ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia
Abstract
:1. Clinical Features of HSP
2. Genetics of HSP
3. ER Shaping Proteins
3.1. Atlastin-1 (SPG3A)
3.2. Reticulon-2 (SPG12)
3.3. REEP1 (SPG31) and REEP2 (SPG72)
4. Microtubule (MT) Dynamics
Spastin (SPG4)
5. ER-Golgi Trafficking
6. Other Proteins Implicated in ER Morphogenesis and Function
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Giudice, T.L.; Lombardi, F.; Santorelli, F.M.; Kawarai, T.; Orlacchio, A. Hereditary Spastic Paraplegia: Clinical-Genetic Characteristics and Evolving Molecular Mechanisms. Exp. Neurol. 2014, 261, 518–539. [Google Scholar] [CrossRef] [PubMed]
- Mackay-Sim, A. Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci. 2021, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Klebe, S.; Stevanin, G.; Depienne, C. Clinical and Genetic Heterogeneity in Hereditary Spastic Para-Plegias: From SPG1 to SPG72 and Still Counting. Rev. Neurol. 2015, 171, 505–530. [Google Scholar] [CrossRef] [Green Version]
- Morais, S.; Raymond, L.; Mairey, M.; Coutinho, P.; Brandão, E.; Ribeiro, P.; Loureiro, J.L.; Sequeiros, J.; Brice, A.; Alonso, I.; et al. Massive Sequencing of 70 Genes Reveals a Myriad of Missing Genes or Mechanisms to Be Uncovered in Hereditary Spastic Paraplegias. Eur. J. Hum. Genet. 2017, 25, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Boutry, M.; Morais, S.; Stevanin, G. Update on the Genetics of Spastic Paraplegias. Curr. Neurol. Neurosci. Rep. 2019, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, C. Converging Cellular Themes for the Hereditary Spastic Paraplegias. Curr. Opin. Neurobiol. 2018, 51, 139–146. [Google Scholar] [CrossRef]
- Parodi, L.; Fenu, S.; Stevanin, G.; Durr, A. Hereditary Spastic Paraplegia: More than an Upper Motor Neuron Disease. Rev. Neurol. 2017, 173, 352–360. [Google Scholar] [CrossRef]
- Zhao, X.; Alvarado, D.; Rainier, S.; Lemons, R.; Hedera, P.; Weber, C.H.; Tukel, T.; Apak, M.; Heiman-Patterson, T.; Ming, L.; et al. Mutations in a Newly Identified GTPase Gene Cause Autosomal Dominant Hereditary Spastic Paraplegia. Nat. Genet. 2001, 29, 326–331. [Google Scholar] [CrossRef]
- Montenegro, G.; Rebelo, A.P.; Connell, J.; Allison, R.; Babalini, C.; D’Aloia, M.; Montieri, P.; Schüle, R.; Ishiura, H.; Price, J.; et al. Mutations in the ER-Shaping Protein Reticulon 2 Cause the Axon-Degenerative Disorder Hereditary Spastic Paraplegia Type 12. J. Clin. Investig. 2012, 122, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Züchner, S.; Wang, G.; Tran-Viet, K.N.; Nance, M.A.; Gaskell, P.C.; Vance, J.M.; Ashley-Koch, A.E.; Pericak-Vance, M.A. Mutations in the Novel Mitochondrial Protein REEP1 Cause Hereditary Spastic Paraplegia Type 31. Am. J. Hum. Genet. 2006, 79, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.U.; Krawen, P.; Sauter, S.M.; Boehm, J.; Chronowska, A.; Paulus, W.; Neesen, J.; Engel, W. ZFYVE27 (SPG33), a Novel Spastin-Binding Protein, Is Mutated in Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2006, 79, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Novarino, G.; Fenstermaker, A.G.; Zaki, M.S.; Hofree, M.; Silhavy, J.L.; Heiberg, A.D.; Abdellateef, M.; Rosti, B.; Scott, E.; Mansour, L.; et al. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science 2014, 343, 506–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, T.; Durr, A.; Mundwiller, E.; Loureiro, J.L.; Boutry, M.; Gonzalez, M.A.; Gauthier, J.; El-Hachimi, K.H.; Depienne, C.; Muriel, M.P.; et al. Loss of Association of REEP2 with Membranes Leads to Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2014, 94, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Hazan, J.; Fonknechten, N.; Mavel, D.; Paternotte, C.; Samson, D.; Artiguenave, F.; Davoine, C.S.; Cruaud, C.; Dürr, A.; Wincker, P.; et al. Spastin, a New AAA Protein, Is Altered in the Most Frequent Form of Autosomal Dominant Spastic Paraplegia. Nat. Genet. 1999, 23, 296–303. [Google Scholar] [CrossRef]
- Fichera, M.; Lo Giudice, M.; Falco, M.; Sturnio, M.; Amata, S.; Calabrese, O.; Bigoni, S.; Calzolari, E.; Neri, M. Evidence of Kinesin Heavy Chain (KIF5A) Involvement in Pure Hereditary Spastic Paraplegia. Neurology 2004, 63, 1108–1110. [Google Scholar] [CrossRef]
- Esmaeeli Nieh, S.; Madou, M.R.Z.; Sirajuddin, M.; Fregeau, B.; Mcknight, D.; Lexa, K.; Strober, J.; Spaeth, C.; Hallinan, B.E.; Smaoui, N.; et al. De Novo Mutations in KIF1A Cause Progressive Encephalopathy and Brain Atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 623–635. [Google Scholar] [CrossRef]
- Oz-Levi, D.; Ben-Zeev, B.; Ruzzo, E.K.; Hitomi, Y.; Gelman, A.; Pelak, K.; Anikster, Y.; Reznik-Wolf, H.; Bar-Joseph, I.; Olender, T.; et al. Mutation in TECPR2 Reveals a Role for Autophagy in Hereditary Spastic Paraparesis. Am. J. Hum. Genet. 2012, 91, 1065–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beetz, C.; Johnson, A.; Schuh, A.L.; Thakur, S.; Varga, R.E.; Fothergill, T.; Hertel, N.; Bomba-Warczak, E.; Thiele, H.; Nürnberg, G.; et al. Inhibition of TFG Function Causes Hereditary Axon Degeneration by Impairing Endoplasmic Reticulum Structure. Proc. Natl. Acad. Sci. USA 2013, 110, 5091–5096. [Google Scholar] [CrossRef] [Green Version]
- Dor, T.; Cinnamon, Y.; Raymond, L.; Shaag, A.; Bouslam, N.; Bouhouche, A.; Gaussen, M.; Meyer, V.; Durr, A.; Brice, A.; et al. KIF1C Mutations in Two Families with Hereditary Spastic Paraparesis and Cerebellar Dysfunction. J. Med. Genet. 2014, 51, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, Y.; Orhan, E.K.; Iseri, S.A.U.; Serdaroglu-Oflazer, P.; Kara, B.; Solakoǧlu, S.; Tolun, A. A Frameshift Mutation of ERLIN2 in Recessive Intellectual Disability, Motor Dysfunction and Multiple Joint Contractures. Hum. Mol. Genet. 2011, 20, 1886–1892. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Li, J.; Liu, Q.; Mao, F.; Li, J.; Qiu, R.; Hu, H.; Song, Y.; Yang, Y.; Gao, G.; et al. A Missense Mutation in SLC33A1, Which Encodes the Acetyl-CoA Transporter, Causes Autosomal-Dominant Spastic Paraplegia (SPG42). Am. J. Hum. Genet. 2008, 83, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, Y.; Shemesh, T.; Prinz, W.A.; Palazzo, A.F.; Kozlov, M.M.; Rapoport, T.A. Mechanisms Determining the Morphology of the Peripheral ER. Cell 2010, 143, 774–788. [Google Scholar] [CrossRef] [Green Version]
- West, M.; Zurek, N.; Hoenger, A.; Voeltz, G.K. A 3D Analysis of Yeast ER Structure Reveals How ER Domains Are Organized by Membrane Curvature. J. Cell Biol. 2011, 193, 333–346. [Google Scholar] [CrossRef]
- Puhka, M.; Joensuu, M.; Vihinen, H.; Belevich, I.; Jokitalo, E. Progressive Sheet-to-Tubule Transformation Is a General Mechanism for Endoplasmic Reticulum Partitioning in Dividing Mammalian Cells. Mol. Biol. Cell 2012, 23, 2424–2432. [Google Scholar] [CrossRef] [PubMed]
- Westrate, L.M.; Lee, J.E.; Prinz, W.A.; Voeltz, G.K. Form Follows Function: The Importance of Endoplasmic Reticulum Shape. Annu. Rev. Biochem. 2015, 84, 791–811. [Google Scholar] [CrossRef]
- Nixon-Abell, J.; Obara, C.J.; Weigel, A.V.; Li, D.; Legant, W.R.; Xu, C.S.; Pasolli, H.A.; Harvey, K.; Hess, H.F.; Betzig, E.; et al. Increased Spatiotemporal Resolution Reveals Highly Dynamic Dense Tubular Matrices in the Peripheral ER. Science 2016, 354, aaf3928. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, L.K.; Barentine, A.E.S.; Merta, H.; Schweighofer, S.; Zhang, Y.; Baddeley, D.; Bewersdorf, J.; Bahmanyar, S. Dynamic Nanoscale Morphology of the ER Surveyed by STED Microscopy. J. Cell Biol. 2019, 218, 83–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, S.D.; Hampton, C.M.; Langlois, R.; Melero, R.; Farino, Z.J.; Calderon, M.J.; Li, W.; Wallace, C.T.; Tran, N.H.; Grassucci, R.A.; et al. Ribosome-Associated Vesicles: A Dynamic Subcompartment of the Endoplasmic Reticulum in Secretory Cells. Sci. Adv. 2020, 6, eaay9572. [Google Scholar] [CrossRef] [Green Version]
- Hanus, C.; Ehlers, M.D. Specialization of Biosynthetic Membrane Trafficking for Neuronal Form and Function. Curr. Opin. Neurobiol. 2016, 39, 8–16. [Google Scholar] [CrossRef]
- Terasaki, M.; Shemesh, T.; Kasthuri, N.; Klemm, R.W.; Schalek, R.; Hayworth, K.J.; Hand, A.R.; Yankova, M.; Huber, G.; Lichtman, J.W.; et al. Stacked Endoplasmic Reticulum Sheets Are Connected by Helicoidal Membrane Motifs. Cell 2013, 154, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Terasaki, M. Axonal Endoplasmic Reticulum Is Very Narrow. J. Cell Sci. 2018, 131, jcs.210450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, N.C.; Jahn, T.R.; Reid, E.; O’Kane, C.J. Reticulon-Like-1, the Drosophila Orthologue of the Hereditary Spastic Paraplegia Gene Reticulon 2, Is Required for Organization of Endoplasmic Reticulum and of Distal Motor Axons. Hum. Mol. Genet. 2012, 21, 3356–3365. [Google Scholar] [CrossRef] [Green Version]
- Pendin, D.; McNew, J.A.; Daga, A. Balancing ER Dynamics: Shaping, Bending, Severing, and Mending Membranes. Curr. Opin. Cell Biol. 2011, 23, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Kornak, U.; Mademan, I.; Schinke, M.; Voigt, M.; Krawitz, P.; Hecht, J.; Barvencik, F.; Schinke, T.; Gießelmann, S.; Beil, F.T.; et al. Sensory Neuropathy with Bone Destruction Due to a Mutation in the Membrane-Shaping Atlastin GTPase 3. Brain 2014, 137, 683–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, D.; Schabhüttl, M.; Wieland, T.; Windhager, R.; Strom, T.M.; Auer-Grumbach, M. A Novel Missense Mutation Confirms ATL3 as a Gene for Hereditary Sensory Neuropathy Type 1. Brain 2014, 137, e286. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.P.; Patterson, A.; Lavoie, B.; Stadler, J.; Shoeb, M.; Patel, R.; Blackstone, C. Cellular Localization, Oligomerization, and Membrane Association of the Hereditary Spastic Paraplegia 3A (SPG3A) Protein Atlastin. J. Biol. Chem. 2003, 278, 49063–49071. [Google Scholar] [CrossRef] [Green Version]
- Rismanchi, N.; Soderblom, C.; Stadler, J.; Zhu, P.P.; Blackstone, C. Atlastin GTPases Are Required for Golgi Apparatus and ER Morphogenesis. Hum. Mol. Genet. 2008, 17, 1591–1604. [Google Scholar] [CrossRef]
- Zhu, P.P.; Soderblom, C.; Tao-Cheng, J.H.; Stadler, J.; Blackstone, C. SPG3A Protein Atlastin-1 Is Enriched in Growth Cones and Promotes Axon Elongation during Neuronal Development. Hum. Mol. Genet. 2006, 15, 1343–1353. [Google Scholar] [CrossRef] [Green Version]
- Orso, G.; Pendin, D.; Liu, S.; Tosetto, J.; Moss, T.J.; Faust, J.E.; Micaroni, M.; Egorova, A.; Martinuzzi, A.; McNew, J.A.; et al. Homotypic Fusion of ER Membranes Requires the Dynamin-like GTPase Atlastin. Nature 2009, 460, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Paik, S.K.; Lee, M.J.; Kim, Y.J.; Kim, S.; Nahm, M.; Oh, S.J.; Kim, H.M.; Yim, J.; Lee, C.J.; et al. Drosophila Atlastin Regulates the Stability of Muscle Microtubules and Is Required for Synapse Development. Dev. Biol. 2009, 330, 250–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Shibata, Y.; Zhu, P.P.; Voss, C.; Rismanchi, N.; Prinz, W.A.; Rapoport, T.A.; Blackstone, C. A Class of Dynamin-Like GTPases Involved in the Generation of the Tubular ER Network. Cell 2009, 138, 549–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, K.; Klemm, R.W.; Condon, A.; Severin, K.N.; Zhang, M.; Ghirlando, R.; Hu, J.; Rapoport, T.A.; Prinz, W.A. The Dynamin-like GTPase Sey1p Mediates Homotypic ER Fusion in S. Cerevisiae. J. Cell Biol. 2012, 197, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, F.; Shi, J.; Zhu, Y.; Zhu, Z.; Gong, Q.; Hu, J. ROOT HAIR DEFECTIVE3 Family of Dynamin-Like GTPases Mediates Homotypic Endoplasmic Reticulum Fusion and Is Essential for Arabidopsis Development. Plant Physiol. 2013, 163, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Pendin, D.; Tosetto, J.; Moss, T.J.; Andreazza, C.; Moro, S.; McNew, J.A.; Daga, A. GTP-Dependent Packing of a Three-Helix Bundle Is Required for Atlastin-Mediated Fusion. Proc. Natl. Acad. Sci. USA 2011, 108, 16283–16288. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Klemm, R.W.; Liu, T.Y.; Zhang, M.; Sun, S.; Sui, X.; Liu, X.; Rapoport, T.A.; Hu, J. Structures of the Atlastin GTPase Provide Insight into Homotypic Fusion of Endoplasmic Reticulum Membranes. Proc. Natl. Acad. Sci. USA 2011, 108, 3976–3981. [Google Scholar] [CrossRef] [Green Version]
- Byrnes, L.J.; Sondermann, H. Structural Basis for the Nucleotide-Dependent Dimerization of the Large G Protein Atlastin-1/SPG3A. Proc. Natl. Acad. Sci. USA 2011, 108, 2216–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.-H.; Liu, X.-M. Clinical Features and Genotype-Phenotype Correlation Analysis in Patients with ATL1 Mutations: A Literature Reanalysis. Transl. Neurodegener. 2017, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, J.E.; Desai, T.; Verma, A.; Ulengin, I.; Sun, T.L.; Moss, T.J.; Betancourt-Solis, M.A.; Huang, H.W.; Lee, T.; McNew, J.A. The Atlastin C-Terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion. J. Biol. Chem. 2015, 290, 4772–4783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulengin, I.; Park, J.J.; Lee, T.H. ER Network Formation and Membrane Fusion by Atlastin1/SPG3A Disease Variants. Mol. Biol. Cell 2015, 26, 1616–1628. [Google Scholar] [CrossRef]
- Ulengin, I.; Lee, C.H. Exploring the Effects of Atlastin-1 Mutations That Lead to Hereditary Spastic Paraplegia on Endoplasmic Reticulum Structure. Mol. Biol. Cell 2013, 24. [Google Scholar]
- Montagna, A.; Vajente, N.; Pendin, D.; Daga, A. In Vivo Analysis of CRISPR/Cas9 Induced Atlastin Pathological Mutations in Drosophila. Front. Neurosci. 2020, 14, 547746. [Google Scholar] [CrossRef]
- O’Donnell, J.P.; Byrnes, L.J.; Cooley, R.B.; Sondermann, H. A Hereditary Spastic Paraplegia-Associated Atlastin Variant Exhibits Defective Allosteric Coupling in the Catalytic Core. J. Biol. Chem. 2018, 293, 687–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Guo, X.; Niu, L.; Li, X.; Sun, F.; Hu, J.; Wang, X.; Shen, K. Atlastin-1 Regulates Morphology and Function of Endoplasmic Reticulum in Dendrites. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, O.; Walz, B. Endoplasmic Reticulum of Animal Cells and Its Organization into Structural and Functional Domains. Int. Rev. Cytol. 2001, 205, 149–214. [Google Scholar] [CrossRef]
- Chen, S.; Novick, P.; Ferro-Novick, S. ER Structure and Function. Curr. Opin. Cell Biol. 2013, 25, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, O.A.; Córdova, A.; Cerda, M.; Lobos, P.; Härtel, S.; Couve, A.; Hidalgo, C. Ryanodine Receptor-Mediated Ca2+ Release and Atlastin-2 GTPase Activity Contribute to IP3-Induced Dendritic Ca2+ Signals in Primary Hippocampal Neurons. Cell Calcium 2021, 96, 102399. [Google Scholar] [CrossRef]
- Li, J.; Yan, B.; Si, H.; Peng, X.; Zhang, S.L.; Hu, J. Atlastin Regulates Store-Operated Calcium Entry for Nerve Growth Factor-Induced Neurite Outgrowth. Sci. Rep. 2017, 7, 43490. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yang, M.; Yang, Y.; Wang, X.F. Atlastin-1 Modulates Seizure Activity and Neuronal Excitability. CNS Neurosci. Ther. 2020, 26, 385–393. [Google Scholar] [CrossRef]
- Summerville, J.B.; Faust, J.F.; Fan, E.; Pendin, D.; Daga, A.; Formella, J.; Stern, M.; McNew, J.A. The Effects of ER Morphology on Synaptic Structure and Function in Drosophila Melanogaster. J. Cell Sci. 2016, 129, 1635–1648. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Hedera, P. Hereditary Spastic Paraplegia-Causing Mutations in Atlastin-1 Interfere with BMPRII Trafficking. Mol. Cell. Neurosci. 2013, 52, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassier, C.; Hutt, J.A.; Scholpp, S.; Lumsden, A.; Giros, B.; Nothias, F.; Schneider-Maunoury, S.; Houart, C.; Hazan, J. Zebrafish Atlastin Controls Motility and Spinal Motor Axon Architecture via Inhibition of the BMP Pathway. Nat. Neurosci. 2010, 13, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Klemm, R.W.; Norton, J.P.; Cole, R.A.; Li, C.S.; Park, S.H.; Crane, M.M.; Li, L.; Jin, D.; Boye-Doe, A.; Liu, T.Y.; et al. A Conserved Role for Atlastin GTPases in Regulating Lipid Droplet Size. Cell Rep. 2013, 3, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.R.; Lingeman, E.; Ahmed, S.; Corn, J.E. Atlastins Remodel the Endoplasmic Reticulum for Selective Autophagy. J. Cell Biol. 2018, 217, 3354–3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Xiao, Y.; Chai, P.; Zheng, P.; Teng, J.; Chen, J. ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy. Curr. Biol. 2019, 29, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Oertle, T.; Klinger, M.; Stuermer, C.A.O.; Schwab, M.E. A Reticular Rhapsody: Phylogenic Evolution and Nomenclature of the RTN/Nogo Gene Family 1. FASEB J. 2003, 17, 1238–1247. [Google Scholar] [CrossRef] [Green Version]
- Diekmann, H.; Klinger, M.; Oertle, T.; Heinz, D.; Pogoda, H.M.; Schwab, M.E.; Stuermer, C.A.O. Analysis of the Reticulon Gene Family Demonstrates the Absence of the Neurite Growth Inhibitor Nogo-A in Fish. Mol. Biol. Evol. 2005, 22, 1635–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakefield, S.; Tear, G. The Drosophila Reticulon, Rtnl-1, Has Multiple Differentially Expressed Isoforms That Are Associated with a Sub-Compartment of the Endoplasmic Reticulum. Cell. Mol. Life Sci. 2006, 63, 2027–2038. [Google Scholar] [CrossRef]
- Voeltz, G.K.; Prinz, W.A.; Shibata, Y.; Rist, J.M.; Rapoport, T.A. A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum. Cell 2006, 124, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shibata, Y.; Voss, C.; Shemesh, T.; Li, Z.; Coughlin, M.; Kozlov, M.M.; Rapoport, T.A.; Prinz, W.A. Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules. Science 2008, 319, 1247–1250. [Google Scholar] [CrossRef]
- Espadas, J.; Pendin, D.; Bocanegra, R.; Escalada, A.; Misticoni, G.; Trevisan, T.; Velasco del Olmo, A.; Montagna, A.; Bova, S.; Ibarra, B.; et al. Dynamic Constriction and Fission of Endoplasmic Reticulum Membranes by Reticulon. Nat. Commun. 2019, 10, 5327. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, L.K.; Das, S.K. The Regulatory Role of Reticulons in Neurodegeneration: Insights Under-pinning Therapeutic Potential for Neurodegenerative Diseases. Cell. Mol. Neurobiol. 2020, 41, 1157–1174. [Google Scholar] [CrossRef]
- Kulczyńska-Przybik, A.; Mroczko, P.; Dulewicz, M.; Mroczko, B. The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 4630. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Li, S.; Grand Pré, T.; Qiu, D.; Strittmatter, S.M. Axon Regeneration in Young Adult Mice Lacking Nogo-A/B. Neuron 2003, 38, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Simonen, M.; Pedersen, V.; Weinmann, O.; Schnell, L.; Buss, A.; Ledermann, B.; Christ, F.; Sansig, G.; van der Putten, H.; Schwab, M.E. Systemic Deletion of the Myelin-Associated Outgrowth Inhibitor Nogo-A Improves Regenerative and Plastic Responses after Spinal Cord Injury. Neuron 2003, 38, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Ho, C.; Li, S.; Keirstead, H.; Steward, O.; Tessier-Lavigne, M. Lack of Enhanced Spinal Re-generation in Nogo-Deficient Mice. Neuron 2003, 38, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Ge, Y.; He, W.; Hu, X.; Yan, R. RTN1 and RTN3 Protein Are Differentially Associated with Senile Plaques in Alzheimer’s Brains. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Shi, Q.; Ge, Y.; Sharoar, M.G.; He, W.; Xiang, R.; Zhang, Z.; Hu, X.; Yan, R. Impact of RTN3 Deficiency on Expression of BACE1 and Amyloid Deposition. J. Neurosci. 2014, 34, 13954–13962. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.J.; Hetzer, M.W. Reshaping of the Endoplasmic Reticulum Limits the Rate for Nuclear Envelope Formation. J. Cell Biol. 2008, 182, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Oertle, T.; Schwab, M.E. Nogo and Its PaRTNers. Trends Cell Biol. 2003, 13, 187–194. [Google Scholar] [CrossRef]
- Hu, J.; Prinz, W.A.; Rapoport, T.A. Weaving the Web of ER Tubules. Cell 2011, 147, 1226–1231. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tukachinsky, H.; Romano, F.B.; Rapoport, T.A. Cooperation of the ER-Shaping Proteins Atlastin, Lunapark, and Reticulons to Generate a Tubular Membrane Network. eLife 2016, 5, e18605. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Clark, L.D.; Gao, Y.; Kozlov, M.M.; Shemesh, T.; Rapoport, T.A. Mechanism of Membrane-Curvature Generation by ER-Tubule Shaping Proteins. Nat. Commun. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Züchner, S.; Kail, M.E.; Nance, M.A.; Gaskell, P.C.; Svenson, I.K.; Marchuk, D.A.; Pericak-Vance, M.A.; Ashley-Koch, A.E. A New Locus for Dominant Hereditary Spastic Paraplegia Maps to Chromosome 2p12. Neurogenetics 2006, 7, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, A. A Complete Overview of REEP1: Old and New Insights on Its Role in Hereditary Spastic Paraplegia and Neurodegeneration. Rev. Neurosci. 2020, 31, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Kubota, M.; Roberts, R.W.; Chi, Q.; Matsunami, H. RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors. Cell 2004, 119, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Björk, S.; Hurt, C.M.; Ho, V.K.; Angelotti, T. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity. PLoS ONE 2013, 8, e76366. [Google Scholar] [CrossRef] [Green Version]
- Brady, J.P.; Claridge, J.K.; Smith, P.G.; Schnell, J.R.; DeGrado, W.F. A Conserved Amphipathic Helix Is Required for Membrane Tubule Formation by Yop1p. Proc. Natl. Acad. Sci. USA 2015, 112, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Zhu, P.P.; Parker, R.L.; Blackstone, C. Hereditary Spastic Paraplegia Proteins REEP1, Spastin, and Atlastin-1 Coordinate Microtubule Interactions with the Tubular ER Network. J. Clin. Investig. 2010, 120, 1097–1110. [Google Scholar] [CrossRef] [Green Version]
- Powers, R.E.; Wang, S.; Liu, T.Y.; Rapoport, T.A. Reconstitution of the Tubular Endoplasmic Reticulum Network with Purified Components. Nature 2017, 543, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kel-kar, D.S.; Isserlin, R.; Jain, S.; et al. A Draft Map of the Human Proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Hurt, C.M.; Björk, S.; Ho, V.K.; Gilsbach, R.; Hein, L.; Angelotti, T. REEP1 and REEP2 Proteins Are Preferentially Expressed in Neuronal and Neuronal-like Exocytotic Tissues. Brain Res. 2014, 1545, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalçın, B.; Zhao, L.; Stofanko, M.; O’Sullivan, N.C.; Kang, Z.H.; Roost, A.; Thomas, M.R.; Zaessinger, S.; Blard, O.; Patto, A.L.; et al. Modeling of Axonal Endoplasmic Reticulum Network by Spastic Paraplegia Proteins. eLife 2017, 6, e23882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Golchoubian, B.; Belevich, I.; Jokitalo, E.; Schlaitz, A.L. REEP3 and REEP4 Determine the Tubular Morphology of the Endoplasmic Reticulum during Mitosis. Mol. Biol. Cell 2019, 30, 1377–1389. [Google Scholar] [CrossRef]
- Beetz, C.; Koch, N.; Khundadze, M.; Zimmer, G.; Nietzsche, S.; Hertel, N.; Huebner, A.K.; Mumtaz, R.; Schweizer, M.; Dirren, E.; et al. A Spastic Paraplegia Mouse Model Reveals REEP1-Dependent ER Shaping. J. Clin. Investig. 2013, 123, 4273–4282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapitein, L.C.; Hoogenraad, C.C. Building the Neuronal Microtubule Cytoskeleton. Neuron 2015, 87, 492–506. [Google Scholar] [CrossRef] [Green Version]
- Dreier, L.; Rapoport, T.A. In Vitro Formation of the Endoplasmic Reticulum Occurs Independently of Microtubules by a Controlled Fusion Reaction. J. Cell Biol. 2000, 148, 883–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, D.; Zhang, S.; Yang, Y.; Liu, J.J.; Wang, X.; Liu, C.; Milkie, D.E.; Moore, R.P.; Tulu, U.S.; et al. Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell 2018, 175, 1430–1442. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Chen, L.B. Dynamic Behavior of Endoplasmic Reticulum in Living Cells. Cell 1988, 54, 37–46. [Google Scholar] [CrossRef]
- Waterman-Storer, C.M.; Salmon, E.D. Endoplasmic Reticulum Membrane Tubules Are Distributed by Microtubules in Living Cells Using Three Distinct Mechanisms. Curr. Biol. 1998, 8, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Allan, V.J.; Vale, R.D. Cell Cycle Control of Microtubule-Based Membrane Transport and Tubule Formation in Vitro. J. Cell Biol. 1991, 113, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Farías, G.G.; Fréal, A.; Tortosa, E.; Stucchi, R.; Pan, X.; Portegies, S.; Will, L.; Altelaar, M.; Hoogenraad, C.C. Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron 2019, 102, 184–201. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Ladinsky, M.S.; Kirchhausen, T. Cisternal Organization of the Endoplasmic Reticulum during Mitosis. Mol. Biol. Cell 2009, 20, 3471–3480. [Google Scholar] [CrossRef] [PubMed]
- Dabora, S.L.; Sheetz, M.F. The Microtubule-Dependent Formation of a Tubulovesicular Network with Characteristics of the ER from Cultured Cell Extracts. Cell 1988, 54, 27–35. [Google Scholar] [CrossRef]
- Terasaki, M.; Chen, L.B.; Fujiwara, K. Microtubules and the Endoplasmic Reticulum Are Highly Interdependent Structures. J. Cell Biol. 1986, 103, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Perkins, H.T.; Allan, V. Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021, 10, 2341. [Google Scholar] [CrossRef]
- Trotta, N.; Orso, G.; Rossetto, M.G.; Daga, A.; Broadie, K. The Hereditary Spastic Paraplegia Gene, Spastin, Regulates Microtubule Stability to Modulate Synaptic Structure and Function. Curr. Biol. 2004, 14, 1135–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roll-Mecak, A.; Vale, R.D. The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules. Curr. Biol. 2005, 15, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.J.; Gomes, E.R.; Reisenweber, S.M.; Gundersen, G.G.; Lauring, B.P. Linking Axonal Degeneration to Microtubule Remodeling by Spastin-Mediated Microtubule Severing. J. Cell Biol. 2005, 168, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Errico, A.; Ballabio, A.; Rugarli, E.I. Spastin, the Protein Mutated in Autosomal Dominant Hereditary Spastic Paraplegia, Is Involved in Microtubule Dynamics. Hum. Mol. Genet. 2002, 11, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Lumb, J.H.; Connell, J.W.; Allison, R.; Reid, E. The AAA ATPase Spastin Links Microtubule Severing to Membrane Modelling. Biochim. Et Biophys. Acta-Mol. Cell Res. 2012, 1823, 192–197. [Google Scholar] [CrossRef] [Green Version]
- White, S.R.; Evans, K.J.; Lary, J.; Cole, J.L.; Lauring, B. Recognition of C-Terminal Amino Acids in Tubulin by Pore Loops in Spastin Is Important for Microtubule Severing. J. Cell Biol. 2007, 176, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Roll-Mecak, A.; Vale, R.D. Structural Basis of Microtubule Severing by the Hereditary Spastic Paraplegia Protein Spastin. Nature 2008, 451, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.W.; Trottier, O.; Mahamdeh, M.; Howard, J. Spastin Is a Dual-Function Enzyme That Severs Microtubules and Promotes Their Regrowth to Increase the Number and Mass of Microtubules. Proc. Natl. Acad. Sci. USA 2019, 116, 5533–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vemu, A.; Szczesna, E.; Zehr, E.A.; Spector, J.O.; Grigorieff, N.; Deaconescu, A.M.; Roll-Mecak, A. Severing Enzymes Amplify Microtubule Arrays through Lattice GTP-Tubulin Incorporation. Science 2018, 361, eaau1504. [Google Scholar] [CrossRef]
- Lacroix, B.; Van Dijk, J.; Gold, N.D.; Guizetti, J.; Aldrian-Herrada, G.; Rogowski, K.; Gerlich, D.W.; Janke, C. Tubulin Polyglutamylation Stimulates Spastin-Mediated Microtubule Severing. J. Cell Biol. 2010, 189, 945–954. [Google Scholar] [CrossRef]
- Valenstein, M.L.; Roll-Mecak, A. Graded Control of Microtubule Severing by Tubulin Glutamylation. Cell 2016, 164, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Sardina, F.; Pisciottani, A.; Ferrara, M.; Valente, D.; Casella, M.; Crescenzi, M.; Peschiaroli, A.; Casali, C.; Soddu, S.; Grierson, A.J.; et al. Spastin Recovery in Hereditary Spastic Paraplegia by Preventing Neddylation-Dependent Degradation. Life Sci. Alliance 2020, 3, e202000799. [Google Scholar] [CrossRef]
- Baas, P.W.; Nadar, C.V.; Myers, K.A. Axonal Transport of Microtubules: The Long and Short of It. Traffic 2006, 7, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Rehbach, K.; Kesavan, J.; Hauser, S.; Ritzenhofen, S.; Jungverdorben, J.; Schüle, R.; Schöls, L.; Peitz, M.; Brüstle, O. Multiparametric Rapid Screening of Neuronal Process Pathology for Drug Target Identification in HSP Patient-Specific Neurons. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Havlicek, S.; Kohl, Z.; Mishra, H.K.; Prots, I.; Eberhardt, E.; Denguir, N.; Wend, H.; Plötz, S.; Boyer, L.; Marchetto, M.C.N.; et al. Gene Dosage-Dependent Rescue of HSP Neurite Defects in SPG4 Patients’ Neurons. Hum. Mol. Genet. 2014, 23, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Denton, K.R.; Lei, L.; Grenier, J.; Rodionov, V.; Blackstone, C.; Li, X.J. Loss of Spastin Function Results in Disease-Specific Axonal Defects in Human Pluripotent Stem Cell-Based Models of Hereditary Spastic Paraplegia. Stem Cells 2014, 32, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsen, G.; Fan, Y.; Matigian, N.; Wali, G.; Bellette, B.; Sutharsan, R.; Raju, J.; Wood, S.A.; Veivers, D.; Sue, C.M.; et al. A Patient-Derived Stem Cell Model of Hereditary Spastic Paraplegia with SPAST Mutations. DMM Dis. Models Mech. 2013, 6, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Svenson, I.K.; Ashley-Koch, A.E.; Gaskell, P.C.; Riney, T.J.; Cumming, W.J.K.; Kingston, H.M.; Hogan, E.L.; Boustany, R.M.N.; Vance, J.M.; Nance, M.A.; et al. Identification and Expression Analysis of Spastin Gene Mutations in Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2001, 68, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Orso, G.; Martinuzzi, A.; Rossetto, M.G.; Sartori, E.; Feany, M.; Daga, A. Disease-Related Phenotypes in a Drosophila Model of Hereditary Spastic Paraplegia Are Ameliorated by Treatment with Vinblastine. J. Clin. Investig. 2005, 115, 3026–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarrade, A.; Fassier, C.; Courageot, S.; Charvin, D.; Vitte, J.; Peris, L.; Thorel, A.; Mouisel, E.; Fonknechten, N.; Roblot, N.; et al. A Mutation of Spastin Is Responsible for Swellings and Impairment of Transport in a Region of Axon Characterized by Changes in Microtubule Composition. Hum. Mol. Genet. 2006, 15, 3544–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasher, P.R.; de Vos, K.J.; Wharton, S.B.; Manser, C.; Bennett, E.J.; Bingley, M.; Wood, J.D.; Milner, R.; McDermott, C.J.; Miller, C.C.J.; et al. Direct Evidence for Axonal Transport Defects in a Novel Mouse Model of Mutant Spastin-Induced Hereditary Spastic Paraplegia (HSP) and Human HSP Patients. J. Neurochem. 2009, 110, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Solowska, J.M.; D’Rozario, M.; Jean, D.C.; Davidson, M.W.; Marenda, D.R.; Baas, P.W. Pathogenic Mutation of Spastin Has Gain-of-Function Effects on Microtubule Dynamics. J. Neurosci. 2014, 34, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Solowska, J.M.; Garbern, J.Y.; Baas, P.W. Evaluation of Loss of Function as an Explanation for SPG4-Based Hereditary Spastic Paraplegia. Hum. Mol. Genet. 2010, 19, 2767–2779. [Google Scholar] [CrossRef]
- Evans, K.; Keller, C.; Pavur, K.; Glasgow, K.; Conn, B.; Lauring, B. Interaction of Two Hereditary Spastic Paraplegia Gene Products, Spastin and Atlastin, Suggests a Common Pathway for Axonal Maintenance. Proc. Natl. Acad. Sci. USA 2006, 103, 10666–10671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, C.M.; Connel, J.W.; Edwards, T.L.; Bright, N.A.; Duley, S.; Thompson, A.; Luzio, J.P.; Reid, E. Spastin and Atlastin, Two Proteins Mutated in Autosomal-Dominant Hereditary Spastic Paraplegia, Are Binding Partners. Hum. Mol. Genet. 2006, 15, 307–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackstone, C.; O’Kane, C.J.; Reid, E. Hereditary Spastic Paraplegias: Membrane Traffic and the Motor Pathway. Nat. Rev. Neurosci. 2011, 12, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.U.; Boehm, J.; Sauter, S.M.; Rauber, A.; Byrne, P.C.; Neesen, J.; Engel, W. Spastin, the Most Commonly Mutated Protein in Hereditary Spastic Paraplegia Interacts with Reticulon 1 an Endoplasmic Reticulum Protein. Neurogenetics 2006, 7, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, C. Cellular Pathways of Hereditary Spastic Paraplegia. Annu. Rev. Neurosci. 2012, 35, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Arribat, Y.; Grepper, D.; Lagarrigue, S.; Qi, T.; Cohen, S.; Amati, F. Spastin Mutations Impair Coordination between Lipid Droplet Dispersion and Reticulum. PLoS Genet. 2020, 16, e1008665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajente, N.; Norante, R.; Redolfi, N.; Daga, A.; Pizzo, P.; Pendin, D. Microtubules Stabilization by Mutant Spastin Affects ER Morphology and Ca2+ Handling. Front. Physiol. 2019, 10, 1544. [Google Scholar] [CrossRef]
- Chang, C.L.; Weigel, A.V.; Ioannou, M.S.; Amalia Pasolli, H.; Shan Xu, C.; Peale, D.R.; Shtengel, G.; Freeman, M.; Hess, H.F.; Blackstone, C.; et al. Spastin Tethers Lipid Droplets to Peroxisomes and Directs Fatty Acid Trafficking through ESCRT-III. J. Cell Biol. 2019, 218, 2583–2599. [Google Scholar] [CrossRef]
- Allison, R.; Edgar, J.R.; Pearson, G.; Rizo, T.; Newton, T.; Günther, S.; Berner, F.; Hague, J.; Connell, J.W.; Winkler, J.; et al. Defects in ER-Endosome Contacts Impact Lysosome Function in Hereditary Spastic Paraplegia. J. Cell Biol. 2017, 216, 1337–1355. [Google Scholar] [CrossRef]
- Allison, R.; Edgar, J.R.; Reid, E. Spastin MIT Domain Disease-Associated Mutations Disrupt Lysosomal Function. Front. Neurosci. 2019, 13, 1179. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, C.; Orso, G.; Mancuso, G.; Herholz, M.; Gumeni, S.; Tadepalle, N.; Jüngst, C.; Tzschichholz, A.; Schauss, A.; Höning, S.; et al. Spastin Binds to Lipid Droplets and Affects Lipid Metabolism. PLoS Genet. 2015, 11, e1005149. [Google Scholar] [CrossRef] [Green Version]
- Gabrych, D.R.; Lau, V.Z.; Niwa, S.; Silverman, M.A. Going Too Far Is the Same as Falling Short†: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front. Cell. Neurosci. 2019, 13, 1–24. [Google Scholar] [CrossRef]
- Wang, B.; Stanford, K.R.; Kundu, M. ER-to-Golgi Traffcking and Its Implication in Neurological Diseases. Cells 2020, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Koppers, M.; Farías, G.G. Organelle Distribution in Neurons: Logistics behind Polarized Transport. Curr. Opin. Cell Biol. 2021, 71, 46–54. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Li, T.; Jiang, Z.; Zeng, L.; Hu, Z. The Role of the Golgi Apparatus in Disease (Review). Int. J. Mol. Med. 2021, 47, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.S.; Miller, E.A.; Goldberg, J.; Orci, L.; Schekman, R. Bi-Directional Protein Transport be-tween the ER and Golgi. Annu. Rev. Cell Dev. Biol. 2004, 20, 87–123. [Google Scholar] [CrossRef] [Green Version]
- Szul, T.; Sztul, E. COPII and COPI Traffic at the ER-Golgi Interface. Physiology 2011, 26, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Parashar, S.; Zahoor, M.; Needham, P.G.; Mari, M.; Zhu, M.; Chen, S.; Ho, H.C.; Reggiori, F.; Farhan, H.; et al. A COPII Subunit Acts with an Autophagy Receptor to Target Endoplasmic Reticulum for Degradation. Science 2019, 364, 53–60. [Google Scholar] [CrossRef]
- Johnson, A.; Bhattacharya, N.; Hanna, M.; Pennington, J.G.; Schuh, A.L.; Wang, L.; Otegui, M.S.; Stagg, S.M.; Audhya, A. TFG Clusters COPII-coated Transport Carriers and Promotes Early Secretory Pathway Organization. EMBO J. 2015, 34, 811–827. [Google Scholar] [CrossRef] [Green Version]
- Witte, K.; Schuh, A.L.; Hegermann, J.; Sarkeshik, A.; Mayers, J.R.; Schwarze, K.; Yates, J.R.; Eimer, S.; Audhya, A. Mechanisms by Which TFG Functions in Protein Secretion and Oncogenesis. Nat. Cell Biol. 2011, 13, 550–558. [Google Scholar] [CrossRef]
- Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network Organization of the Human Autophagy System. Nature 2010, 466, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadel, D.; Millarte, V.; Tillmann, K.D.; Huber, J.; Tamin-Yecheskel, B.C.; Akutsu, M.; Demishtein, A.; Ben-Zeev, B.; Anikster, Y.; Perez, F.; et al. TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. Mol. Cell 2015, 60, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnon, C.; Wendeler, M.W.; Paccaud, J.P.; Hauri, H.P. Selective Export of Human GPI-Anchored Proteins from the Endoplasmic Reticulum. J. Cell Sci. 2010, 123, 1705–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Maeda, Y.; Tashima, Y.; Kinoshita, T. Inositol Deacylation of Glycosylphosphatidylinositol-Anchored Proteins Is Mediated by Mammalian PGAP1 and Yeast Bst1p. J. Biol. Chem. 2004, 279, 14256–14263. [Google Scholar] [CrossRef] [Green Version]
- Namekawa, M.; Muriel, M.P.; Janer, A.; Latouche, M.; Dauphin, A.; Debeir, T.; Martin, E.; Duyckaerts, C.; Prigent, A.; Depienne, C.; et al. Mutations in the SPG3A Gene Encoding the GTPase Atlastin Interfere with Vesicle Trafficking in the ER/Golgi Interface and Golgi Morphogenesis. Mol. Cell. Neurosci. 2007, 35, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, L.; Kurth, I.; Kaether, C. A Disease Causing ATLASTIN 3 Mutation Affects Multiple Endoplasmic Reticulum-Related Pathways. Cell. Mol. Life Sci. 2019, 76, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Ma, T.; Yang, F.; Yan, B.; Tang, X.; Yin, H.; Wu, Q.; Huang, Y.; Yao, Z.P.; Wang, J.; et al. Atlastin-Mediated Membrane Tethering Is Critical for Cargo Mobility and Exit from the Endoplasmic Reticulum. Proc. Natl. Acad. Sci. USA 2019, 116, 14029–14038. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Stefano, G.; Brandizzi, F.; Zheng, H. Arabidopsis RHD3 Mediates the Generation of the Tubular ER Network and Is Required for Golgi Distribution and Motility in Plant Cells. J. Cell Sci. 2011, 124, 2241–2252. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Linstedt, A.D. Golgi Positioning. Cold Spring Harb. Perspect. Biol. 2011, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.L.; Ohlson, M.B.; Pfeffer, S.R. The Rab6-Regulated KIF1C Kinesin Motor Domain Contributes to Golgi Organization. eLife 2015, 4, e06029. [Google Scholar] [CrossRef]
- Dorner, C.; Ciossek, T.; Müller, S.; Møller, N.P.H.; Ullrich, A.; Lammers, R. Characterization of KIF1C, a New Kinesin-like Protein Involved in Vesicle Transport from the Golgi Apparatus to the Endoplasmic Reticulum. J. Biol. Chem. 1998, 273, 20267–20275. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.C.; Joggerst, B.; Laketa, V.; Verissimo, F.; Cetin, C.; Erfle, H.; Bexiga, M.G.; Singan, V.R.; Hériché, J.K.; Neumann, B.; et al. Genome-Wide RNAi Screening Identifies Human Proteins with a Regulatory Function in the Early Secretory Pathway. Nat. Cell Biol. 2012, 14, 764–774. [Google Scholar] [CrossRef]
- Reid, E.; Kloos, M.; Ashley-Koch, A.; Hughes, L.; Bevan, S.; Svenson, I.K.; Graham, F.L.; Gaskell, P.C.; Dearlove, A.; Pericak-Vance, M.A.; et al. A Kinesin Heavy Chain (KIF5A) Mutation in Hereditary Spastic Paraplegia (SPG10). Am. J. Hum. Genet. 2002, 71, 1189–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Giudice, M.; Neri, M.; Falco, M.; Sturnio, M.; Calzolari, E.; Di Benedetto, D.; Fichera, M. A Missense Mutation in the Coiled-Coil Domain of the KIF5A Gene and Late-Onset Hereditary Spastic Paraplegia. Arch. Neurol. 2006, 63, 284–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Warrenburg, B.P.; Schouten, M.I.; De Bot, S.T.; Vermeer, S.; Meijer, R.; Pennings, M.; Gilissen, C.; Willemsen, M.A.; Scheffer, H.; Kamsteeg, E.J. Clinical Exome Sequencing for Cerebellar Ataxia and Spastic Paraplegia Uncovers Novel Gene-Disease Associations and Unanticipated Rare Disorders. Eur. J. Hum. Genet. 2016, 24, 1460–1466. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, N.; Tanaka, Y. Kinesin Superfamily Proteins (KIFs): Various Functions and Their Relevance for Important Phenomena in Life and Diseases. Exp. Cell Res. 2015, 334, 16–25. [Google Scholar] [CrossRef]
- Ebbing, B.; Mann, K.; Starosta, A.; Jaud, J.; Schöls, L.; Schüle, R.; Woehlke, G. Effect of Spastic Paraplegia Mutations in KIF5A Kinesin on Transport Activity. Hum. Mol. Genet. 2008, 17, 1245–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Yoshida, A.; Miyazaki, N.; Iwasaki, K.; Sakisaka, T. Arl6IP1 Has the Ability to Shape the Mammalian ER Membrane in a Reticulon-like Fashion. Biochem. J. 2014, 458, 69–79. [Google Scholar] [CrossRef]
- Fowler, P.C.; O’Sullivan, N.C. ER-Shaping Proteins Are Required for ER and Mitochondrial Network Organization in Motor Neurons. Hum. Mol. Genet. 2016, 25, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Gerondopoulos, A.; Bastos, R.N.; Yoshimura, S.I.; Anderson, R.; Carpanini, S.; Aligianis, I.; Handley, M.T.; Barr, F.A. Rab18 and a Rab18 GEF Complex Are Required for Normal ER Structure. J. Cell Biol. 2014, 205, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Yu, Y.; Wei, L.; Zhang, Y. Inhibition of ER Stress Improves Progressive Motor Deficits in a REEP1-Null Mouse Model of Hereditary Spastic Paraplegia. Biol. Open 2020, 9, bio054296. [Google Scholar] [CrossRef]
- Appocher, C.; Klima, R.; Feiguin, F. Functional Screening in Drosophila Reveals the Conserved Role of REEP1 in Promoting Stress Resistance and Preventing the Formation of Tau Aggregates. Hum. Mol. Genet. 2014, 23, 6762–6772. [Google Scholar] [CrossRef] [PubMed]
- Pehar, M.; Jonas, M.C.; Hare, T.M.; Puglielli, L. SLC33A1/AT-1 Protein Regulates the Induction of Autophagy Downstream of IRE1/XBP1 Pathway. J. Biol. Chem. 2012, 287, 29921–29930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.R.; Lingeman, E.; Luong, T.; Ahmed, S.; Muhar, M.; Nguyen, T.; Olzmann, J.A.; Corn, J.E. A Genome-Wide ER-Phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell 2020, 180, 1160–1177. [Google Scholar] [CrossRef] [PubMed]
Main Pathway | SPG | Gene | Protein | Inheritance | Frequency | Pure/Complex | Molecular Function Relevant to ER | Reference |
---|---|---|---|---|---|---|---|---|
ER membrane shaping | SPG3A | ATL1 | Atlastin-1 | AD | Second most frequent AD form (≈10%) | P (C) | ER membrane fusion | [9] |
SPG12 | RTN2 | Reticulon-2 | AD | Rare | P | ER membrane tubulation and fission | [10] | |
SPG31 | REEP1 | Receptor expression-enhancing protein 1 | AD | 3–9% of all AD HSP | P (C) | ER tubular network organization | [11] | |
SPG33 | ZFYVE27 | Protrudin | AD | Rare (1 family) | P | ER network distribution | [12] | |
SPG61 | ARL6IP1 | ADP-ribosylation factor-like protein 6-interacting protein 1 | AR | Rare (1 family) | C | ER tubular network organization | [13] | |
SPG69 | RAB3GAP2 | Rab3 GTPase-activating protein non-catalytic subunit | AR | Rare (1 family) | C | ER network organization | [13] | |
SPG72 | REEP2 | Receptor expression-enhancing protein 2 | AD/AR | Rare (2 families) | P | ER tubular network organization | [14] | |
MT-dependent ER positioning | SPG4 | SPAST | Spastin | AD | Most frequent AD form (≈40%) | P (C) | MT severing | [15] |
ER-Golgi trafficking | SPG10 | KIF5A | Kinesin heavy chain isoform 5A | AD | 1–2% of AD HSP | P (C) | MT-dependent transport | [16] |
SPG30 | KIF1A | Kinesin-like protein KIF1A | AR | Rare | P or C | MT-dependent transport | [17] | |
SPG49 | TECPR2 | Tectonin beta-propeller repeat-containing protein 2 | AR | Rare | C | Anterograde transport | [18] | |
SPG57 | TFG | Protein TFG | AR | Rare (1 family) | C | Anterograde transport | [19] | |
SPG58 | KIF1C | Kinesin-like protein KIF1C | AR | Rare | P or C | MT-dependent transport | [20] | |
SPG67 | PGAP1 | GPI inositol-deacylase | AR | Rare (1 family) | C | Anterograde transport | [13] | |
ER stress | SPG18 | ERLIN2 | Erlin-2 | AR | Rare | C | ERAD | [21] |
SPG42 | SLC33A1 | Acetyl-coenzyme A transporter 1 | AD | Rare (1 family) | P | ER membrane transport | [22] | |
SPG62 | ERLIN1 | Erlin-1 | AR | Rare | P | ERAD | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonda, S.; Pendin, D.; Daga, A. ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021, 10, 2870. https://doi.org/10.3390/cells10112870
Sonda S, Pendin D, Daga A. ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells. 2021; 10(11):2870. https://doi.org/10.3390/cells10112870
Chicago/Turabian StyleSonda, Sonia, Diana Pendin, and Andrea Daga. 2021. "ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia" Cells 10, no. 11: 2870. https://doi.org/10.3390/cells10112870
APA StyleSonda, S., Pendin, D., & Daga, A. (2021). ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells, 10(11), 2870. https://doi.org/10.3390/cells10112870