Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis
Abstract
:1. Methodology: Species Demographics
2. Methodology: Sample Collection
3. Methodology: Plate-versus Droplet-Based Methods and Number of Cells Obtained
4. Methodology: Analysis Pipelines
5. Variability in Methodology in Examination of SVZ and DG
6. Identification of Cell Types within the SVZ
7. Identification of Cell Types within the Dentate
8. Distinguishing Astrocytes and Neural Stem Cells (NSCs) in the SVZ and DG
9. Distinguishing Neural Stem and Progenitor Cells (NSCs and NPCs) in the SVZ and DG
10. Identification of the Hypothalamic Tanycytes
11. The Transcriptional Dynamics of Upregulation of the Neurogenic Program in the SVZ
12. The Transcriptional Dynamics Defining Hippocampal Neurogenesis
13. Effects of Aging and Injury on Adult Neurogenesis
14. The Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Wu, X.; Jiang, L.; Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. Cell Rep. 2017, 18, 3227–3241. [Google Scholar] [CrossRef]
- Kim, D.W.; Washington, P.W.; Wang, Z.Q.; Lin, S.H.; Sun, C.; Ismail, B.T.; Wang, H.; Jiang, L.; Blackshaw, S. The Cellular and Molecular Landscape of Hypothalamic Patterning and Differentiation from Embryonic to Late Postnatal Development. Nat. Commun. 2020, 11, 4360. [Google Scholar] [CrossRef]
- Hajdarovic, K.H.; Yu, D.; Hassell, L.-A.; Evans, S.; Neretti, N.; Webb, A.E. Single Cell Analysis of the Aging Hypothalamus. bioRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Llorens-Bobadilla, E.; Zhao, S.; Baser, A.; Saiz-Castro, G.; Zwadlo, K.; Martin-Villalba, A. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells That Become Activated upon Brain Injury. Cell Stem Cell 2015, 17, 329–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulken, B.W.; Leeman, D.S.; Boutet, S.C.; Hebestreit, K.; Brunet, A. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage. Cell Rep. 2017, 18, 777–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basak, O.; Krieger, T.G.; Muraro, M.J.; Wiebrands, K.; Stange, D.E.; Frias-Aldeguer, J.; Rivron, N.C.; van de Wetering, M.; van Es, J.H.; van Oudenaarden, A.; et al. Troy+ Brain Stem Cells Cycle through Quiescence and Regulate Their Number by Sensing Niche Occupancy. Proc. Natl. Acad. Sci. USA 2018, 115, E610–E619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Geng, Y.; Liu, J.; Zhang, H.; Zhou, L.; Lin, Q.; Yu, J.; Zhang, K.; Liu, J.; Gao, X.; et al. Single-Cell Transcriptomics Reveals Gene Signatures and Alterations Associated with Aging in Distinct Neural Stem/Progenitor Cell Subpopulations. Protein Cell 2017, 9, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Zywitza, V.; Misios, A.; Bunatyan, L.; Willnow, T.E.; Rajewsky, N. Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep. 2018, 25, 2457–2469.e8. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.T.; Stratton, J.A.; Stykel, M.G.; Abbasi, S.; Sharma, S.; Mayr, K.A.; Koblinger, K.; Whelan, P.J.; Biernaskie, J. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function. Cell 2018, 173, 1045–1057.e9. [Google Scholar] [CrossRef] [Green Version]
- Kalamakis, G.; Brüne, D.; Ravichandran, S.; Bolz, J.; Fan, W.; Ziebell, F.; Stiehl, T.; Catalá-Martinez, F.; Kupke, J.; Zhao, S.; et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell 2019, 176, 1407–1419.e14. [Google Scholar] [CrossRef] [Green Version]
- Mizrak, D.; Levitin, H.M.; Delgado, A.C.; Crotet, V.; Yuan, J.; Chaker, Z.; Silva-Vargas, V.; Sims, P.A.; Doetsch, F. Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages. Cell Rep. 2019, 26, 394–406.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulken, B.W.; Buckley, M.T.; Navarro Negredo, P.; Saligrama, N.; Cayrol, R.; Leeman, D.S.; George, B.M.; Boutet, S.C.; Hebestreit, K.; Pluvinage, J.V.; et al. Single-Cell Analysis Reveals T Cell Infiltration in Old Neurogenic Niches. Nature 2019, 571, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Mizrak, D.; Bayin, N.S.; Yuan, J.; Liu, Z.; Suciu, R.; Niphakis, M.J.; Ngo, N.; Lum, K.M.; Cravatt, B.F.; Joyner, A.L.; et al. Single-Cell Profiling and SCOPE-Seq Reveal the Lineage Dynamics of Adult Neurogenesis and NOTUM as a Key V-SVZ Regulator. Cell Rep. 2020, 31, 107805. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.P.; Zamboni, M.; Santopolo, G.; Mold, J.E.; Barrientos-Somarribas, M.; Talavera-Lopez, C.; Andersson, B.; Frisén, J. Activation of a Neural Stem Cell Transcriptional Program in Parenchymal Astrocytes. eLife 2020, 9, e59733. [Google Scholar] [CrossRef]
- Borrett, M.J.; Innes, B.T.; Jeong, D.; Tahmasian, N.; Storer, M.A.; Bader, G.D.; Kaplan, D.R.; Miller, F.D. Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State When Activated for Adult Neurogenesis. Cell Rep. 2020, 32, 108022. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Capecchi, M.R. Lrig1 Expression Prospectively Identifies Stem Cells in the Ventricular-Subventricular Zone That Are Neurogenic throughout Adult Life. Neural Dev. 2020, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.P.; Laks, D.R.; Sun, D.; Poran, A.; Laughney, A.M.; Wang, Z.; Sam, J.; Belenguer, G.; Fariñas, I.; Elemento, O.; et al. High-Resolution Mouse Subventricular Zone Stem-Cell Niche Transcriptome Reveals Features of Lineage, Anatomy, and Aging. Proc. Natl. Acad. Sci. USA 2020, 117, 31448–31458. [Google Scholar] [CrossRef]
- Chen, X.; Cao, S.; Wang, Y.; Li, M.; Guo, Y.; Ye, Y.; Wang, Z.; Dai, H.; Yang, W.; Sun, Y.; et al. Single-Cell Profiling Resolved Transcriptional Alterations and Lineage Dynamics of Subventricular Zone after Mild Traumatic Brain Injury. bioRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Cebrian-Silla, A.; Nascimento, M.A.; Redmond, S.A.; Mansky, B.; Wu, D.; Obernier, K.; Romero Rodriguez, R.; Gonzalez-Granero, S.; García-Verdugo, J.M.; Lim, D.A.; et al. Single-Cell Analysis of the Ventricular-Subventricular Zone Reveals Signatures of Dorsal and Ventral Adult Neurogenesis. eLife 2021, 10, e67436. [Google Scholar] [CrossRef]
- Borrett, M.J.; Tahmasian, N.; Innes, B.T.; Bader, G.D.; Kaplan, D.R.; Miller, F.D. A Shared Transcriptional Identity for Forebrain and Dentate Gyrus Neural Stem Cells from Embryogenesis to Adulthood. eNeuro 2022, 9, ENEURO.0271-21.2021. [Google Scholar] [CrossRef]
- Shin, J.; Berg, D.A.; Zhu, Y.; Shin, J.Y.; Song, J.; Bonaguidi, M.A.; Enikolopov, G.; Nauen, D.W.; Christian, K.M.; Ming, G.L.; et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades Underlying Adult Neurogenesis. Cell Stem Cell 2015, 17, 360–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, N.; Li, Y.; Heidenreich, M.; Swiech, L.; Avraham-Davidi, I.; Trombetta, J.J.; Hession, C.; Zhang, F.; Regev, A. Div-Seq: Single Nucleus RNA-Seq Reveals Dynamics of Rare Adult Newborn Neurons. Science 2016, 353, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Martelotto, L. ‘Frankenstein’ Protocol for Nuclei Isolation from Fresh and Frozen Tissue for Sn-RNAseq. Available online: https://www.protocols.io/view/frankenstein-protocol-for-nuclei-isolation-from-f-3eqgjdw (accessed on 28 April 2022).
- Habib, N.; Avraham-Davidi, I.; Basu, A.; Burks, T.; Shekhar, K.; Hofree, M.; Choudhury, S.R.; Aguet, F.; Gelfand, E.; Ardlie, K.; et al. Massively Parallel Single-Nucleus RNA-Seq with DroNc-Seq. Nat. Methods 2017, 14, 955–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artegiani, B.; Lyubimova, A.; Muraro, M.; van Es, J.H.; van Oudenaarden, A.; Clevers, H. A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche. Cell Rep. 2017, 21, 3271–3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochgerner, H.; Zeisel, A.; Lönnerberg, P.; Linnarsson, S. Conserved Properties of Dentate Gyrus Neurogenesis across Postnatal Development Revealed by Single-Cell RNA Sequencing. Nat. Neurosci. 2018, 21, 290–299. [Google Scholar] [CrossRef]
- Lisi, V.; Luna, G.; Apostolaki, A.; Giroux, M.; Kosik, K.S. Cell Population Effects in a Mouse Tauopathy Model Identified by Single Cell Sequencing. bioRxiv 2019, 771501. [Google Scholar] [CrossRef] [Green Version]
- Bergen, V.; Lange, M.; Peidli, S.; Wolf, F.A.; Theis, F.J. Generalizing RNA Velocity to Transient Cell States through Dynamical Modeling. Nat. Biotechnol. 2020, 38, 1408–1414. [Google Scholar] [CrossRef]
- Batiuk, M.Y.; Martirosyan, A.; Wahis, J.; de Vin, F.; Marneffe, C.; Kusserow, C.; Koeppen, J.; Viana, J.F.; Oliveira, J.F.; Voet, T.; et al. Identification of Region-Specific Astrocyte Subtypes at Single Cell Resolution. Nat. Commun. 2020, 11, 1220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, X. Inference of High-Resolution Trajectories in Single Cell RNA-Seq Data from RNA Velocity. Cell Rep. Methods 2021, 1, 100095. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Ren, J.; Sun, S.; Ma, S.; Zhang, W.; Yu, Y.; Cai, Y.; Yan, K.; Li, W.; et al. Single-Nucleus Transcriptomic Landscape of Primate Hippocampal Aging. Protein Cell 2021, 12, 695–716. [Google Scholar] [CrossRef]
- Weng, G.; Kim, J.; Won, K.J. VeTra: A Tool for Trajectory Inference Based on RNA Velocity. Bioinformatics 2021, 37, 3509–3513. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.N.; Maynard, K.R.; Spangler, A.; Huuki, L.A.; Montgomery, K.D.; Sadashivaiah, V.; Tippani, M.; Barry, B.K.; Hancock, D.B.; Hicks, S.C.; et al. Single-Nucleus Transcriptome Analysis Reveals Cell-Type-Specific Molecular Signatures across Reward Circuitry in the Human Brain. Neuron 2021, 109, 3088–3103.e5. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, F.; Kulkarni, A.; Berto, S.; Sivaprakasam, K.; Douglas, C.; Lega, B.C.; Konopka, G. Resolving Cellular and Molecular Diversity along the Hippocampal Anterior-to-Posterior Axis in Humans. Neuron 2021, 109, 2091–2105.e6. [Google Scholar] [CrossRef]
- Sorrells, S.F.; Paredes, M.F.; Zhang, Z.; Kang, G.; Pastor-Alonso, O.; Biagiotti, S.; Page, C.E.; Sandoval, K.; Knox, A.; Connolly, A.; et al. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J. Neurosci. 2021, 41, 2554–2565. [Google Scholar] [CrossRef] [PubMed]
- Franjic, D.; Skarica, M.; Ma, S.; Arellano, J.I.; Tebbenkamp, A.T.N.; Choi, J.; Xu, C.; Li, Q.; Morozov, Y.M.; Andrijevic, D.; et al. Transcriptomic Taxonomy and Neurogenic Trajectories of Adult Human, Macaque, and Pig Hippocampal and Entorhinal Cells. Neuron 2022, 110, 452–469.e14. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Weigel, J.; Wittmann, M.-T.; Svehla, P.; Ehrt, S.; Zheng, F.; Elmzzahi, T.; Karpf, J.; Paniagua-Herranz, L.; Basak, O.; et al. Astrogenesis in the Murine Dentate Gyrus Is a Life-Long and Dynamic Process. EMBO J. 2022, e110409. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Adiconis, X.; Simmons, S.K.; Kowalczyk, M.S.; Hession, C.C.; Marjanovic, N.D.; Hughes, T.K.; Wadsworth, M.H.; Burks, T.; Nguyen, L.T.; et al. Systematic Comparison of Single-Cell and Single-Nucleus RNA-Sequencing Methods. Nat. Biotechnol. 2020, 38, 737–746. [Google Scholar] [CrossRef]
- Bakken, T.E.; Hodge, R.D.; Miller, J.A.; Yao, Z.; Nguyen, T.N.; Aevermann, B.; Barkan, E.; Bertagnolli, D.; Casper, T.; Dee, N.; et al. Single-Nucleus and Single-Cell Transcriptomes Compared in Matched Cortical Cell Types. PLoS ONE 2018, 13, e0209648. [Google Scholar] [CrossRef] [Green Version]
- Nano, P.R.; Bhaduri, A. Mounting Evidence Suggests Human Adult Neurogenesis Is Unlikely. Neuron 2022, 110, 353–355. [Google Scholar] [CrossRef]
- Lee, C.-M.; Zhou, L.; Liu, J.; Shi, J.; Geng, Y.; Liu, M.; Wang, J.; Su, X.; Barad, N.; Wang, J.; et al. Single-Cell RNA-Seq Analysis Revealed Long-Lasting Adverse Effects of Tamoxifen on Neurogenesis in Prenatal and Adult Brains. Proc. Natl. Acad. Sci. USA 2020, 117, 19578–19589. [Google Scholar] [CrossRef]
- Lagace, D.C.; Whitman, M.C.; Noonan, M.A.; Ables, J.L.; DeCarolis, N.A.; Arguello, A.A.; Donovan, M.H.; Fischer, S.J.; Farnbauch, L.A.; Beech, R.D.; et al. Dynamic Contribution of Nestin-Expressing Stem Cells to Adult Neurogenesis. J. Neurosci. 2007, 27, 12623–12629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotheneichner, P.; Romanelli, P.; Bieler, L.; Pagitsch, S.; Zaunmair, P.; Kreutzer, C.; König, R.; Marschallinger, J.; Aigner, L.; Couillard-Després, S. Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety. Front. Neurosci. 2017, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial Reconstruction of Single-Cell Gene Expression Data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [Green Version]
- La Manno, G.; Soldatov, R.; Zeisel, A.; Braun, E.; Hochgerner, H.; Petukhov, V.; Lidschreiber, K.; Kastriti, M.E.; Lönnerberg, P.; Furlan, A.; et al. RNA Velocity of Single Cells. Nature 2018, 560, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.B.; Parmar, M. Strengths and Limitations of the Neurosphere Culture System. Mol. Neurobiol. 2006, 34, 153–161. [Google Scholar] [CrossRef]
- Li, Z.; Feng, H. A Neural Network-Based Method for Exhaustive Cell Label Assignment Using Single Cell RNA-Seq Data. Sci. Rep. 2022, 12, 910. [Google Scholar] [CrossRef]
- Shrivastava, H.; Zhang, X.; Song, L.; Aluru, S. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks. J. Comput. Biol. 2022, 29, 27–44. [Google Scholar] [CrossRef]
- Ji, Z.; Zhou, W.; Hou, W.; Ji, H. Single-Cell ATAC-Seq Signal Extraction and Enhancement with SCATE. Genome Biol. 2020, 21, 161. [Google Scholar] [CrossRef] [PubMed]
- Odaka, H.; Ozaki, H.; Tateno, H. ScGR-Seq: Integrated Analysis of Glycan and RNA in Single Cells. STAR Protoc. 2022, 3, 101179. [Google Scholar] [CrossRef]
- Longo, S.K.; Guo, M.G.; Ji, A.L.; Khavari, P.A. Integrating Single-Cell and Spatial Transcriptomics to Elucidate Intercellular Tissue Dynamics. Nat. Rev. Genet. 2021, 22, 627–644. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Species | Age | Sex | Models | Method | Platform | Analysis | Number of Cells |
---|---|---|---|---|---|---|---|---|
Llorens-Bobadilla et al. (2015) [4] | Mouse | 8–12 wk | M | C57BL/6 mice | SVZ wholemount digested with trypsin, whole cells sorted and frozen | Smart-seq2 | FactoMineR, Monocle, likelihood-ratio | <100–1000 |
Dulken et al. (2017) [5] | Mouse | 3 mo | M | GFAPGFP reporter mice, datasets Llorens-Bobadilla et al. (2015) & Shin et al. (2015) | SVZ microdissected, digested with papain, whole cells sorted and processed live | Fluidigm C1 | GBM modeling, Monocle, SCDE, GSEA | 329 |
Basak et al. (2018) [6] | Mouse | 2 d–1 yr | F | TroyGFPiresCreER and Ki67RFP reporter mice | SVZ wholemount enzymatically digested, whole cells sorted and processed live | CEL-seq | RaceID2, Descan, Pseudotime in TSCAN | 1465 |
Shi et al. (2017) [7] | Mouse | 1, 24 mo | F + M | C57BL/6 mice, dataset Llorens-Bobadilla et al. (2015) | SVZ microdissected, digested with papain, cultured as neurospheres, whole cells sorted and frozen | Smart-Seq2 | t-SNE, WGCNA, DESeq2, GO | 22 |
Zywitza et al. (2018) [8] | Mouse | 2–4 mo | M, F, F + M | C57BL/6N mice Lrp2 KO mice, dataset Artegiani et al. (2017) | SVZ microdissected digested with papain, whole cells processed live or methanol-fixed | Drop-seq | Seurat, SNN-cliq, Velocyto | 9804 |
Shah et al. (2018) [9] | Mouse | 2–6 mo | F + M | aSMA::CreERT2; R26tdTomato/Sox2GFP mice | SVZ microdissected, digested with papain, whole cells sorted and processed live | 10× Genomics | Seurat, SCDE | 1200, 6000 |
Kalamakis et al. (2019) [10] | Mouse | 2, 22, 23 mo | M | C57BL/6J mice and dataset from Llorens-Bobadilla et al. (2015) | SVZ wholemount digested with trypsin, whole cells sorted and frozen | Smart-Seq2 | Seurat, Monocle, clusterProfile, DESeq2 | >2000 |
Mizrak et al. (2019) [11] | Mouse | 8–10 wk | M, F | hGFAP::CreERT;R26tdTomato mice and datasets from Llorens-Bobadilla et al. (2015), Dulken et al. (2017) | Lateral and septal SVZ wholemounts digested with papain, whole cells processed live | Drop-seq | Phenograph, GSEA, SCDE | 41,000 |
Dulken et al. (2019) [12] | Mouse | 3, 28–29 mo | M | C57BL/6NIA mice | SVZ microdissected, digested with papain, whole cells sorted and processed live | 10× Genomics | Seurat, Enrichr | 14,685 |
Mizrak et al. (2020) [13] | Mouse | 8–10 wk | M | hGFAP::CreERT;R26tdTomato mice ratNes::FLPOER;R26TdTomato mice | Lateral and septal SVZ wholemounts digested with papain, whole cells processed live | Drop-seq | Phenograph, SCDE | 56,000 |
Magnusson et al. (2020) [14] | Mouse | >2 mo | M, F | Cx3::CreER;Rbpjfl/fl;R26tdTomato/YFP mice, AAV-Cre injection into Rbpjfl/fl;R26tdTomato mice, datasets from Zywitza et al. (2018), and Hochgerner et al. (2018) | Microdissected striatum digested with papain, whole cells sorted and frozen | Smart-Seq2, 10× Genomics | Seurat, Monocle | 1393 203 |
Borrett et al. (2020) [15] | Mouse | E–2 mo | F + M | Emx1::Cre;R26EYFP mice Nkx2.1::Cre;R26EYFP mice | Dorsal and lateral SVZ microdissected, digested enzymatically, whole cells sorted and processed live | 10× Genomics | Seurat | >6000 |
Nam and Capecchi (2020) [16] | Mizrak et al. (2020) dataset | Seurat | ||||||
Xie et al. (2020) [17] | Mouse | 2 wo–15 mo | F + M | CGDGFP reporter mice, datasets from Dulken et al. (2017), Llorens-Bobadilla et al. (2015), Codega et al. (2014) | Wholemount SVZ digested with papain, whole cells sorted and processed live | Drop-seq | Seurat, Pseudotime, TFactS, String | 5600 |
Chen et al. (2021) [18] | Mouse | 8–10 wo | M | C57BL/6J mice | Microdissected SVZ frozen, homogenized, and nuclei processed after sucrose gradient centrifugation | 10× Genomics | Seurat, GO, CellPhoneDB, Monocle | 15,754 |
Cebrian-Silla et al. (2021) [19] | Mouse | 4–5 wo | M, F | hGFAPGFP reporter mice | Microdissected SVZ digested with papain, whole cells multiplexed, processed live | 10× Genomics | Seurat, scVelo, GO | 30,897 |
CD1-elite mice | Anterior/posterior-dorsal/ventral SVZ microdissected SVZ frozen, homogenized, and nuclei processed after sucrose gradient centrifugation | 45,820 | ||||||
Borrett et al. (2022) [20] | Datasets from Hochgerner et al. (2018), Borrett et al. (2020) | Seurat, Monocle, GSEA |
Author (Year) | Species | Age | Sex | Models | Method | Platform | Analysis | Number of Cells |
---|---|---|---|---|---|---|---|---|
Shin et al. (2015) [21] | Mouse | 8–12 wk | M | NestinCFPnuc reporter mice | Microdissected DG digested with papain, whole live cells sorted and frozen | Smart-seq2 | Waterfall | <200 |
Habib et al. (2016) [22] | Mouse | <2 yr | M | AAV1/2 injection into vGAT-Cre mice | Microdissected DG and other hippocampal subregions digested, fixed, sorted, nuclei frozen and processed with “Frankenstein” method [23] | Smart-seq2 | Seurat | 1367 |
Habib et al. (2017) [24] | Mouse, Human | 10–14 wk mice, 40–65 yr human | M | C57Bl/6 mice and humans | Frozen hippocampus dissected and nuclei were processed using the sucrose gradient centrifugation or the “Frankenstein” method [23] | Drop-seq, DroNc-seq | Seurat | Mouse: 13,313 Human: 14,963 |
Artegiani et al. (2017) [25] | Mouse | 6 & 10 wk, >1 yr | F+M | C57BL/6 mice NestinGFP reporter mice | Microdissected DG digested with papain, whole cells sorted and frozen | SORT-seq | RaceID2, StemID, Waterfall | 1408 |
Hochgerner et al. (2018) [26] | Mouse | 2–5 wk | F+M | C57BL/6 mice hGAFPGFP reporter mice | Microdissected DG digested with papain, sorted, whole cells sorted and processed live | Fluidigm C1, 10× Genomics | Matlab | 24,185 |
Lisi et al. (2019) [27] | Mouse | 4–6 wk, 32–40 wk | F | rTg4510 tauopathy mouse model | Dissected hippocampus digested with papain, whole cells processed live | Drop-seq | Seurat, Monocle | >3000 |
Bergen et al. (2020) [28] | Dataset from Hochgerner et al. (2018) | scVelo | ||||||
Batiuk et al. (2020) [29] | Mouse | 2 mo | F+M | C57BL/6J mice | Dissected hippocampus digested with papain, whole cells sorted and frozen | Smart-seq2 | Seurat, GO | 2015 |
Zhang and Zhang (2021) [30] | Dataset from Hochgerner et al. (2018) | scVelo, Velocyto, CellPath, Slingshot, Vdpt, reCAT | ||||||
Zhang et al. (2021) [31] | Macaque | 4–6 yr, 18–21 yr | M, F | Cynomolgus macaques | Frozen hippocampus is homogenized, nuclei sorted, and processed | 10× Genomics | Seurat, Monocle, GO, SCENIC, CellPhoneDB, Pseudotime | >8000 |
Weng et al. (2021) [32] | Dataset from Hochgerner et al. (2018) | VeTra | ||||||
Tran et al. (2021) [33] | Human | 40–69 yr | M | Human | Frozen hippocampus dissected and nuclei were processed using the “Frankenstein” method [23] | 10× Genomics | Bioconductor, MAGMA | 70,615 |
Ayhan et al. (2021) [34] | Human | 24–60 yr | M, F | Human and datasets from Habib et al. (2016, 2017), and Batiuk et al. (2020) | Frozen anterior and posterior hippocampus dissected and nuclei were processed using the “Frankenstein” method [23] | 10× Genomics | Seurat, GO, MAST | 129,908 |
Sorrells et al. (2021) [35] | Dataset from Habib et al. (2017) | Seurat | ||||||
Franjic et al. (2022) [36] | Human, Macaque, Pig | 48–58 yr human 8–14 yr macaque 3 mo pig | M, F | Human, rhesus macaques, pig, and datasets from Ayhan et al. (2021), Hochgerner et al. (2018) and Zhong et al. (2020) | Frozen DG and other hippocampal regions microdissected, homogenized, nuclei processed after sucrose gradient centrifugation | 10× Genomics | Seurat, Velocyto, scVelo | Human: 139,187 Macaque: 36,107 Pig: 38,851 |
Borrett et al. (2022) [20] | Datasets from Hochgerner et al. (2018) and Borrett et al. (2020) | Seurat, Monocle, GSEA | ||||||
Schneider et al. (2022) [37] | Mouse | 2–14 mo | F+M | hGAFPeGFP reporter mice | Microdissected DG digested with trypsin, whole cells processed live | 10× Genomics | Seurat, GO | >5000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinina, A.; Lagace, D. Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis. Cells 2022, 11, 1633. https://doi.org/10.3390/cells11101633
Kalinina A, Lagace D. Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis. Cells. 2022; 11(10):1633. https://doi.org/10.3390/cells11101633
Chicago/Turabian StyleKalinina, Alena, and Diane Lagace. 2022. "Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis" Cells 11, no. 10: 1633. https://doi.org/10.3390/cells11101633
APA StyleKalinina, A., & Lagace, D. (2022). Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis. Cells, 11(10), 1633. https://doi.org/10.3390/cells11101633