Impact of Nitrogen and Sulfur Supply on the Potential of Acrylamide Formation in Organically and Conventionally Grown Winter Wheat
Abstract
:1. Introduction
- The amount and timing of N fertilization affect yield, grain quality, and the content of free Asn in winter wheat, irrespective of its form (organic or mineral).
- Due to a slower release rate and thus a lower availability of organic N, its effect on grain quality and free Asn is less pronounced compared to the application of mineral N.
- The type and amount of S fertilizer affect free Asn accumulation in wheat flour, especially under high N amounts.
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.2.1. Conventional N Trial
2.2.2. Organic N Trial
2.2.3. Conventional S Trial
2.3. Yield
2.4. Flour
2.5. Crude Protein
2.6. Sulfur
2.7. Zeleny’s Sedimentation Test
2.8. Free Asparagine
2.9. Acrylamide Formation
2.10. Statistical Analyses
3. Results and Discussion
3.1. Conventional and Organic N Trials
3.2. Conventional S trial
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Commission Regulation (EU) 2017/2158. Establishing mitigation measures and benchmark levels for the reduction of the presence as acrylamide in food. J. Eur. Union 2017, 60, 24–44. [Google Scholar]
- Delatour, T.; Perisset, A.; Goldmann, T. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 2004, 52, 4625–4639. [Google Scholar] [CrossRef] [PubMed]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.C.; Riediker, S. Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 2002, 50, 4998–5006. [Google Scholar] [CrossRef] [PubMed]
- Amrein, T.M.; Schönbächler, B.; Rohner, F.; Lukac, H.; Schneider, H.; Keiser, A.; Escher, F.; Amadò, R. Potential for acrylamide formation in potatoes: Data from the 2003 harvest. Eur. Food Res. Technol. 2004, 219, 572–578. [Google Scholar] [CrossRef]
- Claus, A.; Schreiter, P.; Weber, A.; Graeff, S.; Herrmann, W.; Claupein, W.; Schieber, A.; Carle, R. Influence of Agronomic Factors and Extraction Rate on the Acrylamide Contents in Yeast-Leavened Breads. J. Agric. Food Chem. 2006, 54, 8968–8976. [Google Scholar] [CrossRef] [PubMed]
- Curtis, T.Y.; Powers, S.J.; Balagianis, D.; Elmore, J.S.; Mottram, D.; Parry, M.A.J.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Halford, N.G. Free Amino Acids and Sugars in Rye Grain: Implications for Acrylamide Formation. J. Agric. Food Chem. 2010, 57, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Surdyk, N.; Rose’n, J.; Andersson, R.; Åman, P. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 2004, 52, 2047–2051. [Google Scholar] [CrossRef] [PubMed]
- Claus, A.; Carle, R.; Schieber, A. Acrylamide in cereal products: A review. J. Cereal Sci. 2008, 47, 118–133. [Google Scholar] [CrossRef]
- European Food Safety Authority. Results on Acrylamide levels in food from monitoring yeas 2007–2009 and exposure assessment. EFSA J. 2011, 9, 2133. [Google Scholar] [CrossRef]
- Brathen, E.; Knutsen, S. Effect of temperature and time on the formation of acrylamide in starch–based and cereal model systems, flat breads and bread. Food Chem. 2005, 92, 693–700. [Google Scholar] [CrossRef]
- Ciesarova, Z.; Kukurova, K.; Bednarikova, A.; Morales, F.J. Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products—Benefits and weak points. J. Food Nutr. Res. 2009, 48, 20–30. [Google Scholar]
- Springer, M.; Fischer, T.; Lehrack, A.; Freund, W. Acrylamidbildung in Backwaren. Getreide Mehl Brot 2003, 57, 274–278. [Google Scholar]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Serpen, A.; Acar, Ö.C.; Gökmen, V.; Fogliano, V. Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res. Int. 2009, 42, 1295–1302. [Google Scholar] [CrossRef]
- Yuan, Y.; Shu, C.; Zhou, B.; Qi, X.; Xiang, J. Impact of selected additives on acrylamide formation in asparagine/sugar Maillard model systems. Food Res. Int. 2010, 44, 449–455. [Google Scholar] [CrossRef]
- Curtis, T.Y.; Muttucumaru, N.; Shewry, P.R.; Parry, M.A.J.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Hook, S.; Halford, N.G. Effects of Genotype and Environment on Free Amino Acid Levels in Wheat Grain: Implications for Acrylamide Formation during Processing. J. Agric. Food Chem. 2009, 57, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Postles, J.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Halford, N.G. Effects of variety and nutrient availability on the acramamide-forming potential of rye grain. J. Cereal Sci. 2013, 57, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Taeymans, D.; Wood, J.; Ashby, P.; Blank, I.; Studer, A.; Stadler, R.H.; Gondé, P.; Van Eijck, P.; Lalljie, S.; Lingnert, H.; et al. A review of acrylamide: An industry perspective on research, analysis, formation, and control. Crit. Rev. Food Sci. Nutr. 2004, 44, 323–347. [Google Scholar] [CrossRef] [PubMed]
- Martinek, P.; Klem, K.; Vánová, M.; Bartácková, V.; Vecerková, L.; Bucher, P.; Hajslová, J. Effects of nitrogen nutrition, fungicide treatment and wheat genotype on free asparagine and reducing sugars content as precursors of acrylamide formation in bread. Plant Soil Environ. 2009, 55, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Weber, E.A.; Graeff, S.; Koller, W.D.; Hermann, W.; Merkt, N.; Claupein, W. Impact of nitrogen amount and timing on the potential of acrlyamide formation in winter wheat (Triticum aestivum L.). Field Crop Res. 2008, 106, 44–52. [Google Scholar] [CrossRef]
- Stockmann, F.; Weber, E.A.; Graeff, S.; Claupein, W. Influence of cropping systems on the potential formation of acrylamide in different cultivars of wheat. In Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 16–20 June 2008. [Google Scholar]
- Elmore, J.S.; Parker, J.K.; Halford, N.G.; Muttucumaru, N.; Mottram, D.S. Effects of Plant Sulfur Nutrition on Acrylamide and Aroma Compounds in Cooked Wheat. J. Agric. Food Chem. 2008, 56, 6173–6179. [Google Scholar] [CrossRef] [PubMed]
- Granvogl, M.; Wiesner, H.; Koehler, P.; Von Tucher, S.; Schieberle, P. Influence of Sulfur Fertilization on the Amounts of Free Amino Acids in Wheat. Correlation with Baking Properties as well as with 3-Aminopropionamide and Acrylamide Generation during Baking. J. Agric. Food Chem. 2007, 55, 4271–4277. [Google Scholar] [CrossRef] [PubMed]
- Muttucumaru, N.; Halford, N.G.; Elmore, J.S.; Dodson, A.T.; Parry, M.; Shewry, P.R.; Mottram, D.S. Formation of High Levels of Acrylamide during the Processing of Flour Derived from Sulfate-Deprived Wheat. J. Agric. Food Chem. 2006, 54, 8951–8955. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Zhao, F.J.; Gowa, G.B.; Hawkins, N.D.; Ward, J.L.; Beale, M.H.; Halford, N.G.; Parry, M.A.; Abécassis, J. Sulfur nutrition differentially affects the distribution of asparagine in wheat grain. J. Cereal Sci. 2009, 50, 407–409. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007. In World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Dumas, A. Stickstoffbestimmung Nach Dumas. Die Praxis des org. Chemikers, 41th ed.; Schrag: Nürnberg, Germany, 1962. [Google Scholar]
- Lüpke, M. Entwicklung und Anwendung von Reagenzien und Verfahren zur achiralen und chiralen Analytik von Aminosäuren mittels GC und HPLC. Ph.D. Thesis, Universität Hohenheim, Stuttgart, Germany, 1996. [Google Scholar]
- Weisshaar, R. Bestimmung von Acrylamid in Lebensmitteln, Aufarbeitungsverfahren für die LC-MS-MS. Prüfverfahren: 200L05401; Chemisches und Veterinäruntersuchungsamt Stuttgart: Fellbach, Germany, 2003.
- Weisshaar, R. Bestimmung von Acrylamid in Lebensmitteln, Prüfverfahren: 201L01301; Chemisches und Veterinäruntersuchungsamt Stuttgart: Fellbach, Germany, 2003.
- Ellen, J.; Spiertz, J.H.J. Effects of rate and timing of nitrogen dressings on grain yield formation of winter wheat (T. aestivum L.). Fertil. Res. 1980, 1, 177–190. [Google Scholar] [CrossRef]
- Ercoli, L.; Lulli, L.; Arduini, I.; Mariotti, M.; Masoni, A. Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Eur. J. Agron. 2011, 35, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Branlard, G.; Griffin, W.B.; McNeil, D.L. The effect of nitrogen and sulphur fertilisation and their interaction with genotype on wheat glutenins and quality parameters. J. Cereal Sci. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Woolfolk, C.W.; Raun, W.R.; Johnson, G.V.; Thomason, W.E.; Mullen, R.W.; Wynn, K.J.; Freeman, K.W. Influence of Late-Season Foliar Nitrogen Applications on Yield and Grain Nitrogen in Winter Wheat Contrib. from the Oklahoma. Agric. Exp. Stn. Agron. J. 2002, 94, 429–434. [Google Scholar] [CrossRef]
- Winkler, U.; Schön, W.J. Amino acid composition of the kernel proteins in barley resulting from nitrogen fertilization at different stages of development. J. Agronomy Crop Sci. 1980, 149, 503–512. [Google Scholar]
- Brunner, B. Qualität von Ökobrotgetreide weiter verbessern. Ökologie Landbau 2001, 121, 35–37. [Google Scholar]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 2005, 23, 265–278. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef]
- Gooding, M.J.; Davies, W.P.; Thompson, A.J.; Smith, S.P. The challenge of achieving breadmaking quality in organic and low input wheat in the UK—A review. Aspects Appl. Biol. 1993, 36, 189–198. [Google Scholar]
- Haglund, A.; Johansson, L.; Dahlstedt, L. Sensory evaluation of wholemeal bread from ecologically and conventionally grown wheat. J. Cereal Sci. 1998, 27, 199–207. [Google Scholar] [CrossRef]
- Stockmann, F.; Mast, B.; Graeff, S.; Claupein, W. Acrylamid-Bildungspotenzial ökologisch erzeugter Getreidearten und Sorten. In Werte–Wege–Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel, Proceedings of the 10. Wissenschaftstagung Ökologischer Landbau, ETH Zürich, Switzerland, 11–13 Februar 2009; Mayer, J., Alföldi, T., Leiber, F., Dubois, D., Fried, P., Heckendorn, F., Hillmann, E., Klocke, P., Lüscher, A., Riedel, S., et al., Eds.; Verlag Dr. Köster: Berlin, Germany, 2009. [Google Scholar]
- Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, P.R.; Halford, N.G. Asparagine in Plants. Ann. Appl. Biol. 2006, 150, 1–26. [Google Scholar] [CrossRef]
- Corol, D.I.; Ravel, C.; Rakszegi, M.; Charmet, G.; Bedo, Z.; Beale, M.H.; Shewry, P.R.; Ward, J.L. 1H-NMR screening for the high-throughput determination of genotype and environmental effects on the content of asparagine in wheat grain. Plant Biotechnol. J. 2016, 14, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; ISBN 978-0-12-473542-2. [Google Scholar]
- Gianibelli, M.C.; Sarandon, S.J. Effect of late nitrogen fertilization on the gluten content and technological quality of bread wheat (Triticum aestivum L.). In Gluten Proteins; Bushuk, W., Tkachuk, R., Eds.; AACC: St. Paul, MN, USA, 1991; pp. 755–764. [Google Scholar]
- Pompa, M.; Giuliani, M.M.; Giuzio, L.; Gagliardi, A.; di Fonzo, N.; Flagella, Z. Effect of sulphur fertilization on grain quality and protein composition of durum wheat (Triticum durum Desf.). Ital. J. Agron. 2009, 4, 159–170. [Google Scholar] [CrossRef]
- Randall, P.J.; Spencer, K.; Freney, J.R. Sulfur and Nitrogen Fertilizer Effects on Wheat. Concentrations of Sulfur and Nitrogen and the Nitrogen to Sulfur Ratio in Grain, in Relation to the Yield Response. Aust. J. Agric. Res. 1981, 32, 203–212. [Google Scholar] [CrossRef]
- Dai, Z.; Plessis, A.; Vincent, J.; Duchateau, N.; Besson, A.; Dardevet, M.; Prodhomme, D.; Gibon, Y.; Hilbert, G.; Pailloux, M.; et al. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant J. 2015, 83, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.A.; Koller, W.D.; Graeff, S.; Hermann, W.; Merkt, N.; Claupein, W. Impact of different nitrogen fertilizers and an additional sulfur supply on grain yield, quality, and the potential of acrylamide formation in winter wheat. J. Plant Nutr. Soil Sci. 2008, 171, 643–655. [Google Scholar] [CrossRef]
- Köhler, P.; Hüttner, S.; Wieser, H. Binding sites of glutathione in gluten proteins. In Gluten 96; Wrigley, C.W., Ed.; Royal Australian Chemical Institute: North Melbourne, Australia, 1996; pp. 137–140. [Google Scholar]
- Curtis, T.Y.; Powers, S.J.; Wang, R.; Halford, N.G. Effects of variety, year of cultivation and Sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. J. Food Chem. 2018, 239, 304–313. [Google Scholar] [CrossRef] [PubMed]
Treatment | Wheat Cultivar | Total N (kg ha−1) | Vegetation Start (kg N ha−1) | Zadoks * 31/32 (kg N ha−1) | Zadoks 39 (kg N ha−1) | Zadoks 49/51 (kg N ha−1) | Zadoks 55 (kg N ha−1) |
---|---|---|---|---|---|---|---|
Control | B | 0 | - | - | - | - | - |
N60-late | B | 60 | - | 30 | - | 30 | - |
N60 | B | 60 | 30 | - | 30 | - | - |
N100-late | B | 100 | 30 | - | 40 | 30 | - |
N100 | B | 100 | 30 | 30 | 40 | - | - |
N140-late | B | 140 | 30 | 30 | 30 | 50 | - |
N140 | B | 140 | 50 | 40 | 50 | - | - |
N180-late | B | 180 | 30 | 40 | 30 | 40 | 40 |
N180 | B | 180 | 60 | 60 | 60 | - | - |
Control | N | 0 | - | - | - | - | - |
N180-late | N | 180 | 30 | 40 | 30 | 40 | 40 |
Control | C | 0 | - | - | - | - | - |
N180-late | C | 180 | 30 | 40 | 30 | 40 | 40 |
Treatment | Wheat Cultivar | N Fertilizer | Total N (kg ha−1) | Vegetation Start (kg N ha−1) | Zadoks 31/32 (kg N ha−1) | Zadoks 39 (kg N ha−1) |
---|---|---|---|---|---|---|
Control | B | Control | 0 | - | - | - |
S50 | B | Slurry | 50 | 50 | - | - |
S100 | B | Slurry | 100 | 50 | 50 | - |
S50-H50 | B | Slurry & horn meal | 100 | 50 slurry | - | 50 horn |
S100-H20 | B | Slurry & horn meal | 120 | 50 slurry | 50 slurry | 20 horn |
H60 | B | Horn meal | 60 | 30 | - | 30 |
H120 | B | Horn meal | 120 | 40 | 40 | 40 |
H180 | B | Horn meal | 180 | 60 | 60 | 60 |
Control | N | Control | 0 | - | - | - |
H180 | N | Horn meal | 180 | 60 | 60 | 60 |
Control | C | Control | 0 | - | - | - |
H180 | C | Horn meal | 180 | 60 | 60 | 60 |
S Fertilization (kg ha−1) | |||||||
---|---|---|---|---|---|---|---|
Treatment | Total S | Vegetation Start | Zadoks 37/39 | Zadoks 49/51 | Zadoks 55 | S Fertilizer | Total N (kg ha−1) |
Control | 0 | - | - | - | - | - | 0 |
Control-S | 20 | 20 | - | - | - | K | 0 |
K20-N1 | 20 | 20 | - | - | - | K | 120 |
K20-N2 | 20 | 20 | - | - | - | K | 200 |
K40-N1 | 40 | 20 | 20 | - | - | K | 120 |
K40-N2 | 40 | 20 | 20 | - | - | K | 200 |
K60-N2 | 60 | 60 | - | - | - | K | 200 |
Ep-N1 | 6 | - | 2 | 2 | 2 | Ep | 120 |
Ep-N2 | 6 | - | 2 | 2 | 2 | Ep | 200 |
KEp26-N1 | 26 | 20 | 2 | 2 | 2 | KEp | 120 |
KEp26-N2 | 26 | 20 | 2 | 2 | 2 | KEp | 200 |
elS N1 | 5,6 | 2.8 (Zadoks 25) | 2.8 (Zadoks 32) | - | - | eS | 120 |
elS N2 | 5,6 | 2.8 (Zadoks 25) | 2.8 (Zadoks 32) | - | - | eS | 200 |
Conventional | ||||||||||
Treatment | GY (t ha−1) | SV (mL) | CP (%) | Free Asn (mg 100 g−1) | ||||||
2007 | 2008 | mean | 2007 | 2008 | mean | 07/08 | 2007 * | 2008 | mean | |
Control | 4.4 a | 3.5 a | 3.9 | 23.5 a | 33.5 a | 28.5 | 10.2 a | 11.7 | 10.3 ab | 11.0 |
N60-late | 5.7 b | 4.4 b | 5.1 | 29.7 ab | 43.8 bc | 36.7 | 12.0 b | 9.8 | 8.2 a | 9.0 |
N60 | 5.9 b | 4.7 bc | 5.3 | 28.5 ab | 39.7 ab | 34.1 | 11.2 b | 8.8 | 8.9 a | 8.9 |
N100-late | 6.3 bc | 5.2 cd | 5.7 | 34.0 b | 49.3 cd | 41.7 | 13.0 c | 11.2 | 9.1 a | 10.2 |
N100 | 6.8 cd | 5.3 cd | 6.1 | 34.7 bc | 45.2 bcd | 39.9 | 12.5 c | 8.6 | 9.9 ab | 9.2 |
N140-late | 6.9 cd | 5.5 de | 6.2 | 37.3 bcd | 49.5 cd | 43.4 | 14.1 e | 11.5 | 15.4 b | 13.5 |
N140 | 7.5 e | 6.1 ef | 6.8 | 37.2 bc | 47.0 bcd | 42.1 | 13.1 d | 12.1 | 11.8 ab | 12.0 |
N180-late | 7.2 de | 5.8 def | 6.5 | 46.5 d | 54.2 d | 50.3 | 15.2 g | 13.7 | 15.2 b | 12.4 |
N180 | 7.7 e | 6.2 f | 6.9 | 43.7 cd | 47.2 bcd | 45.4 | 14.2 f | 12.3 | 17.8 b | 13.0 |
Year (mean) | 6.5 b | 5.2 a | 35 a | 45.5 b | n.s. | 10.6 | 11.4 | |||
Organic | ||||||||||
Treatment | GY (t ha−1) | SV (mL) | CP (%) | Free Asn (mg 100 g−1) | ||||||
07/08 | 2007 | 2008 | mean | 2007 | 2008 | mean | 2007 | 2008 | mean | |
Control | 4.2 ab | 28.5 | 40.2 | 34.3 a | 9.1 | 11.0 | 10.1 a | 9.8 | 7.2 | 8.5 |
S50 | 4.5 bc | 31.3 | 41.2 | 36.3 ab | 10.2 | 11.4 | 10.8 ab | 10.0 | 7.4 | 8.7 |
S100 | 5.1 d | 36.0 | 43.0 | 39.5 bc | 10.7 | 12.0 | 11.4 bc | 10.8 | 8.7 | 9.8 |
S50-H50 | 4.6 bcd | 32.3 | 43.5 | 37.9 abc | 10.5 | 11.8 | 11.1 bc | 12.4 | 7.3 | 9.8 |
S100-H20 | 4.9 cd | 35.3 | 43.5 | 39.4 bc | 11.1 | 12.3 | 11.7 c | 10.4 | 7.5 | 9.0 |
H60 | 4.2 ab | 31.2 | 44.8 | 38.0 abc | 10.1 | 12.0 | 11.1 bc | 11.2 | 6.4 | 8.8 |
H120 | 4.2 ab | 34.8 | 47.3 | 41.1 c | 10.7 | 12.2 | 11.5 bc | 11.1 | 6.8 | 9.0 |
H180 | 3.9 a | 42.5 | 51.7 | 47.1 d | 12.6 | 13.4 | 13.0 d | 11.8 | 8.2 | 10.0 |
Year (mean) | n.s. | 34.0 a | 44.4 b | 10.6 a | 12.0 b | 10.9 b | 7.5 a |
Free Asn | |||||
---|---|---|---|---|---|
Effect | Conventional | Organic | |||
df | f-Value | p1 | f-Value | p | |
Year (Y) | 1 | 4.69 | * | 2.92 | n.s. |
Nitrogen (N) | 1 | 11.46 | ** | 17.11 | *** |
Cultivar (C) | 2 | 20.25 | *** | 36.24 | *** |
C × N | 2 | 0.81 | n.s. | 2.29 | n.s. |
Y × N | 1 | 5.49 | * | 0.00 | n.s. |
Y × C | 2 | 0.03 | n.s. | 4.25 | * |
Y × C × N | 2 | 0.74 | n.s. | 1.72 | n.s. |
Conventional | Organic | ||||||
---|---|---|---|---|---|---|---|
Free Asn (mg 100 g−1) | Free Asn (mg 100 g−1) | ||||||
Wheat Cultivar | Treatment | 2007 | 2008 | 07/08 | 2007 | 2008 | 07/08 |
Bussard | Control | 11.7 ab | 10.3 ab | 11.0 | 9.8 a | 7.2 a | 8.5 |
N180 | 13.7 ab | 15.2 bc | 14.4 | 11.8 ab | 8.2 a | 10.0 | |
Naturastar | Control | 13.2 ab | 13.3 abc | 13.3 | 11.3 ab | 11.4 ab | 11.3 |
N180 | 15.9 b | 17.4 c | 16.6 | 16.6 b | 14.5 b | 15.6 | |
Capo | Control | 6.8 a | 7.6 a | 7.2 | 6.9 a | 6.5 a | 6.7 |
N180 | 8.8 ab | 11.8 abc | 10.3 | 7.3 a | 9.8 ab | 8.6 | |
Year | 11.7 a | 12.9 b | 10.6 | 9.6 |
GY (dt ha−1) | CP (%) | SV (mL) | S (%) | Free Asn (mg 100 g−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | 2007 | 2008 | 07/08 | 2007 | 2008 | 07/08 | 2007 | 2008 | 07/08 | 07/08 | 2007 | 2008 | 07/08 |
Control | 4.2 | 4.7 | 4.5 a | 9.8 | 8.5 | 9.3 a | 28.3 | 27.3 | 27.8 a | 0.137 ab | 8.6 ab | 9.4 a | 9.0 |
Control-S | 4.3 | 4.3 | 4.3 a | 9.6 | 8.8 | 9.2 a | 28.2 | 28.7 | 28.5 a | 0.133 a | 6.9 a | 10.1 a | 8.5 |
K20-N1 | 6.7 | 7.1 | 6.9 b | 12.0 | 11.4 | 11.7 b | 37.3 | 41.0 | 39.2 b | 0.155 cd | 9.5 b | 11.9 abc | 10.7 |
K20-N2 | 7.1 | 7.2 | 7.2 cde | 14.6 | 13.9 | 14.3 d | 44.8 | 50.2 | 47.5 e | 0.174 cde | 21.2 c | 16.8 d | 19.0 |
K40-N1 | 6.7 | 7.0 | 6.8 b | 12.0 | 11.6 | 11.8 b | 38.2 | 39.3 | 38.8 bc | 0.163 cd | 10.6 b | 9.5 a | 10.1 |
K40-N2 | 7.2 | 7.1 | 7.2 cd | 14.3 | 13.8 | 14.1 cd | 45,2 | 49.3 | 47.3 e | 0.175 de | 16.6 c | 18.9 de | 17.8 |
K60-N2 | 7.2 | 7.4 | 7.3 def | 14.5 | 13.6 | 14.1 cd | 43.5 | 48.5 | 46.0 de | 0.168 cde | 16.8 c | 14.5 cd | 15.7 |
Ep-N1 | 6.7 | 7.0 | 6.9 b | 12.4 | 11.5 | 12.0 b | 38.7 | 40.2 | 39.5 bc | 0.160 cd | 9.8 b | 9.3 a | 9.6 |
Ep-N2 | 7.3 | 7.5 | 7.4 def | 14.2 | 13.5 | 13.9 c | 43.0 | 47.2 | 45.1 de | 0.169 cde | 20.3 c | 14.6 cd | 17.5 |
KEp26-N1 | 6.8 | 7.1 | 7.0 bc | 12.1 | 11.7 | 11.9 b | 39.5 | 40.2 | 39.9 c | 0.153 bc | 10.2 b | 12.2 abc | 11.2 |
KEp26-N2 | 7.5 | 7.5 | 7.5 f | 14.5 | 13.6 | 14.1 cd | 42.7 | 45.3 | 44 d | 0.172 cde | 20.2 c | 13.9 bdc | 17.1 |
elS N1 | 6.6 | 7.2 | 6.9 b | 12.1 | 11.5 | 11.8 b | 39.0 | 41.0 | 40 bc | 0.190 e | 9.4 b | 10.4 ab | 9.9 |
elS N2 | 7.3 | 7.5 | 7.3 ef | 14.2 | 13.5 | 13.9 c | 44.3 | 46.5 | 45.4 de | 0.175 de | 21.9 c | 23.8 e | 22.9 |
Year (mean) | 6.6 a | 6.8 b | 12.8 b | 12.1 a | 39.4 a | 41.9 b | n.s. | 14.0 | 13.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stockmann, F.; Weber, E.A.; Schreiter, P.; Merkt, N.; Claupein, W.; Graeff-Hönninger, S. Impact of Nitrogen and Sulfur Supply on the Potential of Acrylamide Formation in Organically and Conventionally Grown Winter Wheat. Agronomy 2018, 8, 284. https://doi.org/10.3390/agronomy8120284
Stockmann F, Weber EA, Schreiter P, Merkt N, Claupein W, Graeff-Hönninger S. Impact of Nitrogen and Sulfur Supply on the Potential of Acrylamide Formation in Organically and Conventionally Grown Winter Wheat. Agronomy. 2018; 8(12):284. https://doi.org/10.3390/agronomy8120284
Chicago/Turabian StyleStockmann, Falko, Ernst Albrecht Weber, Pat Schreiter, Nikolaus Merkt, Wilhelm Claupein, and Simone Graeff-Hönninger. 2018. "Impact of Nitrogen and Sulfur Supply on the Potential of Acrylamide Formation in Organically and Conventionally Grown Winter Wheat" Agronomy 8, no. 12: 284. https://doi.org/10.3390/agronomy8120284