Pleiotropic Effects of IGF1 on the Oocyte
Abstract
:1. Introduction
2. The Influence of Insulin-like Growth Factor-1 on the Oocyte
3. Clinical Aspects of Testing for Insulin-like Growth Factor-1 in Sub-Fertile Women
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Reest, J.; Nardini Cecchino, G.; Haigis, M.C.; Kordowitzki, P. Mitochondria: Their relevance during oocyte ageing. Ageing Res. Rev. 2021, 70, 101378. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.J. Population and the Environment—Time for Another Contraception Revolution. N. Engl. J. Med. 2019, 381, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Mastenbroek, S.; de Wert, G.; Adashi, E.Y. The Imperative of Responsible Innovation in Reproductive Medicine. N. Engl. J. Med. 2021, 385, 2096–2100. [Google Scholar] [CrossRef] [PubMed]
- Babayev, E.; Duncan, F.E. Age-associated changes in cumulus cells and follicular fluid: The local oocyte microenvironment as a determinant of gamete quality. Biol. Reprod. 2022. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, A.R.E.; Moghadam, M.T.; Hemadi, M.; Saki, G. Oocyte quality and aging. JBRA Assist. Reprod. 2022, 26, 105–122. [Google Scholar] [CrossRef]
- Annual SART Report. Available online: https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?reportingYear=2019 (accessed on 2 April 2022).
- Ruth, K.S.; Day, F.R.; Hussain, J.; Martínez-Marchal, A.; Aiken, C.E.; Azad, A.; Thompson, D.J.; Knoblochova, L.; Abe, H.; Tarry-Adkins, J.L.; et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 2021, 596, 393–397. [Google Scholar] [CrossRef]
- Araujo, M.S.; Guastali, M.D.; Paulini, F.; Silva, A.N.; Tsunemi, M.H.; Fontes, P.K.; Castilho, A.C.S.; Landim-Alvarenga, F.C. Molecular and cellular effects of insulin-like growth factor-1 and LongR3-IGF-1 on in vitro maturation of bovine oocytes: Comparative study. Growth Horm. IGF Res. 2020, 55, 101357. [Google Scholar] [CrossRef]
- Mazerbourg, S.; Bondy, C.A.; Zhou, J.; Monget, P. The insulin-like growth factor system: A key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reprod. Domest. Anim. 2003, 38, 247–258. [Google Scholar] [CrossRef]
- Bezerra, M.É.S.; Barberino, R.S.; Menezes, V.G.; Gouveia, B.B.; Macedo, T.J.S.; Santos, J.M.S.; Monte, A.P.O.; Barros, V.R.P.; Matos, M.H.T. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod. Fertil. Dev. 2018, 11, 1503–1513. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Baxter, G.; Hogg, C.O.; Woad, K.J. Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles. Reproduction 2002, 6, 789–797. [Google Scholar] [CrossRef]
- Danforth, D.R. Endocrine and paracrine control of oocyte development. Am. J. Obstet. Gynecol. 1995, 172, 747–752. [Google Scholar] [CrossRef]
- Hunter, M.G.; Robinson, R.S.; Mann, G.E.; Webb, R. Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim. Reprod. Sci. 2004, 82, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Purohit, G.N.; Brady, M.S.; Sharma, S.S. Influence of epidermal growth factor and insulin-like growth factor 1 on nuclear maturation and fertilization of buffalo cumulus oocyte complexes in serum free media and their subsequent development in vitro. Anim. Reprod. Sci. 2005, 87, 229–239. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, J.; Li, M.; Yan, L.; Zhao, Y.; Lian, Y.; Li, R.; Liu, P.; Qiao, J. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum. Reprod. 2012, 7, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Sağirkaya, H.; Misirlioğlu, M.; Gümen, A.; Parrish, J.J.; Erdoğan Memili, E. Leptin and IGF-I improve bovine embryo quality in vitro. Anim. Reprod. 2017, 14, 1151–1160. [Google Scholar] [CrossRef]
- Sato, A.; Sarentonglaga, B.; Ogata, K.; Yamaguchi, M.; Hara, A.; Atchalalt, K.; Sugane, N.; Fukumori, R.; Nagao, Y. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes. J. Reprod. Dev. 2018, 64, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Vitale, G.; Pellegrino, G.; Vollery, M.; Hofland, L.J. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians’ Perspective. Front. Endocrinol. 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, S.; Roberti, D.; Bencivenga, D.; Corsetto, P.; O’Brien, K.A.; Caiazza, M.; Stampone, E.; Allison, L.; Fleck, R.A.; Scianguetta, S.; et al. Effects of Germline VHL Deficiency on Growth, Metabolism, and Mitochondria. N. Engl. J. Med. 2020, 382, 835–844. [Google Scholar] [CrossRef]
- Domené, H.M.; Bengolea, S.V.; Martínez, A.S.; Ropelato, M.G.; Pennisi, P.; Scaglia, P.; Heinrich, J.J.; Jasper, H.G. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 2004, 350, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Böhm, F.; Köhler, U.A.; Speicher, T.; Werner, S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol. Med. 2010, 2, 294–305. [Google Scholar] [CrossRef]
- Tosh, D.N.; Fu, Q.; Callaway, C.W.; McKnight, R.A.; McMillen, I.C.; Ross, M.G.; Lane, R.H.; Desai, M. Epigenetics of programmed obesity: Alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef] [PubMed]
- Bartke, A.; Darcy, J. GH and ageing: Pitfalls and new insights. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, F.; Vandecandelaere, A.; Soyez, M.; Bosquet, D.; Lefranc, E.; Copin, H.; Devaux, A.; Benkhalifa, M.; Cabry, R.; Desailloud, R. Follicular GH and IGF1 Levels Are Associated with Oocyte Cohort Quality: A Pilot Study. Front. Endocrinol. 2021, 12, 793621. [Google Scholar] [CrossRef]
- Baumgarten, S.C.; Convissar, S.M.; Fierro, M.A.; Winston, N.J.; Scoccia, B.; Stocco, C. IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human Cumulus granulosa cells. J. Clin. Endocrinol. Metab. 2014, 99, 2995–3004. [Google Scholar] [CrossRef] [Green Version]
- Mani, A.M.; Fenwick, M.A.; Cheng, Z.; Sharma, M.K.; Singh, D.; Wathes, D.C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction 2010, 139, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Rawan, A.F.; Yoshioka, S.; Abe, H.; Acosta, T.J. Insulin-like growth factor-1 regulates the expression of luteinizing hormone receptor and steroid production in bovine granulosa cells. Reprod. Domest. Anim. 2015, 50, 283–291. [Google Scholar] [CrossRef]
- Pitetti, J.L.; Torre, D.; Conne, B.; Papaioannou, M.D.; Cederroth, C.R.; Xuan, S.; Kahn, R.; Parada, L.F.; Vassalli, J.D.; Efstratiadis, A.; et al. Insulin receptor and IGF1R are not required for oocyte growth, differentiation, and maturation in mice. Sex. Dev. 2009, 3, 264–272. [Google Scholar] [CrossRef]
- Baumgarten, S.C.; Armouti, M.; Ko, C.; Stocco, C. IGF1R Expression in Ovarian Granulosa Cells Is Essential for Steroidogenesis, Follicle Survival, and Fertility in Female Mice. Endocrinology 2017, 158, 2309–2318. [Google Scholar] [CrossRef] [Green Version]
- Gleicher, N.; Darmon, S.K.; Molinari, E.; Patrizio, P.; Barad, D.H. Importance of IGF-I levels in IVF: Potential relevance for growth hormone (GH) supplementation. J. Assist. Reprod. Genet. 2022, 39, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Valckx, S.D.; De Pauw, I.; De Neubourg, D.; Inion, I.; Berth, M.; Fransen, E.; Bols, P.E.; Leroy, J.L. BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality. Hum. Reprod. 2012, 27, 3531–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciorio, R.; Bellaminutti, S.; Tramontano, L.; Esteves, S.C. Impact of obesity on medically assisted reproductive treatments. Zygote 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, S.X.; Zhang, M.Y.; Ji, P.Y.; Chao, S.; Li, L.J.; Yin, S.; Zhao, L.; Zhao, H.; Sun, Q.Y.; et al. Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food Funct. 2022. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, N.; Tang, S.; Hu, F.; Hou, X.; Sun, H.; Han, L.; Wang, Q. Loss of PDK1 Induces Meiotic Defects in Oocytes From Diabetic Mice. Front. Cell Dev. Biol. 2021, 9, 793389. [Google Scholar] [CrossRef]
- Nasioudis, D.; Minis, E.; Irani, M.; Kreines, F.; Witkin, S.; Spandorefer, S. Insulin-like growth favtor-1 and soluble FMS-like tyrosine kinase-1 prospectively predict cancelled IVF cycles. J. Assist. Reprod. Genet. 2019, 36, 2485–2491. [Google Scholar] [CrossRef]
- Daniel, A.; Ezzat, S.; Greenblatt, E. Adjuvant growth hormone for ovulation induction with gonadotropins in the treatment of a woman with hypopituitarism. Case Rep. Endocrinol. 2012, 2012, 356429. [Google Scholar] [CrossRef]
- Park, J.K.; Murphy, A.A.; Bordeaux, B.L.; Dominguez, C.E.; Session, D.R. Ovulation induction in a poor responder with panhypopituitarism: A case report and review of the literature. Gynecol. Endocrinol. 2007, 23, 82–86. [Google Scholar] [CrossRef]
- Man, L.; Levkovich, J.; Canon, C.; Rosenwaks, Z. Cycle day2 insulin-like growth factor-1 serum levels as a prognostic tool to predict controlled ovarian hyperstimulation outcomes in poor responders. Fertil. Steril. 2020, 113, 1205–1214. [Google Scholar] [CrossRef]
- Walters, K.A.; Binnie, J.P.; Campbell, B.K.; Armstrong, D.G.; Telfer, E.E. The effects of IGF-I on bovine follicle development and IGFBP-2 expression are dose and stage dependent. Reproduction 2006, 131, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, G.; Penniman, C.M.; Jena, J.; Suarez Beltran, P.A.; Foster, C.; Poro, K.; Junck, T.L.; Hinton, A.O., Jr.; Souvenir, R.; Fuqua, J.D.; et al. Insulin and IGF-1 receptors regulate complex I-dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. J. Clin. Investig. 2021, 131, 146415. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, J.B.; Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 2018, 20, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Moorad, J.A.; Nussey, D.H. Evolution of maternal effect senescence. Proc. Natl. Acad. Sci. USA 2016, 113, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordowitzki, P.; Krajnik, K.; Skowronska, A.; Skowronski, M.T. Pleiotropic Effects of IGF1 on the Oocyte. Cells 2022, 11, 1610. https://doi.org/10.3390/cells11101610
Kordowitzki P, Krajnik K, Skowronska A, Skowronski MT. Pleiotropic Effects of IGF1 on the Oocyte. Cells. 2022; 11(10):1610. https://doi.org/10.3390/cells11101610
Chicago/Turabian StyleKordowitzki, Paweł, Kornelia Krajnik, Agnieszka Skowronska, and Mariusz T. Skowronski. 2022. "Pleiotropic Effects of IGF1 on the Oocyte" Cells 11, no. 10: 1610. https://doi.org/10.3390/cells11101610