Post-Effort Changes in Autophagy- and Inflammation-Related Gene Expression in White Blood Cells of Healthy Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Experiment Protocol
2.2. The Participants’ Characteristic
2.3. The Effort Protocol
2.4. The Blood Sampling
2.5. The Evaluation of Blood Lactate Level
2.6. Isolation of RNA from Blood Samples
2.7. Reverse Transcription
2.8. Real-Time PCR Protocol
2.9. Statistical Analysis
3. Results
4. Discussion
4.1. The Impact of Aerobic and Anaerobic Efforts on the Expression of Genes Encoding Selected Chemokines
4.2. The Impact of Aerobic and Anaerobic Effort on the Expression of the Genes Encoding Selected Cytokines
4.3. The Impact of Aerobic and Anaerobic Effort on the Expression of Genes Encoding Selected Autophagy-Related Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, K.; Vannier, E.; Sacheck, J.M.; Witsell, A.L.; Roubenoff, R. Senescence of Human Skeletal Muscle Impairs the Local Inflammatory Cytokine Response to Acute Eccentric Exercise. FASEB J. 2005, 19, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cury-Boaventura, M.F.; Gorjão, R.; de Moura, N.R.; Santos, V.C.; Bortolon, J.R.; Murata, G.M.; da Borges, L.S.; Momesso, C.M.; Dermargos, A.; Pithon-Curi, T.C.; et al. The Effect of a Competitive Futsal Match on T Lymphocyte Surface Receptor Signaling and Functions. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of Inflammatory Responses to Eccentric Exercise in Humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar]
- Peake, J.M.; Suzuki, K.; Wilson, G.; Hordern, M.; Nosaka, K.; MacKinnon, L.; Coombes, J.S. Exercise-Induced Muscle Damage, Plasma Cytokines, and Markers of Neutrophil Activation. Med. Sci. Sports Exerc. 2005, 37, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Proske, U.; Allen, T.J. Damage to Skeletal Muscle from Eccentric Exercise. Exerc. Sport Sci. Rev. 2005, 33, 98–104. [Google Scholar] [CrossRef]
- Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Meital, L.; Golledge, J.; Russell, F.D.; Askew, C.D. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Chazaud, B. Inflammation during Skeletal Muscle Regeneration and Tissue Remodeling: Application to Exercise-Induced Muscle Damage Management. Immunol. Cell Biol. 2016, 94, 140–145. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Tidball, J.G.; Villalta, S.A. Regulatory Interactions between Muscle and the Immune System during Muscle Regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1173–R1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, V.E.; Edwards, K.M.; Ring, C.; Drayson, M.; Carroll, D. Complement Cascade Activation after an Acute Psychological Stress Task. Psychosom. Med. 2008, 70, 387–396. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Fleshner, M.; Frank, M.; Maier, S.F. Danger Signals and Inflammasomes: Stress-Evoked Sterile Inflammation in Mood Disorders. Neuropsychopharmacology 2017, 42, 36–45. [Google Scholar] [CrossRef]
- Franklin, T.C.; Xu, C.; Duman, R.S. Depression and Sterile Inflammation: Essential Role of Danger Associated Molecular Patterns. Brain Behav. Immun. 2018, 72, 2–13. [Google Scholar] [CrossRef]
- Enayati, M.; Solati, J.; Hosseini, M.H.; Shahi, H.R.; Saki, G.; Salari, A.A. Maternal Infection during Late Pregnancy Increases Anxiety- and Depression-like Behaviors with Increasing Age in Male Offspring. Brain Res. Bull. 2012, 87, 295–302. [Google Scholar] [CrossRef]
- Maslanik, T.; Mahaffey, L.; Tannura, K.; Beninson, L.; Greenwood, B.N.; Fleshner, M. The Inflammasome and Danger Associated Molecular Patterns (DAMPs) Are Implicated in Cytokine and Chemokine Responses Following Stressor Exposure. Brain Behav. Immun. 2013, 28, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, M.; Roca, E.; Brotons, D.; Soria, J.M.; Perera, A. Affected Pathways and Transcriptional Regulators in Gene Expression Response to an Ultra-Marathon Trail: Global and Independent Activity Approaches. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voisin, S.; Eynon, N.; Yan, X.; Bishop, D.J. Exercise Training and DNA Methylation in Humans. Acta Physiol. 2015, 213, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.; Brenner, D.; Becker, M.; Frey, C.R.; Krammer, P.H. How T Lymphocytes Switch between Life and Death. Eur. J. Immunol. 2006, 36, 1654–1658. [Google Scholar] [CrossRef] [PubMed]
- Raeber, M.E.; Zurbuchen, Y.; Impellizzieri, D.; Boyman, O. The Role of Cytokines in T-Cell Memory in Health and Disease. Immunol. Rev. 2018, 283, 176–193. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Pellegrini, M. T-Lymphocyte Death during Shutdown of an Immune Response. Trends Immunol. 2004, 25, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Autophagy and Cellular Immune Responses. Immunity 2013, 39, 211–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Córdova, A.; Sureda, A.; Tur, J.A.; Pons, A. Immune Response to Exercise in Elite Sportsmen during the Competitive Season. J. Physiol. Biochem. 2010, 66, 1–6. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Nowak, R. Analysis of Selected T Cell Subsets in Peripheral Blood after Exhaustive Efforamong Elite Soccer Players. Biochem. Med. 2018, 28. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Nowak, R. T Helper Cell-Related Changes in Peripheral Blood Induced by Progressive Effort among Soccer Players. PLoS ONE 2020, 15, e0227993. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Nowak, D.; Nowak, R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J. Clin. Med. 2020, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Petibois, C.; Cazorla, G.; Déléris, G. The Biological and Metabolic Adaptations to 12 Months Training in Elite Rowers. Int. J. Sports Med. 2003, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.A.; Rathmell, J.C. Metabolic Pathways in T Cell Fate and Function. Trends Immunol. 2012, 33, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lam, G.Y.; Brumell, J.H. Autophagy Signaling through Reactive Oxygen Species. Antioxid. Redox Signal. 2011, 14, 2215–2231. [Google Scholar] [CrossRef]
- Lee, J.; Giordano, S.; Zhang, J. Autophagy, Mitochondria and Oxidative Stress: Cross-Talk and Redox Signalling. Biochem. J. 2012, 441, 523–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in Human Health and Disease. N. Engl. J. Med. 2013, 368, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.M.J.; Bernardi, H.; Py, G.; Candau, R.B. Autophagy Is Essential to Support Skeletal Muscle Plasticity in Response to Endurance Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R956–R969. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Miao, W.; Ma, J.; Xv, Z.; Bo, H.; Li, J.; Zhang, Y.; Ji, L.L. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via Nlrp3 Inflammasome Activation with Mitophagy. Oxidative Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Peeri, M.; Amiri, S. Protective Effects of Exercise in Metabolic Disorders Are Mediated by Inhibition of Mitochondrial-Derived Sterile Inflammation. Med. Hypotheses 2015, 85, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.C.; Athar, M.; Chaudry, I.H. When Apoptosis Meets Autophagy: Deciding Cell Fate after Trauma and Sepsis. Trends Mol. Med. 2009, 15, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, B.; Berger, Z.; Vacher, C.; O’Kane, C.J.; Rubinsztein, D.C. Rapamycin Pre-Treatment Protects against Apoptosis. Hum. Mol. Genet. 2006, 15, 1209–1216. [Google Scholar] [CrossRef]
- Léger, L.A.; Lambert, J. A Maximal Multistage 20-m Shuttle Run Test to Predict VO2 Max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Metsios, G.S.; Flouris, A.D.; Koutedakis, Y.; Nevill, A. Criterion-Related Validity and Test-Retest Reliability of the 20 m Square Shuttle Test. J. Sci. Med. Sport 2008, 11, 214–217. [Google Scholar] [CrossRef]
- Chaouachi, A.; Manzi, V.; Wong, D.P.; Chaalali, A.; Laurencelle, L.; Chamari, K.; Castagna, C. Intermittent Endurance and Repeated Sprint Ability in Soccer Players. J. Strength Cond. Res. 2010, 24, 2663–2669. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Martínez-Guardado, I.; Olcina, G.; Marín-Pagán, C.; Martínez-Noguera, F.J.; Carlos-Vivas, J.; Alcaraz, P.E.; Rubio, J. Effect of High-Intensity Resistance Circuit-Based Training in Hypoxia on Aerobic Performance and Repeat Sprint Ability. Scand. J. Med. Sci. Sport. 2018, 28, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Nowak, D.; Kubaszewska, J.; Nowakowska, A.; Nowak, R. Effect of Aerobic and Anaerobic Exercise on the Complement System of Proteins in Healthy Young Males. J. Clin. Med. 2020, 9, 2357. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts: How Valid Are They? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Leithäuser, R.M.; Ochentel, O. Blood Lactate Diagnostics in Exercise Testing and Training. Int. J. Sports Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of Housekeeping Genes for Gene Expression Studies in Human Reticulocytes Using Real-Time PCR. BMC Mol. Biol. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ding, L.; Sandford, A.J. Selection of Reference Genes for Gene Expression Studies in Human Neutrophils by Real-Time PCR. BMC Mol. Biol. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nedachi, T.; Hatakeyama, H.; Kono, T.; Sato, M.; Kanzaki, M. Characterization of Contraction-Inducible CXC Chemokines and Their Roles in C2C12 Myocytes. Am. J. Physiol. Endocrinol. Metab. 2009, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idorn, M.; Thor Straten, P. Chemokine Receptors and Exercise to Tackle the Inadequacy of T Cell Homing to the Tumor Site. Cells 2018, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sharp, J.S.; Handel, T.M.; Prestegard, J.H. Chemokine oligomerization in cell signaling and migration. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 117, pp. 531–578. ISBN 9780123869319. [Google Scholar]
- Maghazachi, A.A. Role of Chemokines in the Biology of Natural Killer Cells. Curr. Top. Microbiol. Immunol. 2010, 341, 37–58. [Google Scholar] [PubMed]
- Mgrditchian, T.; Arakelian, T.; Paggetti, J.; Noman, M.Z.; Viry, E.; Moussay, E.; Van Moer, K.; Kreis, S.; Guerin, C.; Buart, S.; et al. Targeting Autophagy Inhibits Melanoma Growth by Enhancing NK Cells Infiltration in a CCL5-Dependent Manner. Proc. Natl. Acad. Sci. USA 2017, 114, E9271–E9279. [Google Scholar] [CrossRef] [Green Version]
- Bromley, S.K.; Mempel, T.R.; Luster, A.D. Orchestrating the Orchestrators: Chemokines in Control of T Cell Traffic. Nat. Immunol. 2008, 9, 970–980. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Q.; Sun, J.; Ma, C.; Gao, W.; Wang, Q.; Zhao, L.; Qu, X. Interactions between Colon Cancer Cells and Tumor-Infiltrated Macrophages Depending on Cancer Cell-Derived Colony Stimulating Factor 1. Oncoimmunology 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Peske, J.D.; Woods, A.B.; Engelhard, V.H. Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. In Advances in Cancer Research; Academic Press Inc.: Cambridge, MA, USA, 2015; Volume 128, pp. 263–307. ISBN 9780128023167. [Google Scholar]
- Nowak, R.; Kostrzewa-Nowak, D. Assessment of Selected Exercise-Induced CD3+ Cell Subsets and Cell Death Parameters among Soccer Players. J. Med. Biochem. 2019, 38. [Google Scholar] [CrossRef]
- Hirose, L.; Nosaka, K.; Newton, M.; Laveder, A.; Kano, M.; Peake, J.; Suzuki, K. Changes in Inflammatory Mediators Following Eccentric Exercise of the Elbow Flexors. Exerc. Immunol. Rev. 2004, 10, 75–90. [Google Scholar]
- Ghafourian, M.; Ashtary-Larky, D.; Chinipardaz, R.; Eskandary, N.; Mehavaran, M. Inflammatory Biomarkers’ Response to Two Different Intensities of a Single Bout Exercise among Soccer Players. Iran. Red Crescent Med. J. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
- Petersen, A.M.W.; Pedersen, B.K. The Anti-Inflammatory Effect of Exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatouros, I.G.; Jamurtas, A.Z. Insights into the Molecular Etiology of Exercise-Induced Inflammation: Opportunities for Optimizing Performance. J. Inflamm. Res. 2016, 9, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malm, C. Exercise Immunology: A Skeletal Muscle Perspective. Exerc. Immunol. Rev. 2002, 8, 116–167. [Google Scholar] [PubMed]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic Inflammatory Response to Exhaustive Exercise. Cytokine Kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar] [PubMed]
- Benczik, M.; Gaffen, S.L. The Interleukin (IL)-2 Family Cytokines: Survival and Proliferation Signaling Pathways in T Lymphocytes. Immunol. Investig. 2004, 33, 109–142. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.I.; Koreth, J.; Kim, H.T.; Bascug, G.; McDonough, S.; Kawano, Y.; Murase, K.; Cutler, C.; Ho, V.T.; Alyea, E.P.; et al. Low-Dose Interleukin-2 Therapy Restores Regulatory T Cell Homeostasis in Patients with Chronic Graft-versus-Host Disease. Sci. Transl. Med. 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bárdos, T.; Shao, Q.; Tschopp, J.; Mikecz, K.; Glant, T.T.; Finnegan, A. IL-4 Potentiates Activated T Cell Apoptosis Via an IL-2-Dependent Mechanism. J. Immunol. 2003, 170, 3495–3503. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.G.; Zheng, L.; Lenardo, M.J.; Sher, A. Interferon-Inducible Immunity-Related GTPase Irgm1 Regulates IFNγ-Dependent Host Defense, Lymphocyte Survival and Autophagy. Autophagy 2009, 5, 232–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.; De Haro, S.A.; Master, S.S.; Keane, J.; Roberts, E.A.; Delgado, M.; Deretic, V. T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium Tuberculosis. Immunity 2007, 27, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, A.J.; Aksoylar, H.I.; Horng, T. Control of Macrophage Metabolism and Activation by MTOR and Akt Signaling. Semin. Immunol. 2015, 27, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Pence, B.D. Exercise Immunology: Future Directions. J. Sport Health Sci. 2020, 9, 432–445. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017, 47, 406–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerretelli, P.; Gelfi, C. Energy Metabolism in Hypoxia: Reinterpreting Some Features of Muscle Physiology on Molecular Grounds. Eur. J. Appl. Physiol. 2011, 111, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Q.; Zhang, J.; Wang, Y.; Hu, X.; Yin, S.; He, M.; Guan, S.; Qin, W.; Xiao, Q.; et al. Associations of Genetic Polymorphisms in PTEN/AKT/MTOR Signaling Pathway Genes with Cancer Risk: A Meta-Analysis in Asian Population. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, R.A.; Quinsay, M.N.; Orogo, A.M.; Giang, K.; Rikka, S.; Gustafsson, Å.B. Microtubule-Associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. J. Biol. Chem. 2012, 287, 19094–19104. [Google Scholar] [CrossRef] [Green Version]
- Kabeya, Y.; Mizushima, N.; Yamamoto, A.; Oshitani-Okamoto, S.; Ohsumi, Y.; Yoshimori, T. LC3, GABARAP and GATE16 Localize to Autophagosomal Membrane Depending on Form-II Formation. J. Cell Sci. 2004, 117, 2805–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscat, J.; Diaz-Meco, M.T.; Wooten, M.W. Signal Integration and Diversification through the P62 Scaffold Protein. Trends Biochem. Sci. 2007, 32, 95–100. [Google Scholar] [CrossRef]
- Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of Autophagy in Cancer. Nat. Rev. Cancer 2007, 7, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Okamoto, K.; Yu, C.; Sinicrope, F.A. P62/Sequestosome-1 Up-Regulation Promotes ABT-263-Induced Caspase-8 Aggregation/Activation on the Autophagosome. J. Biol. Chem. 2013, 288, 33654–33666. [Google Scholar] [CrossRef] [Green Version]
- Weng, T.P.; Huang, S.C.; Chuang, Y.F.; Wang, J.S. Effects of Interval and Continuous Exercise Training on CD4 Lymphocyte Apoptotic and Autophagic Responses to Hypoxic Stress in Sedentary Men. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Adams, G.R.; Zaldivar, F.P.; Nance, D.M.; Kodesh, E.; Radom-Aizik, S.; Cooper, D.M. Exercise and Leukocyte Interchange among Central Circulation, Lung, Spleen, and Muscle. Brain Behav. Immun. 2011, 25, 658–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Wentz, L.M. The Compelling Link between Physical Activity and the Body’s Defense System. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Brandt, N.; Gunnarsson, T.P.; Bangsbo, J.; Pilegaard, H. Exercise and Exercise Training-Induced Increase in Autophagy Markers in Human Skeletal Muscle. Physiol. Rep. 2018, 6. [Google Scholar] [CrossRef]
- Fritzen, A.M.; Frøsig, C.; Jeppesen, J.; Jensen, T.E.; Lundsgaard, A.M.; Serup, A.K.; Schjerling, P.; Proud, C.G.; Richter, E.A.; Kiens, B. Role of AMPK in Regulation of LC3 Lipidation as a Marker of Autophagy in Skeletal Muscle. Cell. Signal. 2016, 28, 663–674. [Google Scholar] [CrossRef]
- Halling, J.F.; Ringholm, S.; Nielsen, M.M.; Overby, P.; Pilegaard, H. PGC-1α Promotes Exercise-Induced Autophagy in Mouse Skeletal Muscle. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Jamart, C.; Francaux, M.; Millet, G.Y.; Deldicque, L.; Frère, D.; Féasson, L. Modulation of Autophagy and Ubiquitin-Proteasome Pathways during Ultra-Endurance Running. J. Appl. Physiol. 2012, 112, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Schwalm, C.; Jamart, C.; Benoit, N.; Naslain, D.; Prémont, C.; Prevet, J.; Van Thienen, R.; Deldicque, L.; Francaux, M. Activation of Autophagy in Human Skeletal Muscle Is Dependent on Exercise Intensity and AMPK Activation. FASEB J. 2015, 29, 3515–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masschelein, E.; Van Thienen, R.; D’Hulst, G.; Hespel, P.; Thomis, M.; Deldicque, L. Acute Environmental Hypoxia Induces LC3 Lipidation in a Genotype-Dependent Manner. FASEB J. 2014, 28, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Hsu, H.C.; Lee, B.C.; Lin, H.J.; Chen, Y.H.; Huang, H.C.; Ho, Y.L.; Chen, M.F. Exercise Training Improves Cardiac Function in Infarcted Rabbits: Involvement of Autophagic Function and Fatty Acid Utilization. Eur. J. Heart Fail. 2010, 12, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th edition). Autophagy 2021, 17, 1–382. [Google Scholar] [CrossRef]
Parameter | (n = 35) |
---|---|
Age (years) | 19 (16–21) |
Height (cm) | 181 ± 7 |
Weight (kg) | 75.3 ± 9.1 |
BMR (kJ) | 8480 ± 870 |
FAT (%) | 10.8 ± 3.5 |
FAT MASS (kg) | 8.36 ± 3.28 |
FFM (kg) | 66.98 ± 6.78 |
TWB (kg) | 49.0 ± 4.9 |
VO2max (mL/kg/min) | 61.7 ± 5.4 |
HRmax (beats/min) | 198 ± 8 |
VE (L/min) | 144.1 ± 23.7 |
AT (beats/min) | 166 ± 13 |
MVV (L/min) | 186 ± 17 |
MET (mL/kg/min) | 17.8 ± 1.5 |
Rf | 60.8 ± 7.6 |
Gene | Forward Primer | Reverse Primer | Amplicon Lenght (bp) | TM of the Amplification Products (°C) |
---|---|---|---|---|
CXCL5 | AGACCACGCAAGGAGTTCATC | GTTTTCCTTGTTTCCACCGTCC | 185 | 81.5 |
CXCL8 | AGGAAGAAACCACCGGAAGG | GGCAAAACTGCACCTTCACA | 119 | 82.5 |
CXCL9 | TGGTGTTCTTTTCCTCTTGGG | TCTCACTACTGGGGTTCCTTG | 70 | 78 |
CXCL10 | AGTGGCATTCAAGGAGTACCT | CGTGGACAAAATTGGCTTGC | 128 | 77.5 |
CXCL11 | ATAGGCCCTGGGGTAAAAGC | CTTGCTTGCTTCGATTTGGGA | 152 | 77.5 |
CXCL12 | CCGCACTTTCACTCTCCGTC | CAGCACGACCACGACCTT | 118 | 77.5 |
IL2 | CAGCTACAACTGGAGCATTTACT | TTCAGTTCTGTGGCCTTCTTG | 131 | 86 |
IL4 | CCATGAGAAGGACACTCGCT | CGTACTCTGGTTGGCTTCCTT | 151 | 86 |
IL6 | GTGAAAGCAGCAAAGAGGCAC | GATTTTCACCAGGCAAGTCTCC | 113 | 79.5 |
IL10 | CTTCCCTGTGAAAACAAGAGCA | ACTCATGGCTTTGTAGATGCCT | 90 | 78 |
IL17A | TCTCATAGCAGGCACAAACTCA | GCAGTAGCAGTGACACCAATG | 92 | 79 |
IFNG | TGAAGAATTGGAAAGAGGAGAGTG | TCTCCACACTCTTTTGGATGC | 117 | 74.5 |
TNF | AGCCCATGTTGTAGCAAACCC | GGACCTGGGAGTAGATGAGGT | 149 | 87 |
BCL2 | CGCGACTCCTGATTCATTGG | CAGTCTACTTCCTCTGTGATGTTGT | 165 | 77.5 |
BAX | GCCCTTTTCTACTTTGCCAGC | CGGAGGAAGTCCAATGTCCA | 101 | 83 |
BNIP3 | CACGAGCGTCATGAAGAAAGG | GACGCCTTCCAATATAGATCCCCAA | 119 | 79.5 |
BECN1 | CCAGATGCGTTATGCCCAGA | TCCATTCCACGGGAACACTG | 146 | 83 |
MAP1LC3B | GACCGCTGTAAGGAGGTACA | CAGCTGCTTCTCACCCTTGT | 90 | 83.5 |
ATG5 | TTGGGCCATCAATCGGAAAC | AGTGTGTGCAACTGTCCATCT | 150 | 78.5 |
ATG7 | CTGAACGAGTATCGGCTGGA | AGTGTTCCAATAGCTGGGCA | 158 | 83.5 |
ATG12 | CCCCAGACCAAGAAGTTGGA | TTCAGAGCTGTCTCTTCCGTG | 155 | 79 |
ATG16L1 | GATTACGGCACACACTCACG | TGCTGCGTAGATCCCAGAGT | 123 | 83.5 |
SQSTM1 | TGTCCCTGAAAGAGAAGATGGC | CCCTCAAAATCAAAGCCTGTCC | 155 | 87 |
RACK1 | GAGTGTGGCCTTCTCCTCTG | GCTTGCAGTTAGCCAGGTTC | 224 | 84.5 |
Beep Test | RSA Test | Mann–Whitney p-Value | |
---|---|---|---|
Test Results (Beep decimal score or RSA mean score (s), respectively) | 13.2 (11.3–14.6) | 2.73 (2.15–3.27) | |
LA (mmol/L) | |||
Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 2.2 (1.9–2.4) aaaa | 3.1 (2.9–3.4) aaaa | <0.0001 |
post-test | 8.1 (7.5–8.6) bbbb | 15.2 (12.6–16.4) bbbb | <0.0001 |
LA-rec | 2.1 (1.8–2.3) | 2.9 (2.8–3.2) c | <0.0001 |
post-test/pre-test ratio | 3.73 (3.23–4.26) | 4.74 (4.13–5.25) | <0.0001 |
LA-rec/pre-test ratio | 0.95 (0.91–1.00) | 0.93 (0.91–0.97) | 0.3743 |
Gene | Beep Test | RSA Test | Mann–Whitney p-Value | |
---|---|---|---|---|
CXCL5 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.017 aaaa (0.011–0.028) | 0.007 aaaa (0.005–0.010) | <0.0001 | |
post-test | 0.058 bbbb (0.030–0.071) | 0.027 bb (0.019–0.038) | 0.0001 | |
LA-rec | 0.016 (0.012–0.026) | 0.037 cccc (0.026–0.051) | <0.0001 | |
post-test/pre-test ratio | 2.68 (2.20–3.65) | 3.58 (2.66–4.88) | 0.00569 | |
LA-rec/pre-test ratio | 0.92 (0.76–1.24) | 4.86 (3.41–6.22) | <0.0001 | |
CXCL8 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.005 aaaa (0.003–0.006) | 0.003 aaaa (0.002–0.006) | <0.0001 | |
post-test | 0.009 bb (0.007–0.014) | 0.014 bbbb (0.008–0.027) | 0.0001 | |
LA-rec | 0.008 (0.005–0.010) | 0.016 (0.009–0.028) | 0.0001 | |
post-test/pre-test ratio | 1.80 (1.40–3.05) | 4.31 (3.16–5.35) | <0.0001 | |
LA-rec/pre-test ratio | 1.51 (1.15–2.37) | 4.23 (3.75–5.83) | <0.0001 | |
CXCL9 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.005 aaaa (0.009–0.005) | 0.004 aaaa (0.002–0.006) | 0.0187 | |
post-test | 0.015 bbbb (0.008–0.018) | 0.019 bb (0.009–0.037) | 0.0800 | |
LA-rec | 0.006 (0.005–0.011) | 0.010 cccc (0.006–0.016) | 0.0207 | |
post-test/pre-test ratio | 1.96 (1.78–2.99) | 4.60 (4.07–5.96) | <0.0001 | |
LA-rec/pre-test ratio | 1.12 (0.87–1.38) | 2.71 (2.37–3.76) | <0.0001 | |
CXCL10 | Friedman’s ANOVA p-value | < 0.0001 | < 0.0001 | |
pre-test | 0.004 aaaa (0.003–0.006) | 0.003 aaaa (0.002–0.006) | 0.4000 | |
post-test | 0.008 b (0.006–0.009) | 0.009 (0.007–0.016) | 0.0632 | |
LA-rec | 0.006 cccc (0.004–0.008) | 0.009 cccc (0.007–0.016) | <0.0001 | |
post-test/pre-test ratio | 1.73 (1.44–2.38) | 2.54 (2.16–2.99) | <0.0001 | |
LA-rec/pre-test ratio | 1.36 (1.19–1.65) | 2.53 (1.91–3.55) | <0.0001 | |
CXCL11 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.004 aaaa (0.003–0.004) | 0.003 aaaa (0.002–0.007) | 0.5206 | |
post-test | 0.015 (0.013–0.017) | 0.016 (0.010–0.025) | 0.7001 | |
LA-rec | 0.014 cccc (0.011–0.016) | 0.016 cccc (0.009–0.021) | 0.1976 | |
post-test/pre-test ratio | 4.12 (3.21–5.06) | 4.04 (3.23–5.41) | 0.5912 | |
LA-rec/pre-test ratio | 3.82 (2.77–4.19) | 4.02 (2.83–5.73) | 0.1561 | |
CXCL12 | Friedman’s ANOVA p-value | 0.0419 | 0.2263 | |
pre-test | 0.004 (0.003–0.004) | 0.007 (0.006–0.009) | <0.0001 | |
post-test | 0.004 (0.003–0.004) | 0.007 (0.007–0.009) | <0.0001 | |
LA-rec | 0.003 c (0.003–0.004) | 0.008 (0.007–0.010) | <0.0001 | |
post-test/pre-test ratio | 1.12 (0.87–1.35) | 1.04 (0.74–1.49) | 0.9907 | |
LA-rec/pre-test ratio | 0.94 (0.79–1.23) | 1.24 (0.82–1.42) | 0.0454 |
Gene | Beep Test | RSA Test | Mann–Whitney p-Value | |
---|---|---|---|---|
IL2 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.004 aaaa (0.003–0.004) | 0.004 aaaa (0.003–0.005) | 0.8610 | |
post-test | 0.008 bbbb (0.007–0.009) | 0.025 bbb (0.021–0.035) | <0.0001 | |
LA-rec | 0.003 (0.003–0.004) | 0.016 cccc (0.009–0.020) | <0.0001 | |
post-test/pre-test ratio | 2.04 (1.84–2.47) | 7.38 (4.82–9.43) | <0.0001 | |
LA-rec/pre-test ratio | 0.90 (0.71–1.12) | 3.93 (2.70–4.92) | <0.0001 | |
IL4 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.004 aaaa (0.003–0.004) | 0.003 aaaa (0.002–0.004) | 0.1187 | |
post-test | 0.014 bb (0.011–0.016) | 0.014 (0.009–0.017) | 0.9071 | |
LA-rec | 0.008 cccc (0.008–0.010) | 0.013 cccc (0.010–0.017) | <0.0001 | |
post-test/pre-test ratio | 3.54 (2.81–4.90) | 4.40 (3.21–6.05) | 0.1303 | |
LA-rec/pre-test ratio | 2.20 (1.88–2.71) | 4.12 (3.19–5.39) | <0.0001 | |
IL6 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.002 aaaa (0.002–0.002) | 0.003 aaaa (0.001–0.005) | 0.1215 | |
post-test | 0.015 bbb (0.012–0.018) | 0.019 b (0.011–0.030) | 0.1244 | |
LA-rec | 0.009 cccc (0.008–0.010) | 0.014 cccc (0.008–0.031) | 0.0036 | |
post-test/pre-test ratio | 6.75 (5.88–8.60) | 8.05 (5.04–11.88) | 0.2060 | |
LA-rec/pre-test ratio | 4.14 (3.52–4.97) | 6.56 (4.47–9.33) | <0.0001 | |
IL10 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.004 aaaa (0.003–0.005) | 0.011 aaaa (0.006–0.027) | <0.0001 | |
post-test | 0.008 (0.007–0.009) | 0.068 b (0.031–0.107) | <0.0001 | |
LA-rec | 0.008 cccc (0.006–0.009) | 0.042 cccc (0.019–0.092) | <0.0001 | |
post-test/pre-test ratio | 2.05 (1.76–2.59) | 5.15 (3.27–7.73) | <0.0001 | |
LA-rec/pre-test ratio | 1.82 (1.47–2.85) | 4.24 (2.68–5.45) | <0.0001 | |
IL17A | Friedman’s ANOVA p-value | 0.20103 | 0.24660 | |
pre-test | 0.029 (0.026–0.036) | 0.001 (0.001–0.002) | <0.0001 | |
post-test | 0.028 (0.023–0.032) | 0.001 (0.001–0.002) | <0.0001 | |
LA-rec | 0.031 (0.025–0.036) | 0.001 (0.001–0.001) | <0.0001 | |
post-test/pre-test ratio | 0.94 (0.74–1.04) | 1.14 (0.84–1.38) | 0.0274 | |
LA-rec/pre-test ratio | 0.98 (0.76–1.42) | 1.12 (0.89–1.41) | 0.3033 | |
IFNG | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.031 aaaa (0.025–0.034) | 0.027 aaaa (0.020–0.037) | 0.4268 | |
post-test | 0.100 (0.091–0.121) | 0.128 (0.103–0.149) | 0.0522 | |
LA-rec | 0.118 cccc (0.096–0.138) | 0.104 cccc (0.075–0.151) | 0.3870 | |
post-test/pre-test ratio | 3.60 (2.94–4.60) | 4.84 (3.55–5.89) | 0.0061 | |
LA-rec/pre-test ratio | 3.89 (2.92–5.00) | 3.58 (2.43–5.72) | 0.5282 | |
TNF | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.003 aaaa (0.003–0.004) | 0.004 aaaa (0.002–0.006) | 0.5359 | |
post-test | 0.008 (0.006–0.009) | 0.015 (0.008–0.032) | <0.0001 | |
LA-rec | 0.007 cccc (0.006–0.009) | 0.012 cccc (0.007–0.021) | 0.0003 | |
post-test/pre-test ratio | 2.19 (1.81–2.53) | 4.07 (2.97–5.00) | <0.0001 | |
LA-rec/pre-test ratio | 1.93 (1.60–2.80) | 3.00 (2.25–0.40) | <0.0001 |
Gene | Beep Test | RSA Test | Mann–Whitney p-Value | |
---|---|---|---|---|
BCL2 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.016 aaaa (0.011–0.024) | 0.010 aaaa (0.007–0.015) | 0.0002 | |
post-test | 0.036 bb (0.025–0.062) | 0.050 (0.029–0.059) | 0.3033 | |
recovery | 0.029 cc (0.018–0.033) | 0.050 cccc (0.032–0.079) | 0.0001 | |
post-test/pre-test ratio | 3.73 (3.23–4.26) | 4.74 (4.13–5.25) | <0.0001 | |
LA-rec/pre-test ratio | 0.95 (0.91–1.00) | 4.53 (3.44–6.98) | <0.0001 | |
BAX | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.061 aaaa (0.041–0.070) | 0.038 aaaa (0.029–0.075) | 0.0685 | |
post-test | 0.233 bb (0.120–0.306) | 0.464 bb (0.318–0.559) | <0.0001 | |
recovery | 0.119 cccc (0.097–0.154) | 0.186 cccc (0.103–0.328) | 0.0266 | |
post-test/pre-test ratio | 3.77 (2.63–5.09) | 11.33 (6.45–15.08) | <0.0001 | |
LA-rec/pre-test ratio | 2.05 (1.63–3.00) | 3.89 (2.92–6.14) | <0.0001 | |
BNIP3 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.014 aaaa (0.009–0.018) | 0.009 aaaa (0.004–0.013) | 0.0006 | |
post-test | 0.046 bbbb (0.030–0.058) | 0.066 bbb (0.049–0.089) | 0.0005 | |
recovery | 0.011 (0.007–0.017) | 0.031 cccc (0.020–0.052) | <0.0001 | |
post-test/pre-test ratio | 3.46 (2.57–3.87) | 8.05 (6.58–11.57) | <0.0001 | |
LA-rec/pre-test ratio | 0.95 (0.45–1.50) | 4.09 (3.32–6.00) | <0.0001 | |
BECN1 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.027 aaaa (0.022–0.039) | 0.026 aaaa (0.019–0.039) | 0.6321 | |
post-test | 0.073 (0.055–0.095) | 0.078 (0.059–0.121) | 0.6405 | |
recovery | 0.062 cccc (0.053–0.084) | 0.082 cccc (0.068–0.113) | 0.0176 | |
post-test/pre-test ratio | 2.61 (2.05–3.09) | 2.97 (2.48–3.84) | 0.0250 | |
LA-rec/pre-test ratio | 2.32 (1.89–2.86) | 3.12 (2.33–4.42) | 0.0015 | |
MAP1LC3B | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.003 aaaa (0.002–0.005) | 0.003 aaaa (0.002–0.005) | 0.6156 | |
post-test | 0.010 (0.005–0.014) | 0.015 b (0.009–0.022) | 0.0085 | |
recovery | 0.008 cccc (0.005–0.014) | 0.012 cccc (0.006–0.016) | 0.3318 | |
post-test/pre-test ratio | 2.71 (1.97–3.60) | 5.27 (3.92–6.49) | <0.0001 | |
LA-rec/pre-test ratio | 2.91 (1.93–3.77) | 3.32 (2.47–5.27) | 0.0381 | |
ATG5 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.040 aaaa (0.027–0.058) | 0.027 aaaa (0.019–0.039) | 0.0220 | |
post-test | 0.074 (0.050–0.128) | 0.115 (0.083–0.182) | 0.0019 | |
recovery | 0.070 cccc (0.054–0.090) | 0.108 cccc (0.074–0.152) | 0.0042 | |
post-test/pre-test ratio | 2.21 (1.61–2.71) | 4.71 (3.52–5.81) | <0.0001 | |
LA-rec/pre-test ratio | 1.91 (1.44–.43) | 3.88 (2.72–5.45) | <0.0001 | |
ATG7 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.027 aaaa (0.019–0.039) | 0.021 aaaa (0.011–0.037) | 0.1003 | |
post-test | 0.071 bbbb (0.036–0.103) | 0.138 b (0.076–0.237) | <0.0001 | |
recovery | 0.031 (0.019–0.038) | 0.094 cccc (0.059–0.140) | <0.0001 | |
post-test/pre-test ratio | 2.32 (1.65–3.00) | 6.38 (4.47–10.89) | <0.0001 | |
LA-rec/pre-test ratio | 0.95 (0.76–1.26) | 4.15 (3.19–5.79) | <0.0001 | |
ATG12 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.019 aaaa (0.012–0.035) | 0.006 aaaa (0.004–0.012) | <0.0001 | |
post-test | 0.060 (0.044–0.138) | 0.038 bb (0.018–0.065) | 0.0007 | |
recovery | 0.074 cccc (0.040–0.105) | 0.022 cccc (0.009–0.040) | <0.0001 | |
post-test/pre-test ratio | 3.91 (3.09–4.86) | 5.70 (3.66–8.46) | 0.0003 | |
LA-rec/pre-test ratio | 3.25 (2.38–4.58) | 3.94 (2.33–4.83) | 0.7615 | |
ATG16L1 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.023 aaaa (0.015–0.030) | 0.009 aaaa (0.004–0.015) | <0.0001 | |
post-test | 0.099 bbb (0.051–0.129) | 0.075 b (0.036–0.136) | 0.3202 | |
recovery | 0.040 cccc (0.030–0.061) | 0.051 cccc (0.021–0.069) | 0.5831 | |
post-test/pre-test ratio | 4.19 (3.35–5.61) | 7.76 (5.53–11.09) | <0.0001 | |
LA-rec/pre-test ratio | 1.97 (1.41–2.54) | 5.23 (3.28–7.49) | <0.0001 | |
SQSTM1 | Friedman’s ANOVA p-value | <0.0001 | <0.0001 | |
pre-test | 0.016 aaaa (0.009–0.023) | 0.019 aaaa (0.011–0.041) | 0.0800 | |
post-test | 0.033 (0.021–0.062) | 0.168 (0.085–0.257) | <0.0001 | |
recovery | 0.032 cccc (0.022–0.045) | 0.140 cccc (0.078–0.204) | <0.0001 | |
post-test/pre-test ratio | 2.24 (2.00–2.90) | 6.30 (5.02–9.13) | <0.0001 | |
LA-rec/pre-test ratio | 1.91 (1.63–.80) | 5.48 (4.26–9.27) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa-Nowak, D.; Trzeciak-Ryczek, A.; Wityk, P.; Cembrowska-Lech, D.; Nowak, R. Post-Effort Changes in Autophagy- and Inflammation-Related Gene Expression in White Blood Cells of Healthy Young Men. Cells 2021, 10, 1406. https://doi.org/10.3390/cells10061406
Kostrzewa-Nowak D, Trzeciak-Ryczek A, Wityk P, Cembrowska-Lech D, Nowak R. Post-Effort Changes in Autophagy- and Inflammation-Related Gene Expression in White Blood Cells of Healthy Young Men. Cells. 2021; 10(6):1406. https://doi.org/10.3390/cells10061406
Chicago/Turabian StyleKostrzewa-Nowak, Dorota, Alicja Trzeciak-Ryczek, Paweł Wityk, Danuta Cembrowska-Lech, and Robert Nowak. 2021. "Post-Effort Changes in Autophagy- and Inflammation-Related Gene Expression in White Blood Cells of Healthy Young Men" Cells 10, no. 6: 1406. https://doi.org/10.3390/cells10061406
APA StyleKostrzewa-Nowak, D., Trzeciak-Ryczek, A., Wityk, P., Cembrowska-Lech, D., & Nowak, R. (2021). Post-Effort Changes in Autophagy- and Inflammation-Related Gene Expression in White Blood Cells of Healthy Young Men. Cells, 10(6), 1406. https://doi.org/10.3390/cells10061406