Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
Abstract
:1. Introduction
1.1. Adenine-Based Purines in Brief
1.2. Purines and EVs Derived from Normal or Pathological Non-Cancer Cells/Tissues
1.3. Focus on Adenine Purines and EVs in Cancer
2. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rashed, M.H.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolis, L.; Sadovsky, Y. The biology of extracellular vesicles: The known unknowns. PLoS Biol. 2019, 17, e3000363. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.A.; Chen, J.W.; Tannous, B.A.; Breakefield, X.O. Dynamic Biodistribution of Extracellular Vesicles in Vivo Using a Multimodal Imaging Reporter. ACS Nano 2014, 8, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirisinu, M.; Pham, T.C.; Zhang, D.X.; Hong, T.N.; Nguyen, L.T.; Le, M.T. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin. Cancer Biol. 2020, 22, 1044. [Google Scholar] [CrossRef] [PubMed]
- Graner, M.W. Extracellular vesicles in cancer immune responses: Roles of purinergic receptors. Semin. Immunopathol. 2018, 40, 465–475. [Google Scholar] [CrossRef]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, M.; Thuaire, A.; Nonglaton, G.; Agache, V.; Roupioz, Y.; Raillon, C. Biosensing extracellular vesicles: Contribution of biomolecules in affinity-based methods for detection and isolation. Analyst 2020, 145, 1997–2013. [Google Scholar] [CrossRef]
- Welsh, J.A.; Van Der Pol, E.; Bettin, B.A.; Carter, D.R.F.; Hendrix, A.; Lenassi, M.; Langlois, M.; Llorente, A.; Van De Nes, A.S.; Nieuwland, R.; et al. Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. J. Extracell. Vesicles 2020, 9, 1816641. [Google Scholar] [CrossRef]
- Bernardi, S.; Balbi, C. Extracellular Vesicles: From Biomarkers to Therapeutic Tools. Biology 2020, 9, 258. [Google Scholar] [CrossRef]
- Khalife, J.; Sanchez, J.F.; Pichiorri, F. Extracellular Vesicles in Hematological Malignancies: From Biomarkers to Therapeutic Tools. Diagnostics 2020, 10, 1065. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, N.; Akbariazar, E.; Feqhhi, M.; Rahbarghazi, R.; Rezaie, J. Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J. Cell. Physiol. 2020, 235, 6345–6356. [Google Scholar] [CrossRef] [PubMed]
- Czernek, L.; Düchler, M. Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression. Arch. Immunol. Ther. Exp. 2017, 65, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Dang, W.; Zhang, S.; Yue, W.; Yang, L.; Zhai, X.; Yan, Q.; Lu, J. The role of exosomal noncoding RNAs in cancer. Mol. Cancer 2019, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, F.; Pan, P.; Yan, J.; Sun, J.; Zong, Y.; Wu, Z.; Lu, X.; Chen, N.; Mi, R.; Ma, Y.; et al. Role of tumor-derived extracellular vesicles in cancer progression and their clinical applications (Review). Int. J. Oncol. 2019, 54, 1525–1533. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2017, 36, 293–303. [Google Scholar] [CrossRef]
- Verkhratsky, A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to geoff burnstock inquisitive mind. Biochem. Pharmacol. 2020, 1, 114261. [Google Scholar] [CrossRef]
- Burnstock, G. Purine and purinergic receptors. Brain Neurosci. Adv. 2017, 2, 2398212818817494. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.L.; Sarti, A.C.; Di Virgilio, F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol. Lett. 2019, 205, 16–24. [Google Scholar] [CrossRef]
- Tang, Z.; Ye, W.; Chen, H.; Kuang, X.; Guo, J.; Xiang, M.; Peng, C.; Chen, X.; Liu, H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal. 2019, 15, 423–438. [Google Scholar] [CrossRef]
- Boison, D.; Yegutkin, G.G. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell 2019, 36, 582–596. [Google Scholar] [CrossRef] [PubMed]
- Campos-Contreras, A.D.R.; Díaz-Muñoz, M.; Vázquez-Cuevas, F.G. Purinergic Signaling in the Hallmarks of Cancer. Cells 2020, 9, 1612. [Google Scholar] [CrossRef] [PubMed]
- Kanabe, S.; Hsu, H.H.; Cecil, R.N.; Anderson, H.C. Electron microscopic localization of adenosine triphosphate (ATP)-hydrolyzing activity in isolated matrix vesicles and reconstituted vesicles from calf cartilage. J. Histochem. Cytochem. 1983, 31, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.C.; Matsuzawa, T.; Sajdera, S.W.; Ali, S.Y. Membranous particles in calcifying cartilage matrix. Trans. N. Y. Acad. Sci. 1970, 32, 619–630. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, A.; Wilson, H.L.; Kiss-Toth, E.; Dower, S.K.; North, R.A.; Surprenant, A. Rapid Secretion of Interleukin-1β by Microvesicle Shedding. Immunity 2001, 15, 825–835. [Google Scholar] [CrossRef]
- Bianco, F.; Pravettoni, E.; Colombo, A.; Schenk, U.; Möller, T.; Matteoli, M.; Verderio, C. Astrocyte-Derived ATP Induces Vesicle Shedding and IL-1β Release from Microglia. J. Immunol. 2005, 174, 7268–7277. [Google Scholar] [CrossRef] [Green Version]
- Bowser, D.N.; Khakh, B.S. Vesicular ATP Is the Predominant Cause of Intercellular Calcium Waves in Astrocytes. J. Gen. Physiol. 2007, 129, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Ceruti, S.; Colombo, L.; Magni, G.; Viganò, F.; Boccazzi, M.; Deli, M.A.; Sperlágh, B.; Abbracchio, M.P.; Kittel, Á. Oxygen–glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood–brain barrier. Neurochem. Int. 2011, 59, 259–271. [Google Scholar] [CrossRef]
- Falchi, A.M.; Sogos, V.; Saba, F.; Piras, M.; Congiu, T.; Piludu, M. Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem. Cell Biol. 2012, 139, 221–231. [Google Scholar] [CrossRef]
- Vardjan, N.; Parpura, V.; Verkhratsky, A.; Zorec, R. Gliocrine System: Astroglia as Secretory Cells of the CNS. Retin. Degener. Dis. 2019, 1175, 93–115. [Google Scholar] [CrossRef]
- González, D.A.; Van Haaster, M.M.B.; Villarruel, E.Q.; Hattab, C.; Ostuni, M.A.; Orman, B. Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase activities. Mol. Cell. Biochem. 2019, 463, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Binderman, I.; Gadban, N.; Yaffe, A. Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch. Oral Biol. 2017, 81, 131–135. [Google Scholar] [CrossRef] [PubMed]
- González, D.A.; Van Haaster, M.M.B.; Villarruel, E.Q.; Brandt, M.; Benítez, M.B.; Stranieri, G.M.; Orman, B. Histamine stimulates secretion of extracellular vesicles with nucleotidase activity in rat submandibular gland. Arch. Oral Biol. 2018, 85, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Chew, J.R.J.; Chuah, S.J.; Teo, K.Y.W.; Zhang, S.; Lai, R.C.; Fu, J.H.; Lim, L.P.; Lim, S.K.; Toh, W. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019, 89, 252–264. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Z.; Zhang, Z.; Zhao, Y.; Jiang, X.; Yu, H.; Zhang, Y.; Zhao, R.; He, B. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology 2019, 139, 113–120. [Google Scholar] [CrossRef]
- Ronquist, K.G. Extracellular vesicles and energy metabolism. Clin. Chim. Acta 2019, 488, 116–121. [Google Scholar] [CrossRef]
- Saez, F.; Sullivan, R. Prostasomes, post-testicular sperm maturation and fertility. Front. Biosci. 2016, 21, 1464–1473. [Google Scholar] [CrossRef]
- Gasecka, A.; Nieuwland, R.; Van Der Pol, E.; Hajji, N.; Ćwiek, A.; Pluta, K.; Konwerski, M.; Filipiak, K.J. P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets. Cardiol. J. 2020, 26, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Sayner, S.L.; Choi, C.-S.; Maulucci, M.E.; Ramila, K.C.; Zhou, C.; Scruggs, A.K.; Yarbrough, T.; Blair, L.A.H.; King, J.A.; Seifert, R.; et al. Extracellular vesicles: Another compartment for the second messenger, cyclic adenosine monophosphate. Am. J. Physiol. Cell. Mol. Physiol. 2019, 316, L691–L700. [Google Scholar] [CrossRef]
- Sayner, S.L. Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am. J. Physiol. Cell. Mol. Physiol. 2011, 300, L667–L678. [Google Scholar] [CrossRef] [Green Version]
- Kriebel, P.W.; Majumdar, R.; Jenkins, L.M.; Senoo, H.; Wang, W.; Ammu, S.; Chen, S.; Narayan, K.; Iijima, M.; Parent, C.A. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J. Cell Biol. 2018, 217, 2891–2910. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; O’Dea, K.P.; Tan, Y.Y.; Cho, K.; Abe, E.; Romano, R.; Cui, J.; Ma, D.; Sarathchandra, P.; Wilson, M.R.; et al. ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles. FASEB J. 2019, 33, 6442–6455. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Cui, X.; Sun, J.; Welsh, J.; Natanson, C.; Eichacker, P.Q. Antitumor Necrosis Factor Therapy Is Associated With Improved Survival in Clinical Sepsis Trials. Crit. Care Med. 2013, 41, 2419–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, E.; Rissiek, A.; Winzer, R.; Puig, B.; Rissiek, B.; Haag, F.; Mittrücker, H.-W.; Magnus, T.; Tolosa, E. Generation and Function of Non-cell-bound CD73 in Inflammation. Front. Immunol. 2019, 10, 1729. [Google Scholar] [CrossRef] [Green Version]
- Smyth, L.A.; Ratnasothy, K.; Tsang, J.Y.S.; Boardman, D.; Warley, A.; Lechler, R.; Lombardi, G. CD73 expression on extracellular vesicles derived from CD4+CD25+Foxp3+T cells contributes to their regulatory function. Eur. J. Immunol. 2013, 43, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Kerkelä, E.; Laitinen, A.; Räbinä, J.; Valkonen, S.; Takatalo, M.; Larjo, A.; Veijola, J.; Lampinen, M.; Siljander, P.; Lehenkari, P.; et al. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells. STEM CELLS 2016, 34, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuler, P.J.; Saze, Z.; Hong, C.-S.; Muller, L.; Gillespie, D.G.; Cheng, D.; Harasymczuk, M.; Mandapathil, M.; Lang, S.; Jackson, E.K.; et al. Human CD4+CD39+regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+exosomes or CD73+cells. Clin. Exp. Immunol. 2014, 177, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Magni, G.; Ceruti, S. Adenosine Signaling in Autoimmune Disorders. Pharmaceuticals 2020, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Fornai, M.; Blandizzi, C.; Pacher, P.; Haskó, G. Adenosine signaling and the immune system: When a lot could be too much. Immunol. Lett. 2019, 205, 9–15. [Google Scholar] [CrossRef]
- Clayton, A.; Al-Taei, S.; Webber, J.; Mason, M.D.; Tabi, Z. Cancer Exosomes Express CD39 and CD73, Which Suppress T Cells through Adenosine Production. J. Immunol. 2011, 187, 676–683. [Google Scholar] [CrossRef]
- Salimu, J.; Webber, J.; Gurney, M.; Al-Taei, S.; Clayton, A.; Tabi, Z. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J. Extracell. Vesicles 2017, 6, 1368823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azambuja, J.H.; Ludwig, N.; Braganhol, E.; Whiteside, T.L. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int. J. Mol. Sci. 2019, 20, 5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, E.; Horenstein, A.; Canzonetta, C.; Costa, F.; Morandi, F. Canonical and non-canonical adenosinergic pathways. Immunol. Lett. 2019, 205, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Morandi, F.; Horenstein, A.L.; Costa, F.; Giuliani, N.; Pistoia, V.; Malavasi, F. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Front. Immunol. 2018, 9, 2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quarona, V.; Ferri, V.; Chillemi, A.; Bolzoni, M.; Mancini, C.; Zaccarello, G.; Roato, I.; Morandi, F.; Marimpietri, D.; Faccani, G.; et al. Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Ann. N. Y. Acad. Sci. 2014, 1335, 10–22. [Google Scholar] [CrossRef]
- Scholl, J.N.; Dias, A.D.F.; Pizzato, P.R.; Lopes, D.V.; Moritz, C.E.J.; Jandrey, E.H.F.; Souto, G.D.; Colombo, M.; Rohden, F.; Sévigny, J.; et al. Characterization and antiproliferative activity of glioma-derived extracellular vesicles. Nanomed. 2020, 15, 1001–1018. [Google Scholar] [CrossRef]
- Ludwig, N.; Gillespie, D.G.; Reichert, T.E.; Jackson, E.K.; Whiteside, T.L. Purine Metabolites in Tumor-Derived Exosomes May Facilitate Immune Escape of Head and Neck Squamous Cell Carcinoma. Cancers 2020, 12, 1602. [Google Scholar] [CrossRef]
- Tadokoro, H.; Hirayama, A.; Kudo, R.; Hasebe, M.; Yoshioka, Y.; Matsuzaki, J.; Yamamoto, Y.; Sugimoto, M.; Soga, T.; Ochiya, T. Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS ONE 2020, 15, e0231430. [Google Scholar] [CrossRef]
- Hailemichael, Y.; Overwijk, W.W. Cancer vaccines: Trafficking of tumor-specific T cells to tumor after therapeutic vaccination. Int. J. Biochem. Cell Biol. 2014, 53, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Li, R.; Yang, Y.; Shi, C.; Shen, Y.; Lu, C.; Chen, Y.; Zhou, W.; Lin, A.; Yu, L.; et al. Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity 2019, 50, 738–750.e7. [Google Scholar] [CrossRef] [Green Version]
- Gorzalczany, Y.; Merimsky, O.; Sagi-Eisenberg, R. Mast Cells Are Directly Activated by Cancer Cell–Derived Extracellular Vesicles by a CD73- and Adenosine-Dependent Mechanism. Transl. Oncol. 2019, 12, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Angioni, R.; Liboni, C.; Herkenne, S.; Sánchez-Rodríguez, R.; Borile, G.; Marcuzzi, E.; Calì, B.; Muraca, M.; Viola, A. CD73 + extracellular vesicles inhibit angiogenesis through adenosine A 2B receptor signalling. J. Extracell. Vesicles 2020, 9, 1757900. [Google Scholar] [CrossRef] [PubMed]
- Bassani, B.; Baci, D.; Gallazzi, M.; Poggi, A.; Bruno, A.; Mortara, L. Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers 2019, 11, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neo, S.Y.; Yang, Y.; Record, J.; Ma, R.; Chen, X.; Chen, Z.; Tobin, N.P.; Blake, E.; Seitz, C.; Thomas, R.; et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Investig. 2020, 130, 1185–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonioli, L.; Yegutkin, G.G.; Pacher, P.; Blandizzi, C.; Haskó, G. Anti-CD73 in Cancer Immunotherapy: Awakening New Opportunities. Trends Cancer 2016, 2, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koziak, K.; Kaczmarek, E.; Kittel, A.; Sévigny, J.; Blusztajn, J.K.; Ii, J.S.A.E.; Imai, M.; Guckelberger, O.; Goepfert, C.; Qawi, I.; et al. Palmitoylation Targets CD39/Endothelial ATP Diphosphohydrolase to Caveolae. J. Biol. Chem. 2000, 275, 2057–2062. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, S.; Liu, G.; Kong, F.; Chen, S.; Yan, H. Multiple steps determine CD73 shedding from RPE: Lipid raft localization, ARA1 interaction, and MMP-9 up-regulation. Purinergic Signal. 2018, 14, 443–457. [Google Scholar] [CrossRef]
- Barbato, L.; Bocchetti, M.; Di Biase, A.; Regad, T. Cancer Stem Cells and Targeting Strategies. Cells 2019, 8, 926. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C.K.; Chaudhry, G.R. Mesenchymal stem cells: Cell therapy and regeneration potential. J. Tissue Eng. Regen. Med. 2019, 13, 1738–1755. [Google Scholar] [CrossRef]
- Lupia, M.; Angiolini, F.; Bertalot, G.; Freddi, S.; Sachsenmeier, K.F.; Chisci, E.; Kutryb-Zajac, B.; Confalonieri, S.; Smolenski, R.T.; Giovannoni, R.; et al. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells. Stem Cell Rep. 2018, 10, 1412–1425. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.-L.; Hu, B.; Tang, W.-G.; Xie, S.-H.; Ren, N.; Guo, L.; Lu, R.-Q. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J. Hematol. Oncol. 2020, 13, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numakura, S.; Uozaki, H.; Kikuchi, Y.; Watabe, S.; Togashi, A.; Watanabe, M. Mesenchymal Stem Cell Marker Expression in Gastric Cancer Stroma. Anticancer. Res. 2019, 39, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio-Poma, V.; Sarti, A.C.; Di Virgilio, F. Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020, 9, 2496. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618. [Google Scholar] [CrossRef]
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Murata, M. Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. Int. J. Mol. Sci. 2017, 18, 1808. [Google Scholar] [CrossRef] [Green Version]
- Linden, J.; Koch-Nolte, F.; Dahl, G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu. Rev. Immunol. 2019, 37, 325–347. [Google Scholar] [CrossRef]
- Vijayan, D.; Young, A.; Teng, M.W.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef]
- D’Ambrosi, N.; Volonte, C. Metabotropic purinergic receptors in lipid membrane microdomains. Curr. Med. Chem. 2013, 20, 56–63. [Google Scholar] [CrossRef]
- Garcia-Marcos, M.; Dehaye, J.-P.; Marino, A. Membrane compartments and purinergic signalling: The role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J. 2008, 276, 330–340. [Google Scholar] [CrossRef]
EV Type | Source | Relationship with the Purine System | Function | Techniques Used for Detection of Purines and Related Enzymes | Ref. |
---|---|---|---|---|---|
EVs | Membrane of chondrocytes, osteoblasts and odontoblasts | Presence of ATP-hydrolyzing activity | Release of orthophosphate in the matrix initiation of hard tissue calcification | Electron microscopic cytochemical methods | [23] |
MVs | A monocyte/macrophage-like cell line, THP-1 cells | ATP stimulation of P2X7 receptors present on THP-1 cells | IL1β release | None | [25] |
EVs | Microglia | ATP exogenously added or released from co-cultured astrocytes | IL1β release | None | [26] |
MVs | Endothelial cells, astrocytes and pericytes, forming the blood–brain barrier (BBB) | Presence of NTPDase activity after oxygen–glucose deprivation | Modulation of BBB to brain ischemic events | Enzyme detection by RT-PCR analysis. Enzyme activity assayed by cytochemistry | [28] |
Large vesicles | Astrocytes | Mitochondria, lipid droplets and ATP | Sending signals to neighboring neural cells | Vesicles labeling by quinacrine to stain ATP linked to TMRM-loaded mitochondria | [29] |
EVs | Rat submandibular gland or saliva (likely also in humans) | Contain enzymes (NTPDAses and E-5′NT) deputed to hydrolyze ATP up to ADO | Possible contribution to reduce eATP in periodontal disease | Enzyme activity assayed by biochemical methods. Enzyme localization by Western blot and immuno-TEM analyses | [31] |
Exosomes | MSCs | CD73 activity | Formation of ADO increasing migration and proliferation of periodontal ligament-derived cells | Indirect evidence for ADO formation/activity based on the use of P1 receptor antagonists | [34] |
Exosomes | Seminal plasma | Glycolytic formation of ATP | Promotion of sperm motility | Enzyme activity evaluation by biochemical assay | [35] |
Prostasomes | Prostate epithelial cells | Glycolytic formation of ATP | Sperm functions | Enzyme activity evaluation by biochemical assay | [37] |
EVs | Platelets | Expression of P2Y1R and P2Y12R | Triggering coagulation when tissue factor was also present | None. Indirect evidence of the wo receptors by the use of related antagonists. | [38] |
EVs | Endothelial cells from different vascular | Ability to form cAMP protecting the pulmonary endothelial barrier | Maintenance of monolayer resistance when cells were cultured in vitro | cAMP formation assayed by enzyme immunoassay and quantified by HPLC-MS | [39,40] |
MVs | Amoeba Dictyostelium discoideum (a model to study inflammation) | Ability to form and release cAMP | Promotion of chemotaxis | cAMP formation measured by time-resolved FRET | [41] |
MVs | Macrophages | Stimulation by ATP causes release of TNF precursor | TNF-induced inflammatory condition | None | [42] |
Exosomes | Different sources (Treg lymphocytes, MSCs, human plasma) | Membrane-bound CD73 and soluble enzyme isoform, AMPase | Ability to form ADO from extracellular AMP to implement ADO activity as regulator of immune response | Enzyme expression by immuno-fluorescence staining; ADO production analyzed by HPLC | [44,45,46,47] |
EV Type | Source | Relationship with Purine System | Function | Techniques Used for Detection of Purines and Related Enzymes | Ref. |
---|---|---|---|---|---|
Exosomes | Different cancer cells | Expression of CD39 and CD73 | Formation of ADO, in turn contributing to negative regulation of T lymphocyte function | CD39 identified by Western blot analysis; its activity measured by a luciferase-based ATP assay. CD73 identified by a fluorescent antibody; its activity measured by a colorimetric assay to evaluate inorganic phosphate production by exogenously added 5′AMP. | [50] |
Exosomes | Multiple myeloma cells | Expression of purine degrading enzymes of the canonical (CD39/CD73) and noncanonical pathways (CD38/CD203a) to form ADO | ADO-induced up-regulation of the same enzymes also in recipient cells. ADO levels correlated with disease severity | Enzymes identified by fluorescent antibodies and flow cytometric analysis. Purine compounds identified by HPLC analysis. | [53,54,55] |
EVs | Rat C6 glioma cells | Expression of CD39/CD73 with ADO formation | In animal models of tumor in vivo EV administration reduced tumor size | Enzymes identified by fluorescent antibodies and flow cytometric analysis. Purine compounds identified by reversed phase ion-pair chromatography | [56] |
Exosomes | UMSCC47, a head and neck squamous cell carcinoma (HNSCC) cell line, or plasma of patients with HNSCC | Increased adenine purine levels in exosomes | Possible ADO immuno-suppressive effects associated to cancer progression | Purine enzymes analyzed by gene expression levels using the Cancer Genome Atlas (TCGA) database. Purine levels quantified by UPLC. | [57] |
EVs | Cell lines of breast cancer | EVs disrupted by perforin liberated from IFN-γ-activated CD8+ cytotoxic lymphocytes (CTLs) release ADO | ADO hinders perforin secretion by CTLs, confirming to be an immunosuppressive agent | Purine compounds identified by LC-MS. | [58] |
EVs | Rodent B lymphocytes and serum from patients with different cancers | High levels of CD39 and CD73 | ATP hydrolysis to ADO that inhibits CTL anti-tumor activity | CD39 and CD73 expression in EV was detected by flow cytometry. ATP degradation and adenosine formation evaluated by a commercial kit | [60] |
EVs | Pancreatic and lung cancer cell lines | Stimulation of macrophages by CD73-mediated ADO formation | ADO via A3 receptor contributed to upregulation of different factors (IL8 and IL6, VEGF and amphiregulin, EGFR ligand) playing an important role in cancer progression | Indirect evidence for ADO formation/activity by the use of selective A3R antagonists | [61] |
EVs | Murine bone marrow MSCs | High levels of CD39 and CD73 that induced ADO production | Inhibition of endothelial cell migration in vitro and angiogenesis in a murine model of cancer in vivo. | Enzymes identified by Western blot analysis; ADO production quantified by a commercial kit | [62] |
Vesicles | Natural killer lymphocytes | CD73 release | Immune-suppressive function favoring tumor escape | CD73 detected by a specific ELISA method commercially available. Its activity evaluated through relief of AMP-mediated inhibition of ATP detection in a luciferase-based system. | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Iorio, P.; Ciccarelli, R. Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells 2021, 10, 188. https://doi.org/10.3390/cells10010188
Di Iorio P, Ciccarelli R. Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells. 2021; 10(1):188. https://doi.org/10.3390/cells10010188
Chicago/Turabian StyleDi Iorio, Patrizia, and Renata Ciccarelli. 2021. "Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities" Cells 10, no. 1: 188. https://doi.org/10.3390/cells10010188
APA StyleDi Iorio, P., & Ciccarelli, R. (2021). Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells, 10(1), 188. https://doi.org/10.3390/cells10010188