Next Article in Journal
Optimizing Nitrogen Options for Improving Nitrogen Use Efficiency of Rice under Different Water Regimes
Previous Article in Journal
Subsoiling and Sowing Time Influence Soil Water Content, Nitrogen Translocation and Yield of Dryland Winter Wheat
Previous Article in Special Issue
Response of Yellow Quality Protein Maize Inbred Lines to Drought stress at Seedling Stage
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Agronomy 2019, 9(1), 38; https://doi.org/10.3390/agronomy9010038

Growth, Physiological, Biochemical, and Transcriptional Responses to Drought Stress in Seedlings of Medicago sativa L., Medicago arborea L. and Their Hybrid (Alborea)

1
Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
2
Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855-Athens, Greece
3
Department of Natural Resources Management and Agricultural Engineering, Laboratory of Agricultural Hydraulics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
4
Faculty of Agriculture, Forestry and Natural Environment, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
*
Author to whom correspondence should be addressed.
Received: 1 December 2018 / Revised: 14 January 2019 / Accepted: 15 January 2019 / Published: 19 January 2019
Full-Text   |   PDF [1354 KB, uploaded 19 January 2019]   |  
  |   Review Reports

Abstract

Medicago sativa L. is a tetraploid perennial forage legume of great agronomical interest. The increasing need for its use under water-deficit conditions as well as low-input systems demands further improvement of its drought tolerance. On the other hand, Medicagoarborea L. is a perennial leguminous shrub, which is knownas a drought-tolerant species. In the present study, drought stress responses of the aforementioned medicago species, along with their hybrid, named Alborea, were comparatively assayed at the morphological, physiological, biochemical, and transcriptional levels. In particular, transcript abundance of representative genes that: (a) control ion transport, intracellular Na+/H+ antiporters(NHX1) and rare cold inducible2A (RCI2A); (b) have an osmotic function Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1); and (c) participate in signaling pathways and control cell growth and leaf function stress-induced mitogen-activated protein kinases kinases (SIMKK), Zinc Finger (ZFN), apetala2/ethylene-responsive element binding (AP2/EREB), basic leucine zipper (bzip) and Medicago sativa Helicase 1(MH1) were evaluated. Under well-watered conditions, the studied population of Alborea showed the highest stem elongation rate and photosynthetic rate that were dramatically reduced under drought conditions compared to M. sativa and M. arborea. Under drought conditions, the studied population of M. arborea showed less reduction of relative water content, all gas-exchange parameters, less lipid peroxidation, and more antioxidant capacity. Moreover, transcriptional analysis demonstrated that the population of M. arborea exhibited significantly higher transcript levels of drought-responsive genes in both leaves and roots under drought stress conditions. M. sativa has better antioxidant capacity than Alborea and had a higher induction of stress-related genes, thus it performs better than Alborea under drought conditions. Among the studied genes, it seems that AP2/EREB play a critical role in the response of the studied population to drought stress. View Full-Text
Keywords: Medicago species; water deficit; gene expression; antioxidant capacity; leaf gas-exchange parameters Medicago species; water deficit; gene expression; antioxidant capacity; leaf gas-exchange parameters
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Tani, E.; Chronopoulou, E.G.; Labrou, N.E.; Sarri, E.; Goufa, Μ.; Vaharidi, X.; Tornesaki, A.; Psychogiou, M.; Bebeli, P.J.; Abraham, Ε.M. Growth, Physiological, Biochemical, and Transcriptional Responses to Drought Stress in Seedlings of Medicago sativa L., Medicago arborea L. and Their Hybrid (Alborea). Agronomy 2019, 9, 38.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Agronomy EISSN 2073-4395 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top