Production Parameters and Biochemical Composition of ‘BRS Núbia’ Table Grapes Affected by Rootstocks Under Subtropical Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Climate of the Experimental Area
2.2. Plant Material, Training System and Agricultural Practices
2.3. Experimental Design and Treatments
2.4. Assessments
2.4.1. Bud Fruitfulness
2.4.2. Harvest and Chemical Characteristics of Grape Juice
2.4.3. Yield- and Fruit-Related Production Parameters and Physical Characteristics of Clusters, Berries and Rachis
2.4.4. Biochemical Analysis of the Berries
Total Phenolic Compounds
Total Flavonoids
Total Monomeric Anthocyanins
Antioxidant Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Bud Fruitfulness and Production Parameters
3.2. Physical Characteristics of Clusters, Berries, and Rachis
3.3. Chemical Characteristics of ‘BRS Núbia’ Grape Juice
3.4. Biochemical Characteristics of Berries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leão, P.C.d.S.; Carvalho, J.N.d. Tropical Viticulture in Brazil: São Francisco Valley as an Important Supplier of Table Grapes to the World Market. In Latin American Viticulture Adaptation to Climate Change: Perspectives and Challenges of Viticulture Facing up Global Warming; Gamboa, G.G., Fourment, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 47–59. [Google Scholar]
- Botelho, R.V.; Pires, E.J.P.; Roberto, S.R.; Alvarenga, A.A.; Norberto, P.M.; Chalfun, N.N.J.; Pio, R. Propagação. In Uva: Do Vineio à Colheita; Motoike, S., Borém, A., Eds.; Editora UFV: Viçosa, MG, Brazil, 2018; pp. 61–83. [Google Scholar]
- Silva, J.N.D.; Ponciano, N.J.; Souza, C.L.M.; Souza, P.M.D.; Viana, L.H. Characterization of tropical viticulture in the Fluminense north and northwest regions. Rev. Bras. Frutic. 2019, 41, e-136. [Google Scholar] [CrossRef]
- Leão, P.C.d.S.; Oliveira, C.R.S.D. Agronomic performance of table grape cultivars affected by rootstocks in semi-arid conditions. Bragantia 2023, 82, e20220176. [Google Scholar] [CrossRef]
- Moura, M.F.; de Oliveira, G.L.; Rodrigues, C.S.; Paioli-Pires, E.J. The Role of Vine Breeding in Grapevine Production. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2024; Volume 110, pp. 255–294. [Google Scholar] [CrossRef]
- Associação Brasileira dos Produtores Exportadores de Frutas e Derivados (ABRAFRUTAS). Produção de Frutas Brasileiras, por Estado. Brasília. 2023. Available online: https://abrafrutas.org/paineis-de-producao/ (accessed on 15 January 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola (LSPA); IBGE: Rio de Janeiro, Brazil, 2023. Available online: https://sidra.ibge.gov.br/pesquisa/lspa/tabelas (accessed on 12 January 2024).
- Callili, D.; Silva, M.J.R.; Sanchez, C.A.P.C.; Watanabe, C.Y.; Macedo, B.M.P.; Domingues Neto, F.J. Rootstock and potassium fertilization, in terms of phenology, thermal demand and chemical evolution, of berries on Niagara rosada grapevine under subtropical conditions. Bragantia 2022, 81, 2022. [Google Scholar] [CrossRef]
- Sánchez, C.A.P.C.; Tecchio, M.A.; Callili, D.; da Silva, M.J.R.; Basílio, L.S.P.; Leonel, S.; Lima, G.P.P. Productivity and physicochemical properties of the BRS Ísis grape on various rootstocks under subtropical climatic conditions. Agriculture 2023, 13, 2113. [Google Scholar] [CrossRef]
- Santana, S.; Dos Santos, V.; Tecchio, M.; Pereira, L.; Nunes, A.; Almeida, H.; Pereira, G. Caracterização físico-química de uvas ‘BRS Vitória’ cultivadas em clima subtropical. Rev. Iberoam. Tecnol. Postcosecha 2023, 24, 150–163. [Google Scholar]
- Mello, L.M.R.; Machado, C.A.E. Vitivinicultura Brasileira: Panorama 2021; Comunicado Técnico n. 26; Embrapa Uva e Vinho: Bento Gonçalves, RS, Brazil, 2022; 17p. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola (LSPA). 2024. Available online: https://sidra.ibge.gov.br/pesquisa/lspa/tabelas (accessed on 20 March 2025).
- Maia, J.D.G.; Ritschel, P.; Camargo, U.A.; Souza, R.T.; Farjado, T.V.M.; Girardi, C.L. BRS Núbia Nova Cultivar de Uva para Mesa com Sementes e Coloração Preta Uniforme; Circular Técnica n. 139; Embrapa Uva e Vinho: Bento Gonçalves, RS, Brazil, 2013; 12p. [Google Scholar]
- Leão, P.C.d.S.; Lima, M.A.C.d. Cultivar BRS Núbia: Produtividade e Qualidade da Uva no Submédio do Vale do São Francisco; Circular Técnica n. 172; Embrapa Semiárido: Petrolina, PE, Brazil, 2017. [Google Scholar]
- Campos, L.; Vendruscolo, E.; Campos, C.; Teramoto, A.; Seleguini, A. Preliminary results on agronomic behavior of table grapes on different rootstocks in Brazilian Cerrado conditions. Agric. Conspec. Sci. 2022, 87, 265–276. [Google Scholar]
- Monteiro, H.S.A.; Tecchio, M.A.; Brito, S.d.N.S.; Neto, F.J.D.; Sánchez, C.A.P.C.; Alonso, J.C.; Feliciano, D.E.F.; Maniero, C.R.; Cunha, P.H.H.; Silva, M.d.S. Phenological development, thermal requirement, and quality of ‘BRS Núbia’ (Vitis vinifera L. × Vitis labrusca L.) grapes on different rootstocks. Horticulturae 2025, 11, 466. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Silva, M.J.; Callili, D.; Hernandes, J.L.; Moura, M.F. Yield of white and red grapes, in terms of quality, from hybrids and Vitis labrusca grafted on different rootstocks. Sci. Hortic. 2020, 259, 108846. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Silva, M.J.R.; Cunha, S.R.; Callili, D.; Sánchez, C.A.P.C.; Souza, J.R.; Moura, M.F. Productive performance and physicochemical quality of grapes for processing grown on different rootstocks. Pesq. Agropec. Bras. 2022, 57, e02071. [Google Scholar] [CrossRef]
- Domingues-Neto, F.J.; Pimentel Junior, A.; Modesto, L.R.; Moura, M.F.; Putti, F.F.; Boaro, C.S.F.; Ono, E.O.; Rodrigues, J.D.; Tecchio, M.A. Photosynthesis, biochemical and yield performance of grapevine hybrids in two rootstock and trellis height. Horticulturae 2023, 9, 596. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Tecchio, M.A.; Borges, C.V.; Rodrigues, J.D.; Ono, E.O.; Lima, G.P.P.; Moura, M.F.; Hernandes, J.L.; Silva, M.d.S.; Leonel, M. Yield performance and quality assessment of Brazilian hybrid grapes influenced by rootstocks and training systems. Horticulturae 2024, 10, 909. [Google Scholar] [CrossRef]
- Mahouachi, J. Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Sci. Hortic. 2018, 234, 95–100. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Ahmad, P. Role of mineral nutrients in abiotic stress tolerance: Revisiting the associated signaling mechanisms. In Vine Signaling Molecules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 269–285. [Google Scholar]
- Souza, L.P.; Nobre, R.G.; Gheyi, H.R.; Fátima, R.T.; Lima, G.S.; Diniz, G.L. Índices fisiológicos e crescimento de porta-enxertos de cajueiro sob estresse salino e concentrações de prolina. Irriga 2021, 1, 169–183. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Moura, M.F.; Teixeira, L.A.J.; Paioli-Pires, E.J.; Leonel, S. Influence of rootstocks and pruning times on yield and on nutrient content and extraction in ‘Niagara Rosada’ grapevine. Pesq. Agropec. Bras. 2014, 49, 340–348. [Google Scholar] [CrossRef]
- Callili, D.; Tecchio, M.A.; Sánchez, C.A.P.C.; Campos, O.P.; Teixeira, L.A.; Campos, L.S.; Bonfim, F.P.G.; Leonel, S. Rootstocks on yield and on nutrient uptake and extraction in ‘BRS Vitória’ grapevine. Bragantia 2025a, 84, e20240213. [Google Scholar] [CrossRef]
- Lecourt, J.; Lauvergeat, V.; Ollat, N.; Vivin, P.; Cookson, S.J. Shoot and root ionome responses to nitrate supply in grafted grapevines are rootstock genotype dependent. Aust. J. Grape Wine Res. 2015, 21, 311–318. [Google Scholar] [CrossRef]
- Zamboni, M.; Garavani, A.; Gatti, M.; Vercesi, A.; Parisi, M.G.; Bavaresco, L.; Poni, S. Vegetative, physiological and nutritional behavior of new grapevine rootstocks in response to different nitrogen supply. Sci. Hortic. 2016, 202, 99–106. [Google Scholar] [CrossRef]
- Cechin, K.S.R.S.; Bernardi, D.M. Elaboração e análise sensorial de patê de frango com ômega-3 e antioxidantes naturais do bagaço de uva. Fag J. Health 2020, 2, 93–102. [Google Scholar] [CrossRef]
- Callili, D.; Tecchio, M.A.; Sánchez, C.A.P.C.; Domingues Neto, F.J.; Bonfim, F.P.G.; Silva, M.S.; Leonel, S.; Lima, G.P.P.; Campos, O.P. Table grape ‘BRS Vitória’ yield performance, vigor, and quality as influenced by rootstocks in a subtropical region. Aust. J. Crop Sci. 2025, 19, 284–291. [Google Scholar] [CrossRef]
- Silva, M.J.R.d.; Paiva, A.P.M.; Junior, A.P.; Sánchez, C.A.P.C.; Callili, D.; Moura, M.F.; Tecchio, M.A. Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Sci. Hortic. 2018, 241, 194–200. [Google Scholar] [CrossRef]
- Oliveira, C.R.S.D.; Silva, F.B.D.; Pontes, G.M.D.A.; Mendonça, A.F.; Leão, P.C.D.S. Agronomic performance of ‘BRS Melodia’ seedless table grape grafted onto different rootstocks. Bragantia 2024, 83, e20230245. [Google Scholar] [CrossRef]
- Grigolo, C.R.; Citadin, I.; Pereira, E.A.; Oliveira, L.D.S.D.; Gobetti, R.C.R.; Feldberg, N.P. Yield components and physical attributes of the ‘BRS Magna’ grapevine on different rootstocks. Ciênc. Agrotec. 2023, 47, e008023. [Google Scholar] [CrossRef]
- Leão, P.C.D.S.; Nascimento, J.H.B.D.; Moraes, D.S.D.; Souza, E.R.D. Rootstocks for the new seedless table grape ‘BRS Vitória’ under tropical semi-arid conditions of São Francisco Valley. Ciênc. Agrot. 2020, 44, e025119. [Google Scholar] [CrossRef]
- Fayek, M.A.; Ali, A.E.M.; Rashedy, A.A. Physiological and chemical performance of the Flame seedless grapevine cultivar in the presence of Paulsen 1103 as the interstock. Ciênc. Agrotec. 2022, 46, e021621. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Centro Nacional de Pesquisa de Solos—CNPS. Sistema Brasileiro de Classificação do Solo; EMBRAPA-SPI/Embrapa-CNPS: Brasília, Brazil; Rio de Janeiro, Brazil, 1999. [Google Scholar]
- Maia, J.D.G.; Ritschel, P.; Souza, R.T.; Garrido, L.R. BRS Vitória’ Uva Para Mesa, sem Sementes, de Sabor Especial e Tolerante ao Míldio: Recomendações Agronômicas para a Região de Campinas, São Paulo; Circular Técnica n. 129; Embrapa Uva e Vinho: Bento Gonçalves, RS, Brazil, 2016; pp. 1–28. [Google Scholar]
- Leão, P.C.D.S.; Silva, E.E.G.D. Brotação e fertilidade de gemas em uvas sem sementes no Vale do São Francisco. Rev. Bras. Frutic. 2003, 25, 375–378. [Google Scholar] [CrossRef]
- Eichhorn, K.W.; Lorenz, D.H. Phaenologische entwicklungsstadien der rebe. Bull. OIV 1984, 14, 295–298. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Instituto Adolfo Lutz. Procedimentos e Determinações Gerais. In Metodos Fisico-Quimicos para Análise de Alimentos, 4th ed.; Zenebon, O., Pascuet, N.S., Tiglea, P., Eds.; Instituto Adolfo Lutz: São Paulo, SP, Brasil, 2008; pp. 85–104. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Santos, M.D.D.; Blatt, C.T.T. Teor de flavonóides e fenóis totais em folhas de Pyrostegia venusta Miers. de mata e de cerrado. Braz. J. Bot. 1998, 21, 135–140. [Google Scholar] [CrossRef]
- Awad, M.A.; de Jager, A.; Van Westing, L.M. Flavonoid and chlorogenic acid levels in apple fruit: Characterisation of variation. Sci. Hortic. 2000, 83, 249–263. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV–visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Castellarin, S.D. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario—A review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef]
- Miccichè, D.; de Rosas, M.I.; Ferro, M.V.; Di Lorenzo, R.; Puccio, S.; Pisciotta, A. Effects of artificial canopy shading on vegetative growth and ripening processes of cv. Nero d’Avola (Vitis vinifera L.). Front. Plant Sci. 2023, 14, 1210574. [Google Scholar] [CrossRef]
- Poni, S.; Frioni, T.; Gatti, M. Summer pruning in Mediterranean vineyards: Is climate change affecting its perception, modalities, and effects? Front. Plant Sci. 2023, 14, 1227628. [Google Scholar] [CrossRef]
- Mendonça, J.A.; Da Silva, S.R.; Scarpare Filho, J.A. Análise das gemas permite estimar produtividade e orientar manejo. Rev. Visão Agrícola 2021, 14, 18–21. [Google Scholar]
- Taiz, L.; Møller, I.M.; Murphy, A.; Zeiger, E. Fisiologia e Desenvolvimento Vegetal, 7th ed.; Artmed: Porto Alegre, RS, Brazil, 2024; 834p. [Google Scholar]
- Ferrara, G.; Mazzeo, A. Potential and actual bud fruitfulness: A tool for predicting and managing the yield of table grape varieties. Agronomy 2021, 11, 841. [Google Scholar] [CrossRef]
- Monteiro, A.I.; Malheiro, A.C.; Bacelar, E.A. Morphology, physiology and analysis techniques of grapevine bud fruitfulness: A review. Agriculture 2021, 11, 127. [Google Scholar] [CrossRef]
- Callili, D.; Sánchez, C.A.P.C.; Campos, O.P.; Carneiro, D.C.D.S.; Scudeletti, A.C.B.; Tecchio, M.A. Phenology, thermal demand, and maturation development of the ‘BRS Vitória’ grape cultivated on different rootstocks in subtropical conditions. Rev. Bras. De Frutic. 2023, 45, e-999. [Google Scholar] [CrossRef]
- Shakya, R.; Lal, M.A. Photoassimilate translocation. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer: Singapore, 2018; pp. 227–251. [Google Scholar]
- Zhang, P.; Dong, T.; Jin, H.; Pei, D.; Pervaiz, T.; Ren, Y.; Fang, J. Analysis of photosynthetic ability and related physiological traits in nodal leaves of grape. Sci. Hortic. 2022, 304, 111251. [Google Scholar] [CrossRef]
- Dinu, D.G.; Ricciardi, V.; Demarco, C.; Zingarofalo, G.; De Lorenzis, G.; Buccolieri, R.; Rustioni, L. Climate change impacts on plant phenology: Grapevine (Vitis vinifera) bud break in wintertime in Southern Italy. Foods 2021, 10, 2769. [Google Scholar] [CrossRef]
- Kowalczyk, B.A.; Bieniasz, M.; Kostecka-Gugała, A. Flowering biology of selected hybrid grape cultivars under temperate climate conditions. Agriculture 2022, 12, 655. [Google Scholar] [CrossRef]
- O’Brien, P.; De Bei, R.; Sosnowski, M.; Collins, C. A review of factors to consider for permanent cordon establishment and maintenance. Agronomy 2021, 11, 1811. [Google Scholar] [CrossRef]
- Du, W.; Cui, X.; Zhu, Y.; Liu, P. Detection of table grape berries need to be removed before thinning based on deep learning. Comput. Electron. Agric. 2025, 231, 110043. [Google Scholar] [CrossRef]
- Leão, P.C.D.S.; Rego, J.I.D.S.; Nascimento, J.H.B.; Souza, E.M.D.C. Yield and physicochemical characteristics of ‘BRS Magna’ and ‘Isabel Precoce’ grapes influenced by pruning in the São Francisco river valley. Ciênc. Rural 2018, 48, e20170463. [Google Scholar] [CrossRef]
- Arrizabalaga-Arriazu, M.; Gomès, E.; Morales, F.; Irigoyen, J.J.; Pascual, I.; Hilbert, G. High temperature and elevated carbon dioxide modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo. Front. Plant Sci. 2020, 11, 603687. [Google Scholar] [CrossRef]
- Prinsi, B.; Simeoni, F.; Galbiati, M.; Meggio, F.; Tonelli, C.; Scienza, A.; Espen, L. Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy 2021, 11, 289. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef]
- Moresi, F.V.; Cirigliano, P.; Rengo, A.; Brunori, E.; Biasi, R.; Scarascia Mugnozza, G.; Maesano, M. Monitoring abiotic stressors in rainfed vineyards involves combining UAV and field monitoring techniques to enhance precision management. Remote Sens. 2025, 17, 803. [Google Scholar] [CrossRef]
- Burbidge, C.A.; Ford, C.M.; Melino, V.J.; Wong, D.C.J.; Jia, Y.; Jenkins, C.L.D.; Sweetman, C. Biosynthesis and cellular functions of tartaric acid in grapevines. Front. Plant Sci. 2021, 12, 643024. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Ye, J.; Xu, F. Fruit quality of Vitis vinifera: How vine metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2022, 305, 111404. [Google Scholar] [CrossRef]
- Filimon, R.M.; Bunea, C.I.; Filimon, R.V.; Bora, F.D.; Damian, D. Long-term evolution of the climatic factors and its influence on grape quality in northeastern Romania. Horticulturae 2024, 10, 705. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jara, M.Á.I.; Rosillo, L.; Salinas, M.R. Effect of temperature and water availability on grape phenolic compounds and their extractability in Merlot grown in a warm area. Sci. Hortic. 2024, 337, 113475. [Google Scholar] [CrossRef]
- Hu, W.; Wang, J.; Deng, Q.; Liang, D.; Xia, H.; Lin, L.; Lv, X. Effects of different types of potassium fertilizers on nutrient uptake by grapevine. Horticulturae 2023, 9, 470. [Google Scholar] [CrossRef]
- Chen, Y.; Fei, Y.; Howell, K.; Chen, D.; Clingeleffer, P.; Zhang, P. Rootstocks for grapevines now and into the future: Selection of rootstocks based on drought tolerance, soil nutrient availability, and soil pH. Aust. J. Grape Wine Res. 2024, 2024, 6704238. [Google Scholar] [CrossRef]
- Lu, H.C.; Chen, W.K.; Wang, Y.; Bai, X.J.; Cheng, G.; Duan, C.Q.; He, F. Effect of the seasonal climatic variations on the accumulation of fruit volatiles in four grape varieties under the double cropping system. Front. Plant Sci. 2022, 12, 809558. [Google Scholar] [CrossRef] [PubMed]
- Rafique, R.; Ahmad, T.; Ahmed, M.; Khan, M.A.; Wilkerson, C.J.; Hoogenboom, G. Seasonal variability in the effect of temperature on key phenological stages of four table grapes cultivars. Int. J. Biometeorol. 2023, 67, 745–759. [Google Scholar] [CrossRef]
- Geng, K.; Zhang, Y.; Lv, D.; Li, D.; Wang, Z. Effects of water stress on the sugar accumulation and organic acid changes in Cabernet Sauvignon grape berries. Hortic. Sci. 2022, 49, 164. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Fu, X.; Wang, H.; Wang, R. Optimizing grape growth, berry quality and phenolic compounds with foliar co-application of iron and calcium. S. Afr. J. Bot. 2024, 169, 146–154. [Google Scholar] [CrossRef]
- Belviso, S.; Torchio, F.; Novello, V.; Giacosa, S.; De Palma, L.; Segade, S.R.; Gerbi, V.; Rolle, L. Modelling of the evolution of phenolic compounds in berries of ‘Italia’ table grape cultivar using response surface methodology. J. Food Compos. Anal. 2017, 62, 14–22. [Google Scholar] [CrossRef]
- Júnior, A.P.; Neto, F.J.D.; Monteiro, G.C.; Borges, C.V.; Lima, G.P.P.; Tecchio, M.A. Biochemical profile of ‘Niagara Rosada’ grapes under different rootstocks and training system. Rev. Bras. Ciênc. Agrár. 2021, 16, 1–6. [Google Scholar] [CrossRef]
- Kurt-Celebi, A.; Colak, N.; Hayirlioglu-Ayaz, S.; Kostadinović Veličkovska, S.; Ilieva, F.; Esatbeyoglu, T.; Ayaz, F.A. Accumulation of phenolic compounds and antioxidant capacity during berry development in black ‘Isabel’ grape (Vitis vinifera L. × Vitis labrusca L.). Molecules 2020, 25, 3845. [Google Scholar] [CrossRef] [PubMed]





| Rootstocks | BF (Ratio) | NCP (Number/Vine) | Yield (kg/Vine) | Productivity (t ha−1) |
|---|---|---|---|---|
| ‘IAC 572 Jales’ | 0.57 ± 0.16 | 14.2 ± 5.46 | 11.7 ± 3.61 | 19.4 ± 6.01 |
| ‘IAC 766 Campinas’ | 0.58 ± 0.21 | 15.9 ± 5.89 | 13.1 ± 3.95 | 21.9 ± 6.58 |
| ‘Paulsen 1103’ | 0.56 ± 0.16 | 14.1 ± 5.90 | 12.7 ± 2.51 | 21.2 ± 4.19 |
| LSD | 0.12 | 4.64 | 4.12 | 6.81 |
| CV (%) | 24.9 | 38.2 | 39.8 | 39.8 |
| Seasons | ||||
| I | 0.54 ± 0.17 ab | 12.3 ± 4.72 b | 9.5 ± 3.49 b | 15.8 ± 5.81 b |
| II | 0.51 ± 0.19 b | 12.5 ± 4.43 b | 9.3 ± 2.27 b | 15.5 ± 3.79 b |
| III | 0.66 ± 0.10 a | 19.4 ± 4.18 a | 18.8 ± 1.70 a | 31.3 ± 2.84 a |
| LSD | 0.13 | 3.16 | 2.50 | 4.20 |
| CV (%) | 30.1 | 28.4 | 26.4 | 26.4 |
| Rootstocks | FCM (g) | CL (cm) | CW (cm) | FRM (g) |
|---|---|---|---|---|
| ‘IAC 572 Jales’ | 828.6 ± 160.5 | 20.8 ± 2.89 | 14.1 ± 1.85 | 16.2 ± 2.96 |
| ‘IAC 766 Campinas’ | 807.8 ± 153.4 | 21.7 ± 5.16 | 14.5 ± 1.91 | 16.3 ± 3.11 |
| ‘Paulsen 1103’ | 863.5 ± 172.1 | 20.9 ± 1.98 | 13.7 ± 1.50 | 16.5 ± 3.09 |
| LSD | 81.9 | 1.74 | 1.18 | 1.77 |
| CV (%) | 11.9 | 10.0 | 10.2 | 13.2 |
| Seasons | ||||
| I | 774.3 ± 122.5 b | 18.9 ± 1.25 b | 13.9 ± 1.86 ab | 15.1 ± 2.92 b |
| II | 739.9 ± 90.7 b | 25.1 ± 2.98 a | 13.4 ± 1.50 b | 15.4 ± 2.06 b |
| III | 985.7 ± 147.8 a | 19.3 ± 2.17 b | 14.9 ± 1.64 a | 18.4 ± 2.90 a |
| LSD | 104.8 | 1.19 | 1.33 | 2.31 |
| CV (%) | 16.7 | 7.45 | 12.5 | 18.8 |
| Rootstocks | FBM (g) | BL (cm) | BW (cm) | BRL (cm) | NBC (Number/Cluster) |
|---|---|---|---|---|---|
| ‘IAC 572 Jales’ | 12.3 ± 1.20 | 3.10 ± 0.16 | 2.26 ± 0.19 | 1.38 ± 0.14 | 66.3 ± 9.78 |
| ‘IAC 766 Campinas’ | 12.4 ± 1.36 | 3.10 ± 0.17 | 2.20 ± 0.24 | 1.41 ± 0.17 | 64.7 ± 12.3 |
| ‘Paulsen 1103’ | 12.4 ± 1.11 | 3.20 ± 0.20 | 2.26 ± 0.30 | 1.43 ± 0.19 | 69.1 ± 13.8 |
| LSD | 0.91 | 0.09 | 0.12 | 0.08 | 6.15 |
| CV (%) | 8.94 | 3.39 | 6.50 | 6.82 | 11.2 |
| Seasons | |||||
| I | 12.3 ± 0.92 ab | 3.11 ± 0.16 b | 2.08 ± 0.12 b | 1.50 ± 0.13 a | 61.9 ± 10.5 b |
| II | 11.7 ± 1.22 b | 3.24 ± 0.09 a | 2.46 ± 0.05 a | 1.32 ± 0.03 b | 62.5 ± 8.23 b |
| III | 13.1 ± 1.14 a | 2.98 ± 0.18 c | 2.18 ± 0.30 b | 1.40 ± 0.23 ab | 75.7 ± 12.2 a |
| LSD | 0.86 | 0.12 | 0.14 | 0.11 | 8.86 |
| CV (%) | 9.22 | 5.17 | 8.48 | 10.8 | 17.6 |
| Variables | Seasons | Rootstocks | CV1 | CV2 | ||
|---|---|---|---|---|---|---|
| ‘IAC 572 Jales’ | ‘IAC 766 Campinas’ | ‘Paulsen 1103’ | ||||
| Soluble solids SS (°Brix) | I | 18.1 ± 0.03 Aab | 18.5 ± 0.08 Aab | 18.9 ± 0.04 Aa | 3.66 | 3.63 |
| II | 17.3 ± 0.04 Ab | 17.8 ± 0.03 Ab | 17.2 ± 0.04 Ab | |||
| III | 18.4 ± 0.04 Ba | 18.8 ± 0.05 ABa | 19.6 ± 0.04 Aa | |||
| Titratable acidity TA (%) | I | 0.43 ± 0.03 Aa | 0.46 ± 0.04 Ab | 0.46 ± 0.04 Aab | 13.3 | 13.7 |
| II | 0.51 ± 0.08 Aa | 0.47 ± 0.02 ABb | 0.38 ± 0.04 Bb | |||
| III | 0.51 ± 0.03 Ba | 0.71 ± 0.04 Aa | 0.50 ± 0.04 Ba | |||
| pH | I | 3.46 ± 0.03 Ab | 3.49 ± 0.06 Ab | 3.50 ± 0.03 Ab | 1.85 | 1.94 |
| II | 3.85 ± 0.06 Aa | 3.79 ± 0.06 Aa | 3.82 ± 0.06 Aa | |||
| III | 3.34 ± 0.07 Bc | 3.40 ± 0.03 Bc | 3.55 ± 0.03 Ab | |||
| Maturity index (SS/TA) | I | 42.4 ± 2.87 Aa | 40.6 ± 6.03 Aa | 41.8 ± 2.87 Aa | 16.9 | 13.6 |
| II | 34.3 ± 4.26 Bb | 37.9 ± 2.39 Ba | 45.3 ± 4.26 Aa | |||
| III | 36.4 ± 3.92 Aab | 26.9 ± 5.18 Bb | 40.7 ± 3.92 Aa | |||
| Bioactive Compounds and Antioxidant Activity | ‘IAC 572 Jales’ | ‘IAC 766 Campinas’ | ‘Paulsen 1103’ | CV (%) |
|---|---|---|---|---|
| Total phenolics (mg 100 g−1) | 109.07 ± 1.71 b | 124.35 ± 2.98 a | 136.12 ± 1.98 a | 5.68 |
| Total flavonoids (mg 100 g−1) | 16.74 ± 0.58 a | 17.25 ± 1.53 a | 18.40 ± 1.77 a | 6.42 |
| Total monomeric anthocyanins (mg 100 g−1) | 59.44 ± 5.24 b | 64.67 ± 2.37 a | 66.55 ± 5.35 a | 3.46 |
| DPPH (µg Trolox 100 g−1) | 15.66 ± 1.28 a | 17.09 ± 1.87 a | 16.47 ± 1.97 a | 11.86 |
| FRAP (mmol FeSO4 100 g−1) | 8.08 ± 0.34 b | 8.54 ± 0.48 b | 9.59 ± 0.35 a | 3.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Monteiro, H.S.A.; Tecchio, M.A.; Brito, S.d.N.S.; Alonso, J.C.; Feliciano, D.E.F.; Silva, M.d.S.; Lima, G.P.P.; Ruffo Roberto, S.; Aguiar, A.C.d.; Leonel, S. Production Parameters and Biochemical Composition of ‘BRS Núbia’ Table Grapes Affected by Rootstocks Under Subtropical Conditions. Agronomy 2026, 16, 347. https://doi.org/10.3390/agronomy16030347
Monteiro HSA, Tecchio MA, Brito SdNS, Alonso JC, Feliciano DEF, Silva MdS, Lima GPP, Ruffo Roberto S, Aguiar ACd, Leonel S. Production Parameters and Biochemical Composition of ‘BRS Núbia’ Table Grapes Affected by Rootstocks Under Subtropical Conditions. Agronomy. 2026; 16(3):347. https://doi.org/10.3390/agronomy16030347
Chicago/Turabian StyleMonteiro, Harleson Sidney Almeida, Marco Antonio Tecchio, Sinara de Nazaré Santana Brito, Juan Carlos Alonso, Daví Eduardo Furno Feliciano, Marcelo de Souza Silva, Giuseppina Pace Pereira Lima, Sergio Ruffo Roberto, Aline Cristina de Aguiar, and Sarita Leonel. 2026. "Production Parameters and Biochemical Composition of ‘BRS Núbia’ Table Grapes Affected by Rootstocks Under Subtropical Conditions" Agronomy 16, no. 3: 347. https://doi.org/10.3390/agronomy16030347
APA StyleMonteiro, H. S. A., Tecchio, M. A., Brito, S. d. N. S., Alonso, J. C., Feliciano, D. E. F., Silva, M. d. S., Lima, G. P. P., Ruffo Roberto, S., Aguiar, A. C. d., & Leonel, S. (2026). Production Parameters and Biochemical Composition of ‘BRS Núbia’ Table Grapes Affected by Rootstocks Under Subtropical Conditions. Agronomy, 16(3), 347. https://doi.org/10.3390/agronomy16030347

