scholar] [CrossRef]
- Neumann, H.; Misgeld, T.; Matsumuro, K.; Wekerle, H. Neurotrophins Inhibit Major Histocompatibility Class II Inducibility of Microglia: Involvement of the p75 Neurotrophin Receptor. Proc. Natl. Acad. Sci. USA 1998, 95, 5779–5784. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, C.; Tiberi, A.; Giustizieri, M.; Marrone, M.C.; Gobbo, F.; Carucci, N.M.; Meli, G.; Arisi, I.; D’Onofrio, M.; Marinelli, S.; et al. NGF Steers Microglia toward a Neuroprotective Phenotype. Glia 2018, 66, 1395–1416. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, A.; Capsoni, S.; Margotti, E.; Righi, M.; Kontsekova, E.; Pavlik, P.; Filipcik, P.; Novak, M. Functional Blockade of Tyrosine Kinase A in the Rat Basal Forebrain by a Novel Antagonistic Anti-Receptor Monoclonal Antibody. J. Neurosci. 1999, 19, 9687–9697. [Google Scholar] [CrossRef] [Green Version]
- Fodelianaki, G.; Lansing, F.; Bhattarai, P.; Troullinaki, M.; Zeballos, M.A.; Charalampopoulos, I.; Gravanis, A.; Mirtschink, P.; Chavakis, T.; Alexaki, V.I. Nerve Growth Factor Modulates LPS—Induced Microglial Glycolysis and Inflammatory Responses. Exp. Cell Res. 2019, 377, 10–16. [Google Scholar] [CrossRef]
- Capsoni, S.; Malerba, F.; Carucci, N.M.; Rizzi, C.; Criscuolo, C.; Origlia, N.; Calvello, M.; Viegi, A.; Meli, G.; Cattaneo, A. The Chemokine CXCL12 Mediates the Anti-Amyloidogenic Action of Painless Human Nerve Growth Factor. Brain 2017, 140, 201–217. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, M.; Arisi, I.; Brandi, R.; Di Mambro, A.; Felsani, A.; Capsoni, S.; Cattaneo, A. Early Inflammation and Immune Response mRNAs in the Brain of AD11 Anti-NGF Mice. Neurobiol. Aging 2011, 32, 1007–1022. [Google Scholar] [CrossRef]
- Alexaki, V.I.; Fodelianaki, G.; Neuwirth, A.; Mund, C.; Kourgiantaki, A.; Ieronimaki, E.; Lyroni, K.; Troullinaki, M.; Fujii, C.; Kanczkowski, W.; et al. DHEA Inhibits Acute Microglia-Mediated Inflammation through Activation of the TrkA-Akt1/2-CREB-Jmjd3 Pathway. Mol. Psychiatry 2018, 23, 1410–1420. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Yuan, X.; Wei, Y.; Wei, X. JMJD3 in the Regulation of Human Diseases. Protein Cell 2019, 10, 864–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frade, J.M.; Barde, Y.A. Microglia-Derived Nerve Growth Factor Causes Cell Death in the Developing Retina. Neuron 1998, 20, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, B.; Roque, C.H.; Hempstead, B.L.; Al-Ubaidi, M.R.; Roque, R.S. Microglia-Derived Pronerve Growth Factor Promotes Photoreceptor Cell Death via p75 Neurotrophin Receptor. J. Biol. Chem. 2004, 279, 41839–41845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonakait, G.M.; Pratt, L.; Acevedo, G.; Ni, L. Microglial Regulation of Cholinergic Differentiation in the Basal Forebrain. Dev. Neurobiol. 2012, 72, 857–864. [Google Scholar] [CrossRef]
- Heese, K.; Fiebich, B.L.; Bauer, J.; Otten, U. NF-?B Modulates Lipopolysaccharide-Induced Microglial Nerve Growth Factor Expression. Glia 1998, 22, 401–407. [Google Scholar] [CrossRef]
- Venkatesan, C.; Chrzaszcz, M.; Choi, N.; Wainwright, M.S. Chronic Upregulation of Activated Microglia Immunoreactive for Galectin-3/Mac-2 and Nerve Growth Factor Following Diffuse Axonal Injury. J. Neuroinflammation 2010, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Heese, K.; Fiebich, B.L.; Bauer, J.; Otten, U. Nerve Growth Factor (NGF) Expression in Rat Microglia Is Induced by Adenosine A2a-Receptors. Neurosci. Lett. 1997, 231, 83–86. [Google Scholar] [CrossRef]
- Latini, S.; Pedata, F. Adenosine in the Central Nervous System: Release Mechanisms and Extracellular Concentrations. J. Neurochem. 2001, 79, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Kermani, P.; Teng, K.K.; Hempstead, B.L. Regulation of Cell Survival by Secreted Proneurotrophins. Science 2001, 294, 1945–1948. [Google Scholar] [CrossRef] [Green Version]
- Josephy-Hernandez, S.; Pirvulescu, I.; Maira, M.; Aboulkassim, T.; Wong, T.P.; McKinney, R.A.; Saragovi, H.U. Pharmacological Interrogation of TrkA-Mediated Mechanisms in Hippocampal-Dependent Memory Consolidation. PLoS ONE 2019, 14, e0218036. [Google Scholar] [CrossRef]
- Fahnestock, M.; Michalski, B.; Xu, B.; Coughlin, M.D. The Precursor pro-Nerve Growth Factor Is the Predominant Form of Nerve Growth Factor in Brain and Is Increased in Alzheimer’s Disease. Mol. Cell. Neurosci. 2001, 18, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsberg, S.D.; Che, S.; Wuu, J.; Counts, S.E.; Mufson, E.J. Down Regulation of Trk but Not p75NTR Gene Expression in Single Cholinergic Basal Forebrain Neurons Mark the Progression of Alzheimer’s Disease. J. Neurochem. 2006, 97, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Tiveron, C.; Fasulo, L.; Capsoni, S.; Malerba, F.; Marinelli, S.; Paoletti, F.; Piccinin, S.; Scardigli, R.; Amato, G.; Brandi, R.; et al. ProNGF\NGF Imbalance Triggers Learning and Memory Deficits, Neurodegeneration and Spontaneous Epileptic-like Discharges in Transgenic Mice. Cell Death Differ. 2013, 20, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Profaci, C.P.; Munji, R.N.; Pulido, R.S.; Daneman, R. The Blood–brain Barrier in Health and Disease: Important Unanswered Questions. J. Exp. Med. 2020, 217, e20190062. [Google Scholar] [CrossRef]
- Sanchez, J.R.; Marsh, S.; McIntyre, L.; Davtyan, H.; Walsh, C.; Blurton-Jones, M. Cytotoxic T Cells Infiltrate the Brain and Interact with Microglia to Reduce Alzheimer’s Disease Pathogenesis. J. Immunol. 2020, 204, 64.4. [Google Scholar]
- Ferretti, M.T.; Merlini, M.; Späni, C.; Gericke, C.; N. Schweizer; Enzmann, G.; Engelhardt, B.; Kulic, L.; Suter, T.; Nitsch, R.M. T-Cell Brain Infiltration and Immature Antigen-Presenting Cells in Transgenic Models of Alzheimer’s Disease-like Cerebral Amyloidosis. Brainbehaviorand Immun. 2016, 54, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Iba, M.; Kim, C.; Sallin, M.; Kwon, S.; Verma, A.; Overk, C.; Rissman, R.A.; Sen, R.; Sen, J.M.; Masliah, E. Neuroinflammation Is Associated with Infiltration of T Cells in Lewy Body Disease and α-Synuclein Transgenic Models. J. Neuroinflammation 2020, 17, 214. [Google Scholar] [CrossRef]
- Li, Y.; Holtzman, D.M.; Kromer, L.F.; Kaplan, D.R.; Chua-Couzens, J.; Clary, D.O.; Knusel, B.; Mobley, W.C. Regulation of TrkA and ChAT Expression in Developing Rat Basal Forebrain: Evidence That Both Exogenous and Endogenous NGF Regulate Differentiation of Cholinergic Neurons. J. Neurosci. 1995, 15, 2888–2905. [Google Scholar] [CrossRef] [Green Version]
- Baho, E.; Chattopadhyaya, B.; Lavertu-Jolin, M.; Mazziotti, R.; Awad, P.N.; Chehrazi, P.; Groleau, M.; Jahannault-Talignani, C.; Vaucher, E.; Ango, F.; et al. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J. Neurosci. 2019, 39, 4489–4510. [Google Scholar] [CrossRef] [Green Version]
- Vignoli, B.; Battistini, G.; Melani, R.; Blum, R.; Santi, S.; Berardi, N.; Canossa, M. Peri-Synaptic Glia Recycles Brain-Derived Neurotrophic Factor for LTP Stabilization and Memory Retention. Neuron 2016, 92, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Volterra, A. TNFα in Synaptic Function: Switching Gears. Trends Neurosci. 2012, 35, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Stellwagen, D.; Malenka, R.C. Synaptic Scaling Mediated by Glial TNF-α. Nature 2006, 440, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Ardura-Fabregat, A.; Boddeke, E.W.G.M.; Boza-Serrano, A.; Brioschi, S.; Castro-Gomez, S.; Ceyzériat, K.; Dansokho, C.; Dierkes, T.; Gelders, G.; Heneka, M.T.; et al. Targeting Neuroinflammation to Treat Alzheimer’s Disease. Cns Drugs 2017, 31, 1057–1082. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiberi, A.; Capsoni, S.; Cattaneo, A. A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells 2022, 11, 1835. https://doi.org/10.3390/cells11111835
Tiberi A, Capsoni S, Cattaneo A. A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells. 2022; 11(11):1835. https://doi.org/10.3390/cells11111835
Chicago/Turabian StyleTiberi, Alexia, Simona Capsoni, and Antonino Cattaneo. 2022. "A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable" Cells 11, no. 11: 1835. https://doi.org/10.3390/cells11111835
APA StyleTiberi, A., Capsoni, S., & Cattaneo, A. (2022). A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells, 11(11), 1835. https://doi.org/10.3390/cells11111835