Habyarimana, E.; Piccard, I.; Catellani, M.; De Franceschi, P.; Dall’Agata, M.
Towards Predictive Modeling of Sorghum Biomass Yields Using Fraction of Absorbed Photosynthetically Active Radiation Derived from Sentinel-2 Satellite Imagery and Supervised Machine Learning Techniques. Agronomy 2019, 9, 203.
https://doi.org/10.3390/agronomy9040203
AMA Style
Habyarimana E, Piccard I, Catellani M, De Franceschi P, Dall’Agata M.
Towards Predictive Modeling of Sorghum Biomass Yields Using Fraction of Absorbed Photosynthetically Active Radiation Derived from Sentinel-2 Satellite Imagery and Supervised Machine Learning Techniques. Agronomy. 2019; 9(4):203.
https://doi.org/10.3390/agronomy9040203
Chicago/Turabian Style
Habyarimana, Ephrem, Isabelle Piccard, Marcello Catellani, Paolo De Franceschi, and Michela Dall’Agata.
2019. "Towards Predictive Modeling of Sorghum Biomass Yields Using Fraction of Absorbed Photosynthetically Active Radiation Derived from Sentinel-2 Satellite Imagery and Supervised Machine Learning Techniques" Agronomy 9, no. 4: 203.
https://doi.org/10.3390/agronomy9040203
APA Style
Habyarimana, E., Piccard, I., Catellani, M., De Franceschi, P., & Dall’Agata, M.
(2019). Towards Predictive Modeling of Sorghum Biomass Yields Using Fraction of Absorbed Photosynthetically Active Radiation Derived from Sentinel-2 Satellite Imagery and Supervised Machine Learning Techniques. Agronomy, 9(4), 203.
https://doi.org/10.3390/agronomy9040203