Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sources of Meteorological Data
2.3. Meteorological and Agricultural Drought Indices
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Statistics Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- CEFS. European Association of Sugar Manufacturers. Available online: https://cefs.org/resources/statistics/ (accessed on 30 August 2019).
- Hesadi, P.; Taleghani, D.F.; Shiranirad, A.; Daneshian, J.; Jaliliyan, A. Selection for Drought Tolerance in Sugar Beet Genotypes (Beta vulgaris L.). Biol. Forum. 2015, 7, 1189–1204. [Google Scholar]
- Studnicki, M.; Lenartowicz, T.; Noras, K.; Wójcik-Gront, E.; Wyszyński, Z. Assessment of Stability and Adaptation Patterns of White Sugar Yield from Sugar Beet Cultivars in Temperate Climate Environments. Agronomy 2019, 9, 405. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; King, B.A.; Bjorneberg, D.L. Yield production functions of irrigated sugar beet in an arid climate. Agric. Water Manag. 2018, 200, 1–9. [Google Scholar] [CrossRef]
- Kiymaz, S.; Ertek, A. Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric. Water Manag. 2015, 158, 225–234. [Google Scholar] [CrossRef]
- GUS. Statistics Poland, National Statistical Office. Available online: https://bdl.stat.gov.pl/ (accessed on 17 March 2019).
- IPCC. Intergovernmental Panel on Climate Change. In Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Schindler, U.; Steidl, J.; Müller, L.; Eulenstein, F.; Thiere, J. Drought risk to agricultural land in Northeast and Central Germany. J. Plant Nutr. Soil Sci. 2007, 170, 357–362. [Google Scholar] [CrossRef]
- Okom, S.; Russell, A.; Chaudhary, A.J.; Scrimshaw, M.D.; Francis, R.A. Impacts of projected precipitation changes on sugar beet yield in eastern England. Meteorol. Appl. 2017, 24, 52–61. [Google Scholar] [CrossRef]
- Freckleton, R.P.; Watkinson, A.R.; Webb, D.J.; Thomas, T.H. Yield of sugar beet in relation to weather and nutrients. Agric. For. Meteorol. 1999, 93, 39–51. [Google Scholar] [CrossRef]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices. Ann. Set Environ. Prot. 2013, 15, 2185–2203. (In Polish) [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, W. Effects of agricultural droughts in the province of Kujawsko-Pomorskie and possibilities of minimizing their impact. Infrastruct. Ecol. Rural Areas 2017, 2, 813–824. (In Polish) [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Simulation of hydrothermal conditions for crop production purpose until 2050-2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2015, 1, 319–334. (In Polish) [Google Scholar]
- Szyga-Pluta, K. Variability of drought occurrence during the growing season in Poland in years 1966-2015. Przegl. Geofiz. 2018, 1, 51–67. (In Polish) [Google Scholar]
- Czarnecka, M.; Nidzgorska-Lencewicz, M. Multiannual variability of seasonal precipitation in Poland. Water Environ. Rural Areas 2012, 12, 45–60. (In Polish) [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Bojar, W.; Knopik, L.; Żarski, W. Agro-climatological assessment of the growing season rainfall in the Bydgoszcz region. Infrastruct. Ecol. Rural Areas 2014, 3, 643–656. (In Polish) [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef]
- Smakthin, V.U.; Hughes, D.A. Automated estimation and analysis of meteorological drought characteristics from monthly data. Environ. Model. Softw. 2007, 22, 880–890. [Google Scholar] [CrossRef]
- Bąk, B.; Łabędzki, L. Assessing drought severity with the relative precipitation index (RPI) and the standardized precipitation index (SPI). J. Water Land Dev. 2002, 6, 89–105. (In Polish) [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; pp. 1–300. [Google Scholar]
- Holzman, M.E.; Rivas, R.; Piccolo, M. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.; Wang, L.; Zhu, B.; Lu, T.; Yu, Y. An Agricultural Drought Index for Assessing Droughts Using a Water Balance Method: A Case Study in Jilin Province, Northeast China. Rem. Sens. 2019, 11, 1066. [Google Scholar] [CrossRef]
- De Oliveira-Júnior, J.F.; de Gois, G.; Bodas Terassi, P.M.; Silva Junior, C.A.; Cavalcante Blanco, C.J.; Sobral, B.S.; Cruz Gasparini, K.A. Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro–Brazil. Atmos. Res. 2018, 212, 91–105. [Google Scholar] [CrossRef]
- Thanh, N.T. A Proposal to Evaluate Drought Characteristics Using Multiple Climate Models for Multiple Timescales. Climate 2018, 6, 79. [Google Scholar] [CrossRef]
- Łabędzki, Ł.; Bąk, B. Meteorological and agricultural drought indices used in drought monitoring in Poland: A review. Meteorol. Hydrol. Water Manag. 2014, 2, 3–14. [Google Scholar] [CrossRef]
- Osuch, M.; Romanowicz, R.J.; Lawrence, D.; Wong, W.K. Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol. Earth Syst. Sci. 2016, 20, 1947–1969. [Google Scholar] [CrossRef]
- European Commission JRC S3 Platform. Available online: https://s3platform.jrc.ec.europa.eu/ (accessed on 27 June 2019).
- GUS. National Statistical Office. Available online: https://stat.gov.pl/en/topics/agriculture-forestry/agriculture/ (accessed on 19 March 2019).
- Gleboznawcze, P.T. Systematyka gleb Polski (Polish soil classification), 2011. Soil Sci. Annu. 2011, 62, 1–193. [Google Scholar]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S.; Kropkowski, M.; Kledzik, R. Identifying climatic risk to soybean cultivation in the transitional type of moderate climate in Central Poland. J. Cent. Eur. Agric. 2019, 20, 143–156. [Google Scholar] [CrossRef]
- Kuśmierek-Tomaszewska, R.; Żarski, J.; Dudek, S. Meteorological automated weather station data application for plant water requirements estimation. Comput. Electron. Agric. 2012, 88, 44–51. [Google Scholar] [CrossRef]
- Map of Location the Region of Kujawsko-Pomorskie in Poland. Available online: https://en.wikipedia.org/ (accessed on 31 August 2019).
- Map of Location the Meteorological Stations in the Region of Kujawsko-Pomorskie in Poland. Available online: http://www.chrzastowo.coboru.pl/punktydosw.aspx (accessed on 31 August 2019).
- Edwards, D.C.; McKee, T.B. Characteristics of 20th century drought in the United States at multiple scales. Atmos. Sci. 1997, 634, 1–30. [Google Scholar]
- Łabędzki, L.; Bąk, B. Monitoring and forecasting the course and impact of water deficit in rural areas. Infrastruct. Ecol. Rural Areas 2013, 1, 65–76. (In Polish) [Google Scholar]
- Dzieżyc, J.; Nowak, L.; Panek, K. Decade indicators of rainfall needs of arable crops in Poland. Zesz. Probl. Post. Nauk Roln. 1987, 314, 11–33. (In Polish) [Google Scholar]
- Garnier, B.J. Podstawy klimatologii; Wyd. IMGW: Warszawa, Poland, 1996; pp. 97–114. [Google Scholar]
- Błażejczyk, K.; Kasperska-Wołowicz, W.; Łabędzki, L.; Kunert, A. Multi-annual fluctuations in precipitation and their hydrological and ecological consequences in regional scale. In Regional Hydrological Impacts of Climatic Change–Hydroclimatic Variability; IAHS Publications: Wallingford, UK, 2005; pp. 65–70. [Google Scholar]
- Łabędzki, L. Estimation of local drought frequency in Central Poland using the standardized precipitation index SPI. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Żarski, J.; Rolbiecki, S. Requirements, results and perspectives of plant irrigation on the areas characterized by distinct water deficits. Post. Nauk Rol. 2011, 1, 51–63. (In Polish) [Google Scholar]
- Ziernicka-Wojtaszek, A. Pluviothermal Regionalization of Poland in Light of Present-Day Climate Change. Pol. J. Environ. Stud. 2020, 29, 1–8. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Kanecka-Geszke, E.; Kasperska-Wołowicz, W.; Smarzyńska, K. Związek między suszą meteorologiczną i rolniczą w różnych regionach agroklimatycznych Polski. Water Environ. Rural Areas Rozprawy i Monogr. 2008, 25, 1–136. (In Polish) [Google Scholar]
- Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J.; Januszewska-Klapa, K. Temporal variability of drought in field crops in the Region of Kujawsko-Pomorskie, Poland. Res. Rural Dev. 2018, 2, 62–68. [Google Scholar]
- Łabędzki, L.; Bąk, B. Predicting meteorological and agricultural drought in the system of drought monitoring in Kujawy and the upper Noteć valley. Infrastruct. Ecol. Rural Areas 2011, 5, 19–28. [Google Scholar]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Rossi, S.; Niemeyer, S. Drought monitoring with estimates of the Fraction of absorbed photosynthetically-active Radiation (fAPAR) derived from MERIS. In Remote Sensing for Drought. Innovative Monitoring Approaches, 1st ed.; Wardlow, B., Anderson, M., Verdin, J., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 95–116. [Google Scholar]
- Peled, E.; Dutra, E.; Viterbo, P.; Angert, A. Technical note: Comparing and ranking soil drought indices performance over Europe, through remote-sensing of vegetation. Hydrol. Earth Syst. Sci. 2010, 14, 271–277. [Google Scholar] [CrossRef]
- Ivits, E.; Horion, S.; Fensholt, R.; Cherlet, M. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob. Chang. Biol. 2014, 20, 581–593. [Google Scholar] [CrossRef]
- Tadić, L.; Dadić, T.; Bosak, M. Comparison of different drought assessment methods in continental Croatia. Graćevinar 2015, 67, 11–22. [Google Scholar]
- Quiring, S.M. Monitoring drought: An evaluation of meteorological drought indices. Geogr. Compass 2009, 3, 64–88. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Tian, L.Y.; Yuan, S.S.; Quiring, S.M. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteorol. 2018, 249, 107–119. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneanţ, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2015, 36, 2063–2082. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Balaghi, R.; Tychon, B.; Eerens, H.; Jlibene, M. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 438–452. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M.; Anderson, M.C.; Bosch, D.D. Evaluation of drought indices via remotely sensed data with hydrological variables. J. Hydrol. 2013, 476, 265–273. [Google Scholar] [CrossRef]
- Gouveia, C.; Trigo, R.M.; DaCamara, C.C. Drought and vegetation stress monitoring in Portugal using satellite data. Nat. Hazards Earth Syst. Sci. 2009, 9, 185–195. [Google Scholar] [CrossRef]
- Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. [Google Scholar] [CrossRef]
- Łabędzki, Ł.; Bąk, B. Agroclimatic determinants of irrigation needs. Ecol. Eng. 2016, 47, 199–204. [Google Scholar] [CrossRef]
Classes of Drought | SPI | Graphic Designation |
---|---|---|
Slightly dry | −0.50/−0.99 | |
Moderate dry | −1.00/−1.49 | |
Very dry | −1.50/−1.99 | |
Extremely dry | ≤−2.00 |
Catchment Area | Precipitation Needs (Popt) (mm) | ||||||||
July | August | July–August total | |||||||
10-day period | Monthly total | 10-day period | Monthly total | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||
CA_III | 27 | 27 | 31 | 85 | 30 | 25 | 22 | 77 | 162 |
CA_IV | 26 | 28 | 31 | 85 | 28 | 25 | 24 | 77 | 162 |
Location | Latitude | Longitude | Precipitation (mm) | |||
---|---|---|---|---|---|---|
Avg. | Max. (Year) | Min. (Year) | CV (%) | |||
MS–1–M | 53°13’N | 17°51’E | 132.4 | 268.9 (1985) | 34.2 (1994) | 42.4 |
MS–2–Ch | 53°11’N | 17°35’E | 126.9 | 235.5 (2010) | 40.2 (1983) | 38.6 |
MS–3–Go | 52°50’N | 19°15’E | 143.3 | 255.6 (2010) | 64.5 (1989) | 31.7 |
MS–4–Ge | 52°39’N | 18°27’E | 136.6 | 282.3 (2010) | 40.4 (1989) | 45.3 |
MS–5–T | 53°03’N | 18°36’E | 151.6 | 279.0 (2010) | 40.0 (1982) | 41.9 |
Year | Location of Meteorological Stations | ||||
MS–1–M | MS–2–Ch | MS–3–Go | MS–4-Ge | MS–5–T | |
1981 | |||||
1982 | |||||
1983 | |||||
1984 | |||||
1985 | |||||
1986 | |||||
1987 | |||||
1988 | |||||
1989 | |||||
1990 | |||||
1991 | |||||
1992 | |||||
1993 | |||||
1994 | |||||
1995 | |||||
1996 | |||||
1997 | |||||
1998 | |||||
1999 | |||||
2000 | |||||
2001 | |||||
2002 | |||||
2003 | |||||
2004 | |||||
2005 | |||||
2006 | |||||
2007 | |||||
2008 | |||||
2009 | |||||
2010 | |||||
Classes of drought | Number of droughts | ||||
Slightly dry | 3 | 4 | 5 | 7 | 3 |
Moderately dry | 2 | 2 | 3 | 4 | 4 |
Very dry | 1 | 2 | 1 | 0 | 1 |
Extremely dry | 2 | 1 | 1 | 1 | 1 |
Frequency (%) | 26.7 | 30.0 | 33.3 | 40.0 | 30.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuśmierek-Tomaszewska, R.; Żarski, J.; Dudek, S. Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland). Agronomy 2019, 9, 814. https://doi.org/10.3390/agronomy9120814
Kuśmierek-Tomaszewska R, Żarski J, Dudek S. Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland). Agronomy. 2019; 9(12):814. https://doi.org/10.3390/agronomy9120814
Chicago/Turabian StyleKuśmierek-Tomaszewska, Renata, Jacek Żarski, and Stanisław Dudek. 2019. "Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland)" Agronomy 9, no. 12: 814. https://doi.org/10.3390/agronomy9120814
APA StyleKuśmierek-Tomaszewska, R., Żarski, J., & Dudek, S. (2019). Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland). Agronomy, 9(12), 814. https://doi.org/10.3390/agronomy9120814