Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Practice Management
2.3. Sampling Collection and Measurements
2.3.1. Soil Properties and Plant Samples
2.3.2. Greenhouse Gases Sampling and Measurement
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Soil Physical Properties and Nutrient Availability
3.2. Soil Soluble Ion Composition and Salinity
3.3. Soil Quality Index
3.4. Sunflower Biomass, N Uptake, Yield, and Partial N Productivity
3.5. Farmland Ecosystem Service Value
4. Discussion
4.1. Effect of Different Amendments on Soil Physicochemical Properties and Quality Index
4.2. Effect of Different Amendments on Sunflower N Uptake, Yield, and Partial N Productivity
4.3. Effect of Different Amendments on Farmland Ecosystem Service Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Sahab, S.; Suhani, I.; Srivastava, V.; Chauhan, P.S.; Singh, R.P.; Prasad, V. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci. Total Environ. 2021, 764, 144164. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Wang, C.; Huang, H.; Zhuang, M. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Sci. Total Environ. 2023, 891, 164530. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; El-Beshbeshy, T.; Abd El-Kader, N.; El Shal, R.; Khalafallah, N. Impacts of biochar application on soil fertility, plant nutrients uptake and maize (Zea mays L.) yield in saline sodic soil. Arab. J. Geosci. 2019, 12, 719. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Isayenkov, S.V. The regulation of plant cell wall organisation under salt stress. Front. Plant Sci. 2023, 14, 1118313. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Shang, H.; Yan, A.; Han, R.; Yao, Y.; Chang, Y.; Yang, H.; Chen, L.; Meng, T. Preliminary study on the effect of microbial amendment on saline soils in a coastal reclaimed area. Trans. Chin. Soc. Agric. Eng. 2020, 36, 120–126. (In Chinese) [Google Scholar]
- Zhang, J.; Du, L.; Xing, Z.; Zhang, R.; Li, F.; Zhong, T.; Ren, F.; Yin, M.; Ding, L.; Liu, X. Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower. Agric. Water Manag. 2023, 288, 108453. [Google Scholar] [CrossRef]
- Cheruiyot, W.K.; Zhu, S.; Indoshi, S.N.; Wang, W.; Ren, A.; Cheng, Z.; Zhao, Z.; Zhang, J.; Lu, J.; Zhang, X.; et al. Shallow-incorporated straw returning further improves rainfed maize productivity, profitability and soil carbon turnover on the basis of plastic film mulching. Agric. Water Manag. 2023, 289, 108535. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Wu, G.; Huang, X.; Fan, G. Maize straw mulching with no-tillage increases fertile spike and grain yield of dryland wheat by regulating root-soil interaction and nitrogen nutrition. Soil Tillage Res. 2023, 228, 105652. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Aborisade, M.A.; Feng, A.; Oba, B.T.; Kumar, A.; Battamo, A.Y.; Huang, M.; Chen, D.; Yang, Y.; Sun, P.; Zhao, L. Pyrolytic synthesis and performance efficacy comparison of biochar-supported nanoscale zero-valent iron on soil polluted with toxic metals. Arch. Agron. Soil Sci. 2022, 69, 2249–2266. [Google Scholar] [CrossRef]
- He, L.; Zhao, J.; Yang, S.; Zhou, H.; Wang, S.; Zhao, X.; Xing, G. Successive biochar amendment improves soil productivity and aggregate microstructure of a red soil in a five-year wheat-millet rotation pot trial. Geoderma 2020, 376, 114570. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P. Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 1969–1978. [Google Scholar] [CrossRef]
- Koralegedara, N.H.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Recent advances in flue gas desulfurization gypsum processes and applications—A review. J. Environ. Manag. 2019, 251, 109572. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Tian, L.; Shi, S.; Xu, S.; Yang, F.; Li, X.; Wang, Z.; Tian, C. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 2018, 329, 108–117. [Google Scholar] [CrossRef]
- Murtaza, B.; Murtaza, G.; Sabir, M.; Owens, G.; Abbas, G.; Imran, M.; Shah, G.M. Amelioration of saline-sodic soil with gypsum can increase yield and nitrogen use efficiency in rice-wheat cropping system. Arch. Agron. Soil Sci. 2017, 63, 1267–1280. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Hu, Y.; Wang, L.; Qiao, T. The effect of fungal fertilizer and desulfurization gypsum combined application on the quality of saline-alkali soil and the yield of pacesetter. Soil Fert. Sci. China 2024, 10, 127–135. (In Chinese) [Google Scholar]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Rasafi, T.E.; Moukhtari, A.E.; Farissi, M.; Ziouti, A.; Prasad, M.N.V.; Oukarroum, A.; Haddioui, A. Soil amendments as promising strategies for phytomanagement of Cd contaminated soils. In Bio-Organic Amendments for Heavy Metal Remediation; Elsevier: Amsterdam, The Netherlands, 2024; pp. 499–513. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Li, X.; Zhu, W.; Kang, Y.; Cui, G. Effects of different soil water matric potentials on growth traits and yield characteristics of sunflower (Helianthus annuus Linn.) under drip irrigation in a salinized farmland in northern China. Irrig. Sci. 2025, 43, 391–401. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; Del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022; pp. 1–410. [Google Scholar]
- Shirazi, M.A.; Boersma, L. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 1984, 48, 142–147. [Google Scholar] [CrossRef]
- Zuo, Q.; Kuai, J.; Zhao, L.; Hu, Z.; Wu, J.; Zhou, G. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res. 2017, 203, 47–54. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part I Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Xu, X.; Huang, G.; Sun, C.; Pereira, L.; Ramos, T.; Huang, Q.; Hao, Y. Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agric. Water Manag. 2013, 125, 46–60. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Tang, X.; Zang, L.; Liu, X.; Lu, J. Analysis of high content water-soluble salt cation in saline-alkali soil by X-Ray fluorescence spectrometry. Spectrosc. Spectr. Anal. 2020, 40, 1467–1472. (In Chinese) [Google Scholar]
- Li, S.; Hu, M.; Shi, J.; Tian, X.; Wu, J. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China. Sci. Total Environ. 2021, 767, 145347. [Google Scholar] [CrossRef]
- Brealey, L. The Determination of potassium in fertilisers by flame photometry. Analyst 1951, 76, 340–343. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Teodoru, C.R.; Nyoni, F.C.; Borges, A.V.; Darchambeau, F.; Nyambe, I.; Bouillon, S. Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries. Biogeosci. Discuss. 2014, 11, 16391–16445. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.; Wang, X.; Yu, D. Development of biological soil quality indicator system for subtropical China. Soil Tillage Res. 2013, 126, 112–118. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gunina, A.; Zamanian, K.; Tian, J.; Luo, Y.; Xingliang, X.U.; Yudina, A.; Aponte, H.; Alharbi, H.; Ovsepyan, L. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Front. Agr. Sci. Eng. 2020, 7, 282–288. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Cao, W.; Huang, Y. Appraisal of Agro-ecosystem Services in Winter Green Manure-spring Maize. Ecol. Environ. Sci. 2016, 25, 597–604. (In Chinese) [Google Scholar]
- Yue, Q.; Wu, H.; Wang, Y.; Guo, P. Recycling. Achieving sustainable development goals in agricultural energy-water-food nexus system: An integrated inexact multi-objective optimization approach. Resour. Conserv. Recycl. 2021, 175, 105877. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Chen, Z.; Xiong, Y.; Huang, Q.; Huang, G. A process simulation-based framework for resource, food, and ecology trade-off by optimizing irrigation and N management. J. Hydrol. 2023, 617, 129035. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Wang, H.; Shao, Y.; Fang, B.; Yue, J.; Lu, F.; Ma, F.; Qin, F.; Yang, C. Evaluation of ecosystem services of wheat-maize cropping system under different farming modes in the rain-fed area of southern Henan Province. Chin. J. Ecol. 2015, 34, 1270–1276. (In Chinese) [Google Scholar]
- Khushboo, D.; Subhash, B.; Sanjay, S.R.; Rishi, R.; Md, Y.; Veda, K.; Sudesh; Aastika, P.; Ananya, G.; Vipin, K.; et al. Effect of legume integration and nitrogen levels on selected ecosystem services and soil biological indicators in maize farming under humid subtropics. Proc. Indian Natl. Sci. Acad. 2025, 91, 1512–1525. [Google Scholar] [CrossRef]
- Porter, J.; Costanza, R.; Sandhu, H.; Sigsgaard, L.; Wratten, S. The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio 2009, 38, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Chen, L.; Zhu, P. Evaluation of ecological service value of rice-wheat rotation ecosystem. Chin. J. Eco-Agric. 2008, 16, 1541–1545. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, F.; Huang, Y.; Li, X.; Li, T.; Shen, N.; Yang, M.; Li, S. Response of Soil Aggregate Stability Changes of Typical Huangmian Soil to Vegetation Succession. Soils 2025, 57, 195–203. (In Chinese) [Google Scholar]
- Jia, A.; Song, X.; Li, S.; Liu, Z.; Liu, X.; Han, Z.; Gao, H.; Gao, Q.; Zha, Y.; Liu, Y.; et al. Biochar enhances soil hydrological function by improving the pore structure of saline soil. Agric. Water Manag. 2024, 306, 109170. [Google Scholar] [CrossRef]
- Villagra-Mendoza, K.; Horn, R. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 2018, 326, 88–95. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Xiong, J.; Zhang, Q.; Shang, J. Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions. Biochar 2022, 4, 20. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- Cao, Y.; Song, H.; Zhang, L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int. J. Mol. Sci. 2022, 23, 16048. [Google Scholar] [CrossRef]
- Pan, P.; Liu, H.; Liu, A.; Zhang, X.; Chen, Q.; Wang, G.; Liu, B.; Li, Q.; Lei, M. Rhizosphere environmental factors regulated the cadmium adsorption by vermicompost: Influence of pH and low-molecular-weight organic acids. Ecotoxicol. Environ. Saf. 2023, 266, 115593. [Google Scholar] [CrossRef]
- Wang, D.; Huang, C.; Li, X.; Liu, J.; Zhang, F. Effects of different amount of organic materials combined with desulfurized gypsum on soil improvement and crop yield in saline-sodic soil. Agric. Res. Arid Areas 2019, 37, 34–40. (In Chinese) [Google Scholar]
- Tian, Y.; Xia, R.; Ying, Y.; Lu, S. Desulfurization steel slag improves the saline-sodic soil quality by replacing sodium ions and affecting soil pore structure. J. Environ. Manag. 2023, 345, 118874. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xin, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Ullah, S.; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Qadir, A.A.; Alserae, H.; Raza, A.; Mohy-Ud-Din, W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: Fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. Environ. Sci. Pollut. Res. 2023, 30, 109889–109920. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liang, P.; Yang, L.; Wei, B.; Han, S.; Wu, M.; He, X.; Zeng, W.; He, Z.; Xiao, J.; et al. Effects of Biochar-Based Fertilizers on Fenlong-Ridging Soil Physical Properties, Nutrient Activation, Enzyme Activity, Bacterial Diversity, and Sugarcane Yield. Agronomy 2025, 15, 1594. [Google Scholar] [CrossRef]
- Ren, G.; Shi, W.; Li, W.; Wang, J.; Wang, C.; Zhao, G. Pyrolysis temperature shapes biochar-mediated soil microbial communities and carbon-nitrogen metabolism. Front. Microbiol. 2025, 16, 1657149. [Google Scholar] [CrossRef]
- Du, X.; Yan, Y. Application of desulfurized gypsum combined with pig manure to improve soil quality and promote crop growth in saline-alkali soils. Arid Land Res. Manag. 2025, 40, 132–149. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Jiao, X.; Jiang, H.; Liu, Y.; Wang, X.; Ma, C. The Fate and Challenges of the Main Nutrients in Returned Straw: A Basic Review. Agronomy 2024, 14, 698. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Liu, J.; Zhuo, Y.; Zhang, W.; Wang, J.; Xu, L. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China. Agric. Ecosyst. Environ. 2018, 261, 115–124. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Xiao, G.; Wang, J. Effect of typical takyr solonetzs reclamation with Flue flue gas desulphurization gypsum and its security assessment. Trans. Chin. Soc. Agric. Eng. 2016, 32, 141–147. (In Chinese) [Google Scholar]
- Fang, S.; Hou, X.; Liang, X. Response Mechanisms of Plants Under Saline-Alkali Stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Zhang, K.; Chang, L.; Li, G.; Li, Y. Advances and future research in ecological stoichiometry under saline-alkali stress. Environ. Sci. Pollut. Res. 2022, 30, 5475–5486. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Wang, Z.; Liang, Z.; Wang, M.; Liu, M. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. A comprehensive review of impacts of soil management practices and climate adaptation strategies on soil thermal conductivity in agricultural soils. Rev. Environ. Sci. Bio-Technol. 2025, 24, 513–543. [Google Scholar] [CrossRef]
- Mostafa, H.H.A.; Li, B.; Zhu, X.; Song, C. Nitrogen assimilation under osmotic stress in maize (Zea mays L.) seedlings. Plant Growth Regul. 2021, 94, 87–99. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qin, C.; Begum, N.; Qi, M.; Dong, X.; El-Esawi, M.; El-Sheikh, M.A.; Alatar, A.A.; Zhang, L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 2019, 19, 479. [Google Scholar] [CrossRef]
- Deng, J.; Ye, J.; Liu, K.; Harrison, M.T.; Zhong, X.; Wang, C.; Tian, X.; Huang, L.; Zhang, Y. Optimizing Agronomy Improves Super Hybrid Rice Yield and Nitrogen Use Efficiency through Enhanced Post-Heading Carbon and Nitrogen Metabolism. Agronomy 2023, 13, 13. [Google Scholar] [CrossRef]
- Zhu, W.; Gu, S.; Jiang, R.; Zhang, X.; Hatano, R. Saline-Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture 2024, 14, 1210. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, A.; Ma, F.; Liu, J.; Xiao, G.; Xu, X. Amendment of Saline-Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China. Sustainability 2023, 15, 8658. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, W.; Chen, G.; Wang, X.; Li, T. Gypsum and organic materials improved soil quality and crop production in saline-alkali on the loess plateau of China. Front. Environ. Sci. 2024, 12, 1434147. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Qayyum, M.F.; Abdullah, M.A.; Rizwan, M.; Haider, G.; Ali, M.A.; Zafar-Ul-Hye, M.; Abid, M. Different nitrogen and biochar sources’ application in an alkaline calcareous soil improved the maize yield and soil nitrogen retention. Arab. J. Geosci. 2019, 12, 664. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Q.; Zhao, S.; Chen, D.; Zhao, Z.; Gao, N.; Huang, M.; Ye, X. Combined metabolomic and microbial community analyses reveal that biochar and organic manure alter soil C-N metabolism and greenhouse gas emissions. Environ. Int. 2024, 192, 109028. [Google Scholar] [CrossRef] [PubMed]








| Years | Treatments | Biomass (kg ha−1) | N Uptake (kg ha−1) | Yield (t ha−1) | PNP (kg kg−1) |
|---|---|---|---|---|---|
| 2017 | CK | 9537.0 ± 289.1 d | 62.5 ± 1.6 d | 3.08 ± 0.09 c | 15.0 ± 0.4 c |
| RT | 9900.1 ± 547.8 bcd | 69.9 ± 3.8 c | 3.19 ± 0.09 c | 15.5 ± 0.4 c | |
| PL | 9636.0 ± 403.9 cd | 71.9 ± 3.4 c | 2.37 ± 0.07 d | 11.5 ± 0.3 d | |
| BC | 10,494.0 ± 139.6 b | 116.8 ± 4.5 a | 3.62 ± 0.11 b | 17.6 ± 0.5 b | |
| DG | 12,144.2 ± 669.9 a | 107.2 ± 6.2 b | 3.84 ± 0.12 a | 18.6 ± 0.6 a | |
| DGO | 10,395.3 ± 313.5 bc | 109.2 ± 3.8 b | 3.45 ± 0.17 b | 16.8 ± 0.4 b | |
| 2018 | CK | 11,269.5 ± 381.4 d | 59.7 ± 1.7 e | 3.43 ± 0.14 c | 16.7 ± 0.7 c |
| RT | 11,621.3 ± 624.5 d | 74.6 ± 3.8 d | 4.18 ± 0.12 b | 20.3 ± 0.6 b | |
| PL | 11,746.0 ± 425.4 d | 75.4 ± 3.0 d | 3.48 ± 0.10 c | 16.9 ± 0.5 c | |
| BC | 15,341.7 ± 152.5 a | 136.7 ± 2.7 a | 4.54 ± 0.14 a | 22.0 ± 0.7 a | |
| DG | 14,402.5 ± 770.3 b | 107.9 ± 6.0 c | 4.48 ± 0.13 a | 21.8 ± 0.7 a | |
| DGO | 13,341.9 ± 57.1 c | 114.5 ± 1.9 b | 4.33 ± 0.17 ab | 21.0 ± 0.8 ab | |
| 2019 | CK | 11,398.2 ± 372.8 c | 65.0 ± 1.8 d | 5.25 ± 0.15 d | 25.5 ± 0.7 d |
| RT | 13,010.6 ± 691.3 b | 85.1 ± 4.3 c | 5.38 ± 0.19 d | 26.1 ± 0.9 d | |
| PL | 12,326.2 ± 458.5 b | 81.8 ± 3.3 c | 5.50 ± 0.16 d | 26.7 ± 0.8 d | |
| BC | 16,375.6 ± 312.9 a | 131.6 ± 1.3 a | 7.63 ± 1.15 a | 37.0 ± 0.7 a | |
| DG | 13,028.7 ± 695.9 b | 96.9 ± 5.4 b | 6.50 ± 0.20 c | 31.6 ± 1.0 c | |
| DGO | 16,081.6 ± 121.9 a | 131.2 ± 1.7 a | 7.13 ± 0.29 b | 34.6 ± 1.4 b |
| Years | Treatments | Economic Value of Agricultural Products Supply (CNY ha−1) | Economic Value of SOM Accumulation (CNY ha−1) | Economic Value of Soil Nutrient Accumulation (CNY ha−1) | |||
|---|---|---|---|---|---|---|---|
| Accumulation of Alkali-Hydro N Nutrient | Accumulation of Available P Nutrient | Accumulation of Available K Nutrient | Accumulation of Soil Nutrient | ||||
| 2017 | CK | 12,060.8 ± 482.4 c | 4046.2 ± 161.8 b | 907.0 ± 36.3 c | 784.3 ± 31.4 e | 4102.3 ± 164.1 c | 5793.7 ± 231.7 c |
| RT | 11,060.8 ± 663.6 d | 4550.7 ± 273.0 a | 1157.3 ± 69.4 a | 869.0 ± 52.1 cd | 4875.2 ± 287.2 b | 6901.5 ± 406.5 ab | |
| PL | 4713.7 ± 235.7 e | 4598.5 ± 229.9 a | 1061.3 ± 53.1 b | 913.9 ± 45.7 bc | 5372.5 ± 268.6 a | 7347.7 ± 367.4 a | |
| BC | 13,197.2 ± 395.9 b | 4860.2 ± 167.7 a | 983.6 ± 33.9 bc | 992.1 ± 34.2 a | 4888.2 ± 168.6 b | 6864.0 ± 236.8 ab | |
| DG | 14,177.6 ± 708.9 a | 3855.6 ± 192.8 b | 902.1 ± 47.5 c | 822.1 ± 43.2 de | 4777.7 ± 251.3 b | 6501.9 ± 342.0 b | |
| DGO | 10,586.3 ± 317.6 d | 4765.2 ± 143.0 a | 907.8 ± 27.2 c | 979.1 ± 29.4 ab | 5109.0 ± 153.3 ab | 6995.9 ± 209.9 ab | |
| 2018 | CK | 14,312.9 ± 572.5 c | 3977.9 ± 159.1 c | 878.9 ± 35.2 d | 754.6 ± 30.2 e | 4645.2 ± 185.8 b | 6278.7 ± 251.1 c |
| RT | 19,130.8 ± 1147.8 b | 4920.0 ± 295.2 b | 1195.3 ± 71.7 bc | 1190.2 ± 70.1 ab | 5081.8 ± 299.3 ab | 7467.3 ± 439.8 a | |
| PL | 14,648.6 ± 732.4 c | 4992.6 ± 249.6 b | 1223.4 ± 61.2 b | 972.5 ± 48.6 d | 5221.7 ± 261.1 a | 7417.6 ± 370.9 ab | |
| BC | 21,403.4 ± 738.4 a | 5434.2 ± 187.5 a | 1392.0 ± 48.0 a | 1261.2 ± 43.5 a | 5018.8 ± 173.1 ab | 7672.0 ± 264.7 a | |
| DG | 21,051.1 ± 1052.6 a | 3830.6 ± 191.5 c | 1101.0 ± 57.9 c | 1055.8 ± 55.5 cd | 4671.2 ± 245.7 b | 6828.0 ± 359.2 bc | |
| DGO | 20,082.5 ± 602.5 ab | 4691.5 ± 140.7 b | 1142.1 ± 34.3 bc | 1131.5 ± 33.9 bc | 4925.0 ± 147.7 ab | 7198.6 ± 216.0 ab | |
| 2019 | CK | 25,951.7 ± 1038.1 d | 3903.4 ± 156.1 d | 1059.1 ± 42.4 e | 1040.2 ± 41.6 d | 4592.6 ± 183.7 c | 6691.9 ± 267.7 c |
| RT | 26,751.7 ± 1605.1 d | 4587.7 ± 275.3 bc | 1291.0 ± 77.5 c | 1366.6 ± 80.5 b | 6142.5 ± 361.8 a | 8800.1 ± 518.3 ab | |
| PL | 27,551.8 ± 1377.6 d | 4883.7 ± 244.2 ab | 1398.5 ± 69.9 b | 1293.6 ± 64.7 bc | 6293.7 ± 314.7 a | 8985.9 ± 449.3 ab | |
| BC | 41,152.4 ± 1419.8 a | 5182.8 ± 178.8 a | 1542.1 ± 53.2 a | 1479.9 ± 51.1 a | 6283.2 ± 216.8 a | 9305.2 ± 321.0 a | |
| DG | 33,952.1 ± 1697.6 c | 3853.0 ± 192.6 d | 1180.2 ± 62.1 d | 1209.0 ± 63.6 c | 4695.4 ± 247.0 c | 7084.6 ± 372.7 c | |
| DGO | 37,952.3 ± 1138.6 b | 4498.6 ± 135.0 c | 1562.4 ± 46.9 a | 1488.6 ± 44.7 a | 5483.7 ± 164.5 b | 8534.6 ± 256.0 b | |
| Years | Treatments | Values of CO2 Fixation (CNY ha−1) | Values of O2 Release (CNY ha−1) | Values of GHG Emissions (CNY ha−1) | Total Economic Value of Climate Regulation (CNY ha−1) | |||
|---|---|---|---|---|---|---|---|---|
| CH4 | N2O | CO2 | Total GHG Value | |||||
| 2017 | CK | 2670.7 ± 106.8 c | 4312.6 ± 172.5 c | 0.2 ± 0.01 d | 34.0 ± 1.4 b | 1351.4 ± 54.1 b | −1385.5 ± 55.4 b | 5597.9 ± 223.9 c |
| RT | 2772.4 ± 166.3 bc | 4476.8 ± 268.6 bc | 0.6 ± 0.02 c | 46.1 ± 2.8 a | 1557.8 ± 93.5 a | −1604.3 ± 96.3 a | 5644.8 ± 338.7 c | |
| PL | 2698.4 ± 134.9 bc | 4357.4 ± 217.9 bc | 0.9 ± 0.03 a | 30.9 ± 1.5 bc | 1235.1 ± 61.8 bc | −1266.6 ± 63.3 bc | 5789.2 ± 289.5 c | |
| BC | 2938.7 ± 101.4 b | 4745.4 ± 163.7 b | 0.7 ± 0.02 b | 32.9 ± 1.1 b | 1307.1 ± 45.1 b | −1340.6 ± 46.2 b | 6343.5 ± 218.9 b | |
| DG | 3400.8 ± 170.0 a | 5491.5 ± 274.6 a | −0.8 ± 0.03 e | 27.9 ± 1.4 c | 1187.1 ± 59.4 c | −1214.5 ± 60.7 c | 7677.8 ± 3 83.9 a | |
| DGO | 2911.0 ± 87.3 bc | 4700.6 ± 141.0 bc | 0.6 ± 0.01 c | 35.5 ± 1.9 c | 1140.9 ± 59.8 c | −1176.7 ± 61.7 c | 6434.9 ± 337.6 b | |
| 2018 | CK | 3155.9 ± 126.2 c | 5096.1 ± 203.8 c | −0.8 ± 0.02 b | 107.5 ± 4.3 c | 1693.9 ± 67.8 c | −1800.8 ± 72.0 cd | 6451.1 ± 258.0 c |
| RT | 3254.4 ± 195.3 c | 5255.1 ± 315.3 c | −0.1 ± 0.01 b | 121.7 ± 7.3 b | 1889.4 ± 113.4 b | −2011.0 ± 120.7 b | 6498.6 ± 389.9 c | |
| PL | 3289.3 ± 164.5 c | 5311.6 ± 265.6 c | −0.2 ± 0.01 b | 106.4 ± 5.3 bc | 1842.2 ± 92.1 bc | −1948.5 ± 97.4 bc | 6652.3 ± 332.6 c | |
| BC | 4296.2 ± 148.2 a | 6937.5 ± 239.3 a | −0.4 ± 0.01 a | 115.1 ± 4.0 d | 1521.5 ± 52.5 d | −1636.4 ± 56.5 d | 9597.4 ± 331.1 a | |
| DG | 4033.2 ± 201.7 a | 6512.8 ± 325.6 a | −0.4 ± 0.01 a | 146.0 ± 7.3 a | 2195.2 ± 10 9.8 a | −2341.0 ± 117.0 a | 8205.1 ± 410.3 b | |
| DGO | 3736.2 ± 112.1 b | 6033.2 ± 181.0 b | 0.1 ± 0.02 a | 136.4 ± 7.2 bc | 1799.0 ± 94.4 bc | −1935.4 ± 101.5 bc | 7834.0 ± 411.0 b | |
| 2019 | CK | 3191.9 ± 127.7 c | 5154.3 ± 206.2 c | −0.9 ± 0.02 b | 183.0 ± 11.6 a | 1633.1 ± 65.3 a | −1815.5 ± 72.6 a | 6530.6 ± 261.2 c |
| RT | 3643.4 ± 218.6 b | 5883.4 ± 353.0 b | −1.3 ± 0.05 b | 182.5 ± 17.4 ab | 1588.6± 95.3 ab | −1770.3 ± 106.2 a | 7756.6 ± 465.2 b | |
| PL | 3451.8 ± 172.6 bc | 5573.9 ± 287.7 bc | −1.4 ± 0.04 b | 106.4 ± 8.4 a | 1623.6± 81.2 a | −1729.2 ± 86.5 a | 7296.4 ± 364.8 b | |
| BC | 4585.7 ± 158.2 a | 7405.0 ± 255.5 a | −1.1 ± 0.02 a | 104.4 ± 5.7 c | 1232.8 ± 42.5 c | −1336.5 ± 46.1 b | 10,654.3 ± 367.6 a | |
| DG | 3648.5 ± 182.4 b | 5891.6 ± 294.6 b | −1.2 ± 0.04 a | 181.0 ± 14.4 b | 1484.4 ± 74.2 b | −1664.6 ± 83.2 a | 7875.5 ± 393.8 b | |
| DGO | 4503.4 ± 135.1 a | 7272.1 ± 218.2 a | −0.8 ± 0.03 a | 135.3 ± 11.3 c | 1286.7 ± 67.5 c | −1421.5 ± 74.6 b | 10,354.0 ± 543.2 a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, M.; Li, Y.; Zhang, Y.; Qu, Z. Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study. Agronomy 2026, 16, 283. https://doi.org/10.3390/agronomy16030283
Hu M, Li Y, Zhang Y, Qu Z. Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study. Agronomy. 2026; 16(3):283. https://doi.org/10.3390/agronomy16030283
Chicago/Turabian StyleHu, Min, Yue Li, Yao Zhang, and Zhongyi Qu. 2026. "Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study" Agronomy 16, no. 3: 283. https://doi.org/10.3390/agronomy16030283
APA StyleHu, M., Li, Y., Zhang, Y., & Qu, Z. (2026). Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study. Agronomy, 16(3), 283. https://doi.org/10.3390/agronomy16030283
