Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Processing the Query String for Insertion into the Scientific Database for Each Tactic Assessed
2.2. The Screening Process of the Research Articles
2.3. Search for Any Missing Articles Within Review Papers
3. Results and Discussion
3.1. General Considerations on the Dataset
3.2. The Number of Observations in the Five Pillars of Integrated Weed Management
3.3. Number of Observations per Tactic in Each Pillar
3.3.1. Pillar: Direct Control
3.3.2. Pillar: Field and Soil Management
3.3.3. Pillar: Cultivar Choice and Crop Establishment
3.3.4. Pillar: Diverse Cropping Systems
3.3.5. Pillar: Monitoring and Evaluation
3.4. Overall Considerations for the Systematic Review
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-Chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef]
- Byrne, M.E.; Howell, G.S. Initial Response of Baco Noir Grapevine to Pruning Severity, Sucker Removal, and Weed Control. Am. J. Enol. Vitic. 1978, 29, 192–198. [Google Scholar] [CrossRef]
- Bell, C.E. Broccoli (Brassica Oleracea Var. Botrytis) Yield Loss from Italian Ryegrass (Lolium perenne) Interference. Weed Sci. 1995, 43, 117–120. [Google Scholar] [CrossRef]
- Löbmann, A.; Christen, O.; Petersen, J. Development of Herbicide Resistance in Weeds in a Crop Rotation with Acetolactate Synthase-tolerant Sugar Beets under Varying Selection Pressure. Weed Res. 2019, 59, 479–489. [Google Scholar] [CrossRef]
- Işık, D.; Akça, A. Assessment of Weed Competition Critical Period in Sugar Beet. J. Agric. Sci. 2018, 24, 82–89. [Google Scholar] [CrossRef]
- Jain, L.K. Growth and Productivity of Maize (Zea mays L.) as Influenced by Organic Weed and Nutrient Management Practices in Western Rajasthan. Ann. Plant Soil Res. 2022, 24, 59–64. [Google Scholar] [CrossRef]
- Pant, C.; Sah, S.K.; Marahatta, S.; Dhakal, S. Weed Dynamics in No-Till Maize System and Its Management: A Review. Agron. J. Nepal 2021, 5, 168–177. [Google Scholar] [CrossRef]
- Kumar, S.; Kumari, S.; Rana, S.S.; Rana, R.S.; Anwar, T.; Qureshi, H.; Saleh, M.A.; Alamer, K.H.; Attia, H.; Ercisli, S.; et al. Weed Management Challenges in Modern Agriculture: The Role of Environmental Factors and Fertilization Strategies. Crop Prot. 2024, 185, 106903. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An Ecological Future for Weed Science to Sustain Crop Production and the Environment. A Review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Munier-Jolain, N.M.; Chavvel, B.; Gasquez, J. Long-term Modelling of Weed Control Strategies: Analysis of Threshold-based Options for Weed Species with Contrasted Competitive Abilities. Weed Res. 2002, 42, 107–122. [Google Scholar] [CrossRef]
- Marshall, E.J.P. Biodiversity, Herbicides and Non-Target Plants; Researchgate: Brighton, UK, 2001; pp. 419–426. [Google Scholar]
- Druille, M.; Omacini, M.; Golluscio, R.A.; Cabello, M.N. Arbuscular Mycorrhizal Fungi Are Directly and Indirectly Affected by Glyphosate Application. Appl. Soil Ecol. 2013, 72, 143–149. [Google Scholar] [CrossRef]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Kennedy, I.R.; Kookana, R.S.; Zwieten, L.V. Impact of Herbicides on Soil Biology and Function. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: London, UK, 2016; Volume 136, pp. 133–220. [Google Scholar]
- Relyea, R.A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 2005, 15, 618–627. [Google Scholar] [CrossRef]
- Mamane, A.; Baldi, I.; Tessier, J.-F.; Raherison, C.; Bouvier, G. Occupational Exposure to Pesticides and Respiratory Health. Eur. Respir. Rev. 2015, 24, 306–319. [Google Scholar] [CrossRef]
- Almberg, K.; Turyk, M.; Jones, R.; Rankin, K.; Freels, S.; Stayner, L. Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008. Int. J. Environ. Res. Public Health 2018, 15, 1889. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commmission to the European Parliament, the European Council, the Council, the European Economic and Social Commmittee and the Commmittee of the Regions, the European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Communication from the Commmission to the European Parliament, the European Council, the Council, the European Economic and Social Commmittee and the Commmittee of the Regions, Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Biodiversity Strategy for 2030, Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Benvenuti, S. Weed Seed Movement and Dispersal Strategies in the Agricultural Environment. Weed Biol. Manag. 2007, 7, 141–157. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L. Integrated Weed Management: A Shift towards More Sustainable and Holistic Practices. Agronomy 2023, 13, 2646. [Google Scholar] [CrossRef]
- Riemens, M.; Sønderskov, M.; Moonen, A.-C.; Storkey, J.; Kudsk, P. An Integrated Weed Management Framework: A Pan-European Perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Moss, S.R. Non-Chemical Methods of Weed Control: Benefits and Limitations. In Proceedings of the 17th Australasian Weed Conference, Christchurch, New Zealand, 26–30 September 2010. [Google Scholar]
- Livingston, M.; Fernandez-Cornejo, J.; Frisvold, G.B. Economic Returns to Herbicide Resistance Management in the Short and Long Run: The Role of Neighbor Effects. Weed Sci. 2016, 64, 595–608. [Google Scholar] [CrossRef]
- Hurley, T.M.; Frisvold, G. Economic Barriers to Herbicide-Resistance Management. Weed Sci. 2016, 64, 585–594. [Google Scholar] [CrossRef]
- Gage, K.L.; Krausz, R.F.; Walters, S.A. Emerging Challenges for Weed Management in Herbicide-Resistant Crops. Agriculture 2019, 9, 180. [Google Scholar] [CrossRef]
- Moss, S. Integrated Weed Management (IWM): Why Are Farmers Reluctant to Adopt Non-chemical Alternatives to Herbicides? Pest Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef]
- Decision Support Systems for Weed Management; Chantre, G.R., González-Andújar, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-44401-3. [Google Scholar]
- IWMPRISE Publications. Available online: https://iwmpraise.eu/publications/ (accessed on 2 March 2025).
- Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Available online: https://www.prisma-statement.org/ (accessed on 13 September 2025).
- Xi, N.; Wu, Y.; Weiner, J.; Zhang, D.-Y. Does Weed Suppression by High Crop Density Depend on Crop Spatial Pattern and Soil Water Availability? Basic Appl. Ecol. 2022, 61, 20–29. [Google Scholar] [CrossRef]
- Bouwman, T.I.; Andersson, J.A.; Giller, K.E. Adapting yet Not Adopting? Conservation Agriculture in Central Malawi. Agric. Ecosyst. Environ. 2021, 307, 107224. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Mancinelli, R.; Radicetti, E. How Do Intensification Practices Affect Weed Management and Yield in Quinoa (Chenopodium Quinoa Willd) Crop? Sustainability 2020, 12, 6103. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Wacker, T.S.; Thorup-Kristensen, K. Winter Cover Crops Favor Cereal Crop in N Competition against Creeping Thistle Cirsium Arvense (L.) Scop. Soil Tillage Res. 2022, 216, 105261. [Google Scholar] [CrossRef]
- Rothé, M.; Pelletier, N.; Touneji-Catouaria, A.-M.; Bockstaller, C.; Le Bellec, F.; Ratnadass, A. Impacts of Weed Management on Ladybird (Coleoptera: Coccinellidae) Abundance and Diversity on Resident Vegetation in a Citrus Orchard. Int. J. Trop. Insect Sci. 2019, 39, 325–331. [Google Scholar] [CrossRef]
- Minuti, G.; Coetzee, J.A.; Ngxande-Koza, S.; Hill, M.P.; Stiers, I. Prospects for the Biological Control of Iris pseudacorus L. (Iridaceae). Biocontrol Sci. Technol. 2021, 31, 314–335. [Google Scholar] [CrossRef]
- Fernández-Getino, A.P.; Santín-Montanyá, M.I.; Zambrana, E.; De Andrés, E.F.; Tenorio, J.L. The Response of Barley to Rainfall and Temperature in Different Tillage and Crop Rotation Systems in Semi-arid Conditions. Ann. Appl. Biol. 2015, 166, 143–153. [Google Scholar] [CrossRef]
- Carpio, A.J.; Lora, Á.; Martín-Consuegra, E.; Sánchez-Cuesta, R.; Tortosa, F.S.; Castro, J. The Influence of the Soil Management Systems on Aboveground and Seed Bank Weed Communities in Olive Orchards. Weed Biol. Manag. 2020, 20, 12–23. [Google Scholar] [CrossRef]
- Adeux, G.; Cordeau, S.; Antichi, D.; Carlesi, S.; Mazzoncini, M.; Munier-Jolain, N.; Bàrberi, P. Cover Crops Promote Crop Productivity but Do Not Enhance Weed Management in Tillage-Based Cropping Systems. Eur. J. Agron. 2021, 123, 126221. [Google Scholar] [CrossRef]
- Andrew, I.K.S.; Storkey, J. Using Simulation Models to Investigate the Cumulative Effects of Sowing Rate, Sowing Date and Cultivar Choice on Weed Competition. Crop Prot. 2017, 95, 109–115. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ajal, J.; Weih, M. Nutrient Accumulation Pattern in Mixtures of Wheat and Faba Bean Is Strongly Influenced by Cultivar Choice and Co-Existing Weeds. Biology 2022, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Rakhmatulin, I.; Andreasen, C. A Concept of a Compact and Inexpensive Device for Controlling Weeds with Laser Beams. Agronomy 2020, 10, 1616. [Google Scholar] [CrossRef]
- Lacotte, V.; NGuyen, T.; Sempere, J.D.; Novales, V.; Dufour, V.; Moreau, R.; Pham, M.T.; Rabenorosoa, K.; Peignier, S.; Feugier, F.G.; et al. Pesticide-Free Robotic Control of Aphids as Crop Pests. AgriEngineering 2022, 4, 903–921. [Google Scholar] [CrossRef]
- Außerlechner, M.V. Plant Macro-Remains from the Late Iron Age Smithy at Piperbühel (South Tyrol, Italy). J. Archaeol. Sci. Rep. 2022, 43, 103407. [Google Scholar] [CrossRef]
- Nowak, A.; Cybulska, K.; Makuch, E.; Kucharski, Ł.; Różewicka-Czabańska, M.; Prowans, P.; Czapla, N.; Bargiel, P.; Petriczko, J.; Klimowicz, A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules 2021, 26, 329. [Google Scholar] [CrossRef]
- European Union Browse by EuroVoc. Available online: https://eur-lex.europa.eu/browse/eurovoc.html?params=72,7206#arrow_7206 (accessed on 1 September 2025).
- Parven, A.; Meftaul, I.M.; Venkateswarlu, K.; Megharaj, M. Herbicides in Modern Sustainable Agriculture: Environmental Fate, Ecological Implications, and Human Health Concerns. Int. J. Environ. Sci. Technol. 2025, 22, 1181–1202. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical Weed Management in Organic Farming Systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Melander, B.; Liebman, M.; Davis, A.S.; Gallandt, E.R.; Bàrberi, P.; Moonen, A.; Rasmussen, J.; Van Der Weide, R.; Vidotto, F. Non-Chemical Weed Management. In Weed Research; Hatcher, P.E., Froud-Williams, R.J., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 245–270. ISBN 978-1-119-96914-3. [Google Scholar]
- Den, T.T.; Van De Wiel, I.; De Wit, A.; Van Evert, F.K.; Van Ittersum, M.K.; Reidsma, P. Modelling Potential Potato Yields: Accounting for Experimental Differences in Modern Cultivars. Eur. J. Agron. 2022, 137, 126510. [Google Scholar] [CrossRef]
- Shi, W.; Zhao, H.-Y.; Chen, Y.; Wang, J.-S.; Han, B.; Li, C.-P.; Lu, J.-Y.; Zhang, L.-M. Organic Manure Rather than Phosphorus Fertilization Primarily Determined Asymbiotic Nitrogen Fixation Rate and the Stability of Diazotrophic Community in an Upland Red Soil. Agric. Ecosyst. Environ. 2021, 319, 107535. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does Diversifying Crop Rotations Suppress Weeds? A Meta-Analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef]
- Moretti, B.; Vidotto, F.; Grignani, C.; Said-Pullicino, D.; Fogliatto, S. Cover Crops, Soil Fertility and Straw Management Influence Rice Nutrition, Weed Competition and Greenhouse Gas Emissions in a Mesocosm Study. Ital. J. Agron. 2025, 20, 100037. [Google Scholar] [CrossRef]
- Daesslé, L.W.; Orozco, A.; Struck, U.; Camacho-Ibar, V.F.; Van Geldern, R.; Santamaría-del-Angel, E.; Barth, J.A.C. Sources and Sinks of Nutrients and Organic Carbon during the 2014 Pulse Flow of the Colorado River into Mexico. Ecol. Eng. 2017, 106, 799–808. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed Dynamics and Conservation Agriculture Principles: A Review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a Driver of Change in Weed Communities: A Functional Perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Worthington, M.; Reberg-Horton, C. Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. J. Chem. Ecol. 2013, 39, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Fluttert, J.C.; Soltani, N.; Galla, M.; Hooker, D.C.; Robinson, D.E.; Sikkema, P.H. Effective Dose of Atrazine Required to Complement Tolpyralate for Annual Weed Control in Corn. Weed Technol. 2022, 36, 523–530. [Google Scholar] [CrossRef]
- Liveseed European Project Innovative Organic Breeding Concepts: Challenges and Examples. Deliverable. 3.5. 2020. Available online: https://liveseeding.eu/wp-content/uploads/2023/03/Review-LIVESEED_Task-3-1-110122.pdf (accessed on 11 November 2025).
- Meyer, D.; Kolbe, H. Improvement of Nitrogen-Fertilizer Recommendation by Consideration of Long-Term Site and Cultivation Effected Mineralization. Agronomy 2021, 11, 2492. [Google Scholar] [CrossRef]
- Martin, R.J.; Van Ogtrop, F.; Henson, Y.; Broeum, K.; Rien, R.; Srean, P.; Tan, D.K.Y. A Survey of Weed Seed Contamination of Rice Paddy in Cambodia. Weed Res. 2017, 57, 333–341. [Google Scholar] [CrossRef]
- Molina-Maturano, J.; Verhulst, N.; Tur-Cardona, J.; Güerena, D.T.; Gardeazábal-Monsalve, A.; Govaerts, B.; De Steur, H.; Speelman, S. How to Make a Smartphone-Based App for Agricultural Advice Attractive: Insights from a Choice Experiment in Mexico. Agronomy 2022, 12, 691. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.e.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting Coffee Leaf Rust with UAV-Based Vegetation Indices and Decision Tree Machine Learning Models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- Nikolić, N.; Mattivi, P.; Pappalardo, S.E.; De Marchi, M.; Masin, R. From Detection to Action: Creating Operational Prescription Maps for Weed Management Using Low-Cost UAVs. Ital. J. Agron. 2025, 20, 100047. [Google Scholar] [CrossRef]
- European Environment Agency. Advancing Towards Climate Resilience in Europe: Status of Reported National Adaptation Actions in 2021; Publications Office: Luxembourg, 2022. [Google Scholar]
- Plieninger, T.; Abunnasr, Y.; D’Ambrosio, U.; Guo, T.; Kizos, T.; Kmoch, L.; Topp, E.; Varela, E. Biocultural Conservation Systems in the Mediterranean Region: The Role of Values, Rules, and Knowledge. Sustain. Sci. 2023, 18, 823–838. [Google Scholar] [CrossRef]
- Aurelle, D.; Thomas, S.; Albert, C.; Bally, M.; Bondeau, A.; Boudouresque, C.; Cahill, A.E.; Carlotti, F.; Chenuil, A.; Cramer, W.; et al. Biodiversity, Climate Change, and Adaptation in the Mediterranean. Ecosphere 2022, 13, e3915. [Google Scholar] [CrossRef]
- Sauquet, A. Ex Post Analysis of the Crop Diversification Measure of CAP Greening in France. Eur. Rev. Agric. Econ. 2023, 50, 717–742. [Google Scholar] [CrossRef]
- Sirdey, N.; Scopel, E.; Ferrier, G.; Khann, L.; Ermolli, M.; Paracchini, M. Mapping the Contribution of Agroecological Transitions to the Sustainability of Food Systems; JRC135321; Publications Office of the European Union: Luxembourg, 2023; pp. 1–74. [Google Scholar] [CrossRef]
- Zabala, J.A.; Martínez-García, V.; Martínez-Paz, J.M.; López-Becerra, E.I.; Nasso, M.; Díaz-Pereira, E.; Sánchez-Navarro, V.; Álvaro-Fuentes, J.; González-Rosado, M.; Farina, R.; et al. Crop Diversification Practices in Europe: An Economic Cross-Case Study Comparison. Sustain. Sci. 2023, 18, 2691–2706. [Google Scholar] [CrossRef]
- Petrović, B.; Bumbálek, R.; Zoubek, T.; Kuneš, R.; Smutný, L.; Bartoš, P. Application of Precision Agriculture Technologies in Central Europe-Review. J. Agric. Food Res. 2024, 15, 101048. [Google Scholar] [CrossRef]
- Yarashynskaya, A.; Prus, P. Precision Agriculture Implementation Factors and Adoption Potential: The Case Study of Polish Agriculture. Agronomy 2022, 12, 2226. [Google Scholar] [CrossRef]
- Li, M.; Luo, H.; Qin, Z.; Tong, Y. Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios. Land 2023, 12, 399. [Google Scholar] [CrossRef]
- Montull, J.M.; Taberner, A.; Bøjer, O.; Rydahl, P. IPMwise: A Decision Support System for Multispecies Weed Control in Cereal Crops. In Decision Support Systems for Weed Management; Chantre, G.R., González-Andújar, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 279–298. ISBN 978-3-030-44402-0. [Google Scholar]
- Carmona, C.P.; Guerrero, I.; Peco, B.; Morales, M.B.; Oñate, J.J.; Pärt, T.; Tscharntke, T.; Liira, J.; Aavik, T.; Emmerson, M.; et al. Agriculture Intensification Reduces Plant Taxonomic and Functional Diversity across European Arable Systems. Funct. Ecol. 2020, 34, 1448–1460. [Google Scholar] [CrossRef]
- Melander, B.; Munier-Jolain, N.; Charles, R.; Wirth, J.; Schwarz, J.; Van Der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops. Weed Technol. 2013, 27, 231–240. [Google Scholar] [CrossRef]
- Storkey, J.; Helps, J.; Hull, R.; Milne, A.E.; Metcalfe, H. Defining Integrated Weed Management: A Novel Conceptual Framework for Models. Agronomy 2021, 11, 747. [Google Scholar] [CrossRef]
- Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in Site-Specific Weed Management in Agriculture—A Review. Weed Res. 2022, 62, 123–133. [Google Scholar] [CrossRef]
- Dong, F.; Zeng, W. Effects of Fall and Winter Cover Crops on Weed Suppression in the United States: A Meta-Analysis. Sustainability 2024, 16, 3192. [Google Scholar] [CrossRef]
- Benvenuti, S.; Selvi, M.; Mercati, S.; Cardinali, G.; Mercati, V.; Mazzoncini, M. Stale Seedbed Preparation for Sustainable Weed Seed Bank Management in Organic Cropping Systems. Sci. Hortic. 2021, 289, 110453. [Google Scholar] [CrossRef]
- Coleman, M.J.; Kristiansen, P.; Sindel, B.M.; Fyfe, C. Imperatives for Integrated Weed Management in Vegetable Production: Evaluating Research and Adoption. Weed Biol. Manag. 2024, 24, 3–14. [Google Scholar] [CrossRef]
- Bhaskar, V.; Westbrook, A.S.; Bellinder, R.R.; DiTommaso, A. Integrated Management of Living Mulches for Weed Control: A Review. Weed Technol. 2021, 35, 856–868. [Google Scholar] [CrossRef]
- Mia, M.J.; Furmanczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusá, E.; Neri, D. Living Mulch with Selected Herbs for Soil Management in Organic Apple Orchards. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Zalai, M.; Bujtás, O.; Sárospataki, M.; Dorner, Z. Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services. Land 2025, 14, 1526. [Google Scholar] [CrossRef]
- Ansell, D.; Freudenberger, D.; Munro, N.; Gibbons, P. The Cost-Effectiveness of Agri-Environment Schemes for Biodiversity Conservation: A Quantitative Review. Agric. Ecosyst. Environ. 2016, 225, 184–191. [Google Scholar] [CrossRef]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for Non-Chemical Intra-Row Weed Control in Narrow and Wide-Row Crops: A Review. J. Agric. Eng. 2017, 48, 57. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Cutulle, M. Robotic Weeders Can Improve Weed Control Options for Specialty Crops. Pest Manag. Sci. 2019, 75, 1767–1774. [Google Scholar] [CrossRef]
- Fontani, M.; Luglio, S.M.; Gagliardi, L.; Peruzzi, A.; Frasconi, C.; Raffaelli, M.; Fontanelli, M. A Systematic Review of 59 Field Robots for Agricultural Tasks: Applications, Trends, and Future Directions. Agronomy 2025, 15, 2185. [Google Scholar] [CrossRef]
- WSSA WSSA Position Statement on Biological Control of Weeds. Available online: https://wssa.net/weed/biological-control/ (accessed on 4 October 2025).
- Petraki, D.; Kanatas, P.; Zannopoulos, S.; Kokkini, M.; Antonopoulos, N.; Gazoulis, I.; Travlos, I. Agroecological Weed Management and the Potential Role of Fungi-Based Bioherbicides in Conservation: Advantages, Applications and Future Prospects. Conservation 2024, 4, 847–859. [Google Scholar] [CrossRef]
- Coleman, G.R.Y.; Stead, A.; Rigter, M.P.; Xu, Z.; Johnson, D.; Brooker, G.M.; Sukkarieh, S.; Walsh, M.J. Using Energy Requirements to Compare the Suitability of Alternative Methods for Broadcast and Site-Specific Weed Control. Weed Technol. 2019, 33, 633–650. [Google Scholar] [CrossRef]
- Hill, A.E.; Ornelas, I.; Taylor, J.E. Agricultural Labor Supply. Annu. Rev. Resour. Econ. 2021, 13, 39–64. [Google Scholar] [CrossRef]
- Fogliatto, S.; Milan, M.; De Palo, F.; Ferrero, A.; Vidotto, F. Effectiveness of Mechanical Weed Control on Italian Flint Varieties of Maize. Renew. Agric. Food Syst. 2019, 34, 447–459. [Google Scholar] [CrossRef]
- Morin, L. Progress in Biological Control of Weeds with Plant Pathogens. Annu. Rev. Phytopathol. 2020, 58, 201–223. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, K.P.; Jhala, K.B.; Kumar, M.; Salem, A. Non-Chemical Weed Management: Harnessing Flame Weeding for Effective Weed Control. Heliyon 2024, 10, e32776. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.G.; Cabello, F.; Fernández-Quintanilla, C.; Peña, J.M.; Dorado, J. Plant Functional Diversity Is Affected by Weed Management through Processes of Trait Convergence and Divergence. Front. Plant Sci. 2022, 13, 993051. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, L.; Fontanelli, M.; Luglio, S.M.; Frasconi, C.; Peruzzi, A.; Raffaelli, M. Evaluation of Sustainable Strategies for Mechanical Under-Row Weed Control in the Vineyard. Agronomy 2023, 13, 3005. [Google Scholar] [CrossRef]
- Sportelli, M.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M.; Magni, S.; Caturegli, L.; Volterrani, M.; Mainardi, M.; Peruzzi, A. Autonomous Mowing and Complete Floor Cover for Weed Control in Vineyards. Agronomy 2021, 11, 538. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Fundamentals of Weed Science, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Burlington, VT, USA, 2007. [Google Scholar]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Rega, C.; Short, C.; Pérez-Soba, M.; Luisa Paracchini, M. A Classification of European Agricultural Land Using an Energy-Based Intensity Indicator and Detailed Crop Description. Landsc. Urban Plan. 2020, 198, 103793. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Kudsk, P. Vertical Distribution and Composition of Weed Seeds within the Plough Layer after Eleven Years of Contrasting Crop Rotation and Tillage Schemes. Soil Tillage Res. 2016, 161, 135–142. [Google Scholar] [CrossRef]
- Gruber, S.; Claupein, W. Effect of Tillage Intensity on Weed Infestation in Organic Farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- McPheeters, D.; Bruns, M.A.; Karsten, H.D.; Dell, C.J. Integrated Weed Management with Strategic Tillage Can Maintain Soil Quality in Continuous Living Cover Systems. Front. Sustain. Food Syst. 2022, 6, 907590. [Google Scholar] [CrossRef]
- Pavlović, D.; Vrbničanin, S.; Anđelković, A.; Božić, D.; Rajković, M.; Malidža, G. Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM). Agronomy 2022, 12, 1091. [Google Scholar] [CrossRef]
- Karcauskiene, D.; Ciuberkis, S.; Raudonius, S. Changes of Weed Infestation under Long-Term Effect of Different Soil pH Levels and Amount of Phosphorus:Potassium. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 688–697. [Google Scholar] [CrossRef]
- Skuodienė, R.; Karčauskienė, D.; Feiza, V.; Feizienė, D.; Repšienė, R.; Šiaudinis, G. Changes in Weed Flora under the Influence of Long Term Application of Liming and Reduced Soil Tillage. Zemdirb. Agric. 2020, 107, 25–32. [Google Scholar] [CrossRef]
- Guerra, J.G.; Cabello, F.; Fernández-Quintanilla, C.; Dorado, J. A Trait-Based Approach in a Mediterranean Vineyard: Effects of Agricultural Management on the Functional Structure of Plant Communities. Agric. Ecosyst. Environ. 2021, 316, 107465. [Google Scholar] [CrossRef]
- Arrobas, M.; Thais Nepomuceno Carvalho, J.; Raimundo, S.; Poggere, G.; Rodrigues, M.Â. The Safe Use of Compost Derived from Municipal Solid Waste Depends on Its Composition and Conditions of Application. Soil Use Manag. 2022, 38, 917–928. [Google Scholar] [CrossRef]
- Granata, A.; Capozzi, F.; Gaglione, A.; Riccardi, R.; Spigno, P.; Giordano, S.; Sorrentino, M.C.; Spagnuolo, V. Seed Priming Enhances Seed Germination and Plant Growth in Four Neglected Cultivars of Capsicum annuum L. PeerJ 2024, 12, e18293. [Google Scholar] [CrossRef] [PubMed]
- Dhage, S.S.; Anishettar, S. Seed Priming: An Approach to Enhance Weed Competitiveness and Productivity in Aerobic Rice: A Review. Agric. Rev. 2020, 41, 179–182. [Google Scholar] [CrossRef]
- Jensen, P.K. Use of Integrated Weed Management Tools in Crop Rotations with Grass Seed Production. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 209–218. [Google Scholar] [CrossRef]
- Werle, I.S.; Castro, E.; Pucci, C.; Soni Chakraborty, B.; Broderick, S.; Tseng, T.M. Identification of Weed-Suppressive Tomato Cultivars for Weed Management. Plants 2022, 11, 411. [Google Scholar] [CrossRef]
- Andrew, I.K.S.; Storkey, J.; Sparkes, D.L. A Review of the Potential for Competitive Cereal Cultivars as a Tool in Integrated Weed Management. Weed Res. 2015, 55, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Sachan, S.; Sharma, A. Weed Competitive Ability in Wheat: A Peek through in Its Functional Significance, Present Status and Future Prospects. Physiol. Mol. Biol. Plants 2021, 27, 2165–2179. [Google Scholar] [CrossRef]
- Rasmussen, I.A.; Dieraurer, H.; Riemens, M.; EIP-AGRI Focus Group. Non-Chemical Weed Management in Arable Cropping Systems; Breeding for Weed Suppressive and Tolerant Varieties/Crops; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Lammerts Van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The Need to Breed Crop Varieties Suitable for Organic Farming, Using Wheat, Tomato and Broccoli as Examples: A Review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Ingraffia, R.; Amato, G.; Ruisi, P.; Giambalvo, D.; Frenda, A.S. Early Sowing Can Boost Grain Production by Reducing Weed Infestation in Organic No-till Wheat. J. Sci. Food Agric. 2022, 102, 6246–6254. [Google Scholar] [CrossRef] [PubMed]
- De Cauwer, B.; Delanote, L.; Devos, M.; De Ryck, S.; Reheul, D. Optimisation of Weed Control in Organic Processing Spinach (Spinacia oleracea L.): Impacts of Cultivar, Seeding Rate, Plant Spacing and Integrated Weed Management Strategy. Agronomy 2020, 11, 53. [Google Scholar] [CrossRef]
- Kanatas, P.J.; Gazoulis, I. The Integration of Increased Seeding Rates, Mechanical Weed Control and Herbicide Application for Weed Management in Chickpea (Cicer arietinum L.). Phytoparasitica 2022, 50, 255–267. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Staniak, M.; Różyło, K.; Rusecki, H. Supporting Crop and Different Row Spacing as Factors Influencing Weed Infestation in Lentil Crop and Seed Yield under Organic Farming Conditions. Agronomy 2019, 10, 9. [Google Scholar] [CrossRef]
- Nowak, S.; Waindzoch, K.; Świerszcz, S.; Niemczyk, M.; Spałek, K.; Nowak, A. Crop Density Rather than Ruderal Plants Explains the Response of Ancient Segetal Weeds. Biologia 2019, 74, 351–359. [Google Scholar] [CrossRef]
- McCollough, M.R.; Melander, B. Improving upon the Interrow Hoed Cereal System: The Effects of Crop Density and Row Spacing on Intrarow Weeds and Crop Parameters in Spring Barley. Weed Sci. 2022, 70, 341–352. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Antonopoulos, N. Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach. Diversity 2021, 13, 616. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of Cover Crop Management on Level of Weed Suppression: A Meta-Analysis. Crop Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Gu, C.; Bastiaans, L.; Anten, N.P.R.; Makowski, D.; van der Werf, W. Annual Intercropping Suppresses Weeds: A Meta-Analysis. Agric. Ecosyst. Environ. 2021, 322, 107658. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Moonen, A.C. Field Margins in Northern Europe: Their Functions and Interactions with Agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Butkevičienė, L.M.; Skinulienė, L.; Auželienė, I.; Bogužas, V.; Pupalienė, R.; Steponavičienė, V. The Influence of Long-Term Different Crop Rotations and Monoculture on Weed Prevalence and Weed Seed Content in the Soil. Agronomy 2021, 11, 1367. [Google Scholar] [CrossRef]
- Antichi, D.; Pampana, S.; Sbrana, M.; Tramacere, L.G.; Mazzoncini, M.; Carlesi, S.; Bàrberi, P. Long-Term Evaluation of Organic Management of Durum Wheat in Central Italy. Agron. J. 2025, 117, e70026. [Google Scholar] [CrossRef]
- Nichols, V.; Martinez-Feria, R.; Weisberger, D.; Carlson, S.; Basso, B.; Basche, A. Cover Crops and Weed Suppression in the U.S. Midwest: A Meta-Analysis and Modeling Study. Agric. Environ. Lett. 2020, 5, e20022. [Google Scholar] [CrossRef]
- Florence, A.M.; Higley, L.G.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Cover Crop Mixture Diversity, Biomass Productivity, Weed Suppression, and Stability. PLoS ONE 2019, 14, e0206195. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.J.; Massetani, F.; Murri, G.; Facchi, J.; Monaci, E.; Amadio, L.; Neri, D. Integrated Weed Management in High Density Fruit Orchards. Agronomy 2020, 10, 1492. [Google Scholar] [CrossRef]
- Haring, S.C.; Hanson, B.D. Agronomic Cover Crop Management Supports Weed Suppression and Competition in California Orchards. Weed Sci. 2022, 70, 595–602. [Google Scholar] [CrossRef]
- Sharifi, M.; Zolfaghari, Z. Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda. Plants 2025, 14, 3056. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.I.; Bell, R.; Zang, H.; Boitt, G.; Whalley, W.R. Exploring the Plant and Soil Mechanisms by Which Crop Rotations Benefit Farming Systems. Plant Soil 2025, 507, 1–9. [Google Scholar] [CrossRef]
- Pornaro, C.; Macolino, S. Selecting Species for Vineyard Inter-Row Vegetation Cover Requires Consideration of Microenvironmental Conditions. PLoS ONE 2025, 20, e0319848. [Google Scholar] [CrossRef]
- Fountain, M.T. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects 2022, 13, 304. [Google Scholar] [CrossRef]
- Ndakidemi, B.J.; Mbega, E.R.; Ndakidemi, P.A.; Belmain, S.R.; Arnold, S.E.J.; Woolley, V.C.; Stevenson, P.C. Plant-Rich Field Margins Influence Natural Predators of Aphids More Than Intercropping in Common Bean. Insects 2022, 13, 569. [Google Scholar] [CrossRef]
- Obanyi, J.N.; Ogendo, J.O.; Mulwa, R.M.S.; Nyaanga, J.G.; Cheruiyot, E.K.; Bett, P.K.; Belmain, S.R.; Arnold, S.E.J.; Nash-Woolley, V.C.; Stevenson, P.C. Flowering Margins Support Natural Enemies between Cropping Seasons. Front. Agron. 2024, 6, 1277062. [Google Scholar] [CrossRef]
- Boinot, S.; Alignier, A.; Storkey, J. Landscape Perspectives for Agroecological Weed Management. A Review. Agron. Sustain. Dev. 2024, 44, 7. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Silvestri, N.; Grossi, N.; Mariotti, M.; Arduini, I.; Guglielminetti, L.; Raffaelli, M.; Cardelli, R. Cover Crop Introduction in a Mediterranean Maize Cropping System. Effects on Soil Variables and Yield. Agronomy 2021, 11, 549. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Ramírez-Cuesta, J.M.; Fandiño, M.; Cancela, J.J.; Intrigliolo, D.S. Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain). Soil Syst. 2020, 4, 19. [Google Scholar] [CrossRef]
- Restuccia, A.; Scavo, A.; Lombardo, S.; Pandino, G.; Fontanazza, S.; Anastasi, U.; Abbate, C.; Mauromicale, G. Long-Term Effect of Cover Crops on Species Abundance and Diversity of Weed Flora. Plants 2020, 9, 1506. [Google Scholar] [CrossRef] [PubMed]
- Landschoot, S.; Zustovi, R.; Dewitte, K.; Randall, N.P.; Maenhout, S.; Haesaert, G. Cereal-Legume Intercropping: A Smart Review Using Topic Modelling. Front. Plant Sci. 2024, 14, 1228850. [Google Scholar] [CrossRef]
- Wang, P.; Peteinatos, G.; Efthimiadou, A.; Ma, W. Editorial: Weed Identification and Integrated Control. Front. Plant Sci. 2023, 14, 1351481. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Van Acker, R.C. Weed Biology Serves Practical Weed Management. Weed Res. 2009, 49, 1–5. [Google Scholar] [CrossRef]
- Jensen, S.M.; Akhter, M.J.; Azim, S.; Rasmussen, J. The Predictive Power of Regression Models to Determine Grass Weed Infestations in Cereals Based on Drone Imagery—Statistical and Practical Aspects. Agronomy 2021, 11, 2277. [Google Scholar] [CrossRef]
- Rasmussen, J.; Azim, S.; Nielsen, J. Pre-Harvest Weed Mapping of Cirsium Arvense L. Based on Free Satellite Imagery—The Importance of Weed Aggregation and Image Resolution. Eur. J. Agron. 2021, 130, 126373. [Google Scholar] [CrossRef]
- Laursen, M.; Jørgensen, R.; Midtiby, H.; Jensen, K.; Christiansen, M.; Giselsson, T.; Mortensen, A.; Jensen, P. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops. Sensors 2016, 16, 1848. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, R.; Späth, M.; Sökefeld, M.; Peteinatos, G.G.; Nabout, A.; Rueda Ayala, V. Automatic Adjustment of Harrowing Intensity in Cereals Using Digital Image Analysis. Weed Res. 2021, 61, 68–77. [Google Scholar] [CrossRef]
- Somerville, G.J.; Mathiassen, S.K.; Melander, B.; Bøjer, O.M.; Jørgensen, R.N. Analysing the Number of Images Needed to Create Robust Variable Spray Maps. Precis. Agric. 2021, 22, 1377–1396. [Google Scholar] [CrossRef]
- Ercolini, L.; Grossi, N.; Silvestri, N. A Simple Method to Estimate Weed Control Threshold by Using RGB Images from Drones. Appl. Sci. 2022, 12, 11935. [Google Scholar] [CrossRef]
- Keller, M.; Gutjahr, C.; Möhring, J.; Weis, M.; Sökefeld, M.; Gerhards, R. Estimating Economic Thresholds for Site-specific Weed Control Using Manual Weed Counts and Sensor Technology: An Example Based on Three Winter Wheat Trials. Pest Manag. Sci. 2014, 70, 200–211. [Google Scholar] [CrossRef]
- Ali, A.; Streibig, J.C.; Christensen, S.; Andreasen, C. Image-based Thresholds for Weeds in Maize Fields. Weed Res. 2015, 55, 26–33. [Google Scholar] [CrossRef]
- Coleman, G.R.Y.; Bender, A.; Hu, K.; Sharpe, S.M.; Schumann, A.W.; Wang, Z.; Bagavathiannan, M.V.; Boyd, N.S.; Walsh, M.J. Weed Detection to Weed Recognition: Reviewing 50 Years of Research to Identify Constraints and Opportunities for Large-Scale Cropping Systems. Weed Technol. 2022, 36, 741–757. [Google Scholar] [CrossRef]
- Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X. Applications of Deep Learning in Precision Weed Management: A Review. Comput. Electron. Agric. 2023, 206, 107698. [Google Scholar] [CrossRef]
- Hu, K.; Wang, Z.; Coleman, G.; Bender, A.; Yao, T.; Zeng, S.; Song, D.; Schumann, A.; Walsh, M. Deep Learning Techniques for In-Crop Weed Recognition in Large-Scale Grain Production Systems: A Review. Precis. Agric. 2024, 25, 1–29. [Google Scholar] [CrossRef]
- Valente, J.; Hiremath, S.; Ariza-Sentís, M.; Doldersum, M.; Kooistra, L. Mapping of Rumex Obtusifolius in Nature Conservation Areas Using Very High Resolution UAV Imagery and Deep Learning. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102864. [Google Scholar] [CrossRef]
- Teimouri, N.; Jørgensen, R.N.; Green, O. Novel Assessment of Region-Based CNNs for Detecting Monocot/Dicot Weeds in Dense Field Environments. Agronomy 2022, 12, 1167. [Google Scholar] [CrossRef]





| Tillage | Type | Weed Control |
|---|---|---|
| Conventional | Inversion | Weed Biomass |
| Reduced | Non-inversion | Weed Density |
| Conservative | Depth | Weed Abundance |
| Minimum | Timing | Weed Cover |
| No Tillage | Frequency | |
| Strip | Intensity | |
| Ridge | ||
| Primary tillage | ||
| Secondary tillage |
| Exclusion Criteria | Examples of Excluded Papers | |
|---|---|---|
| G | The field experiment was not conducted within EU-27 + UK. | [33,34,35] |
| W | The study reports data other than weed density, weed soil cover, or weed biomass. | [36,37,38] |
| S | Systems trials where the effect of a single tactic could not be separated from other cropping system components. | [39,40,41] |
| F | Papers that did not report results from an agricultural field experiment (e.g., simulation modeling studies and pot experiments). | [42,43,44] |
| O | Off-topic papers. | [45,46,47] |
| Direct Control | Field and Soil Management | Cultivar Choice and Crop Establishment | Diverse Cropping System | Monitoring and Evaluation |
|---|---|---|---|---|
| Biological control | Dead Mulching | Cultivar choice | Cover crops | DSS |
| Hand weeding | Liming | Seed vigor | Crop rotation | Scouting |
| Mechanical weeding | Nutrient placement | Seeding pattern | Field margin management | Sensing Technologies |
| Mowing | Seedbed preparation | Seeding rate | Intercropping | |
| Thermal weeding | Stubble management | Sowing date | Landscape management | |
| Tillage type and cultivation depth | Sowing depth | |||
| Water management |
| Pillar | n | % |
|---|---|---|
| Direct control | 193 | 28.98 |
| Field and soil management | 172 | 25.83 |
| Cultivar choice and crop establishment | 68 | 10.21 |
| Diverse cropping system | 183 | 27.48 |
| Monitoring and evaluation | 50 | 7.51 |
| Direct Control | Field and Soil Management | Cultivar Choice and Crop Establishment | Diverse Cropping System | Monitoring and Evaluation | Total Entries per Area | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Area * | n | % | n | % | n | % | n | % | n | % | n | % |
| Central and Eastern Europe | 38 | 5.71 | 50 | 7.51 | 16 | 2.40 | 31 | 4.65 | 0 | 0.00 | 135 | 20.27 |
| Northern Europe | 18 | 2.70 | 28 | 4.20 | 11 | 1.65 | 20 | 3.00 | 0 | 0.00 | 77 | 11.56 |
| Southern Europe | 101 | 15.17 | 64 | 9.61 | 28 | 4.20 | 58 | 8.71 | 17 | 2.55 | 268 | 40.24 |
| Western Europe | 36 | 5.41 | 30 | 4.50 | 13 | 1.95 | 74 | 11.11 | 21 | 3.15 | 174 | 26.13 |
| Crop type | Total Entries per Crop Type | |||||||||||
| Arable crops | 76 | 11.41 | 132 | 19.82 | 56 | 8.41 | 138 | 20.72 | 48 | 7.21 | 450 | 67.57 |
| Field vegetable crops | 36 | 5.41 | 22 | 3.30 | 10 | 1.50 | 23 | 3.45 | 1 | 0.15 | 92 | 13.81 |
| Orchards | 14 | 2.10 | 7 | 1.05 | 1 | 0.15 | 6 | 0.90 | 28 | 4.20 | ||
| Olive trees | 1 | 0.15 | 2 | 0.30 | 2 | 0.30 | 5 | 0.75 | ||||
| Vineyards | 7 | 1.05 | 6 | 0.90 | 7 | 1.05 | 1 | 0.15 | 21 | 3.15 | ||
| Permanent Grasslands | 2 | 0.30 | 3 | 0.45 | 7 | 1.05 | 12 | 1.80 | ||||
| Multiple | 57 | 8.56 | 1 | 0.15 | 0 | 58 | 8.71 | |||||
| Number of crop type | 6 | 6 | 3 | 6 | 3 | 6 | ||||||
| Cultivar Choice and Crop Establishment | Direct Control | Diverse Cropping Systems | Field and Soil Management | Monitoring and Evaluation | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | n | % | |
| Herbicide | 7 | 10.29 | 19 | 9.84 | 28 | 15.30 | 30 | 17.44 | 6 | 12.00 |
| No Herbicide | 2 | 2.94 | 30 | 15.54 | 18 | 9.84 | 65 | 37.79 | 3 | 6.00 |
| Others | 59 | 86.76 | 144 | 74.61 | 137 | 74.86 | 77 | 44.77 | 41 | 82.00 |
| Entries tot. | 68 | 193 | 183 | 172 | 50 | |||||
| Direct Control | Biological Control | Hand Weeding | Mechanical Weeding | Mowing | Thermal Weeding | Subtotal | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | n | % | n | % | |
| 72 | 37.31 | 17 | 8.81 | 65 | 33.68 | 16 | 8.29 | 23 | 11.92 | |||
| Area * | ||||||||||||
| Central and Eastern Europe | 9 | 4.66 | 6 | 3.11 | 13 | 6.74 | 2 | 1.04 | 2 | 1.04 | 32 | 16.58 |
| Northern Europe | 2 | 1.04 | 1 | 0.52 | 14 | 7.25 | 2 | 1.04 | 5 | 2.59 | 24 | 12.44 |
| Southern Europe | 44 | 22.80 | 9 | 4.66 | 25 | 12.95 | 9 | 4.66 | 14 | 7.25 | 101 | 52.33 |
| Western Europe | 17 | 8.81 | 1 | 0.52 | 13 | 6.74 | 3 | 1.55 | 2 | 1.04 | 36 | 18.65 |
| Crop Type | ||||||||||||
| Arable crops | 10 | 5.18 | 9 | 4.66 | 44 | 22.80 | 4 | 2.07 | 9 | 4.66 | 76 | 39.38 |
| Field vegetable crops | 3 | 1.55 | 8 | 4.15 | 12 | 6.22 | 1 | 0.52 | 12 | 6.22 | 36 | 18.65 |
| Orchards | 2 | 1.04 | 5 | 2.59 | 7 | 3.63 | 14 | 7.25 | ||||
| Olive trees | 1 | 0.52 | 1 | 0.52 | ||||||||
| Vineyards | 1 | 0.52 | 2 | 1.04 | 2 | 1.04 | 2 | 1.04 | 7 | 3.63 | ||
| Permanent Grasslands | 1 | 0.52 | 1 | 0.52 | 2 | 1.04 | ||||||
| Multiple | 56 | 29.02 | 1 | 0.52 | 57 | 29.53 | ||||||
| Field and Soil Management | Dead Mulching | Liming | Nutrient Placement | Seedbed Preparation | Stubble Management | Tillage Type and Cultivation Depth | Water Management | Subtotal | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
| 18 | 10.47 | 8 | 4.65 | 7 | 4.07 | 10 | 5.81 | 13 | 7.56 | 110 | 63.95 | 6 | 3.49 | |||
| Area * | ||||||||||||||||
| Central and Eastern Europe | 2 | 1.16 | 5 | 2.91 | 2 | 1.16 | 2 | 1.16 | 4 | 2.33 | 35 | 20.35 | 50 | 29.07 | ||
| Northern Europe | 3 | 1.74 | 2 | 1.16 | 3 | 1.74 | 20 | 11.63 | 28 | 16.28 | ||||||
| Southern Europe | 15 | 8.72 | 5 | 2.91 | 4 | 2.33 | 2 | 1.16 | 32 | 18.60 | 6 | 3.49 | 64 | 37.21 | ||
| Western Europe | 1 | 0.58 | 2 | 1.16 | 4 | 2.33 | 23 | 13.37 | 30 | 17.44 | ||||||
| Crop Type | ||||||||||||||||
| Arable crops | 2 | 1.16 | 6 | 3.49 | 5 | 2.91 | 7 | 4.07 | 13 | 7.56 | 97 | 56.40 | 2 | 1.16 | 132 | 76.74 |
| Field vegetable crops | 12 | 6.98 | 1 | 0.58 | 1 | 0.58 | 8 | 4.65 | 22 | 12.79 | ||||||
| Orchards | 2 | 1.16 | 1 | 0.58 | 1 | 0.58 | 1 | 0.58 | 2 | 1.16 | 7 | 4.07 | ||||
| Olive trees | 2 | 1.16 | 2 | 1.16 | ||||||||||||
| Vineyards | 2 | 1.16 | 1 | 0.58 | 1 | 0.58 | 2 | 1.16 | 6 | 3.49 | ||||||
| Permanent Grasslands | 1 | 0.58 | 1 | 0.58 | 1 | 0.58 | 3 | 1.74 | ||||||||
| Multiple | ||||||||||||||||
| Cultivar Choice and Crop Establishment | Cultivar Choice | Seed Vigor | Seeding Pattern | Seeding Rate | Sowing Date | Sowing Depth | Subtotal | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
| 37 | 54.41 | 2 | 2.94 | 7 | 10.29 | 7 | 10.29 | 14 | 20.59 | 2 | 2.94 | |||
| Area * | ||||||||||||||
| Central and Eastern Europe | 12 | 17.65 | 0 | 0.00 | 2 | 2.94 | 2 | 2.94 | 0 | 0.00 | 0 | 0.00 | 16 | 23.53 |
| Northern Europe | 3 | 4.41 | 1 | 1.47 | 2 | 2.94 | 2 | 2.94 | 1 | 1.47 | 1 | 1.47 | 10 | 14.71 |
| Southern Europe | 16 | 23.53 | 0 | 0.00 | 2 | 2.94 | 2 | 2.94 | 8 | 11.76 | 1 | 1.47 | 29 | 42.65 |
| Western Europe | 6 | 8.82 | 0 | 0.00 | 1 | 1.47 | 1 | 1.47 | 5 | 7.35 | 0 | 0.00 | 13 | 19.12 |
| Crop type | ||||||||||||||
| Arable crops | 28 | 41.18 | 1 | 1.47 | 4 | 5.88 | 7 | 10.29 | 15 | 22.06 | 1 | 1.47 | 56 | 82.35 |
| Field vegetables crops | 7 | 10.29 | 3 | 4.41 | 10 | 14.71 | ||||||||
| Olive trees | 0 | 0.00 | ||||||||||||
| Orchards | 1 | 1.47 | 1 | 1.47 | ||||||||||
| Vineyards | 0 | 0.00 | ||||||||||||
| Multiple | 1 | 1.47 | 1 | 1.47 | ||||||||||
| Diverse Cropping Systems | Cover Crops | Crop Rotation | Field Margin Management | Intercropping | Landscape Management | Subtotal | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | n | % | n | % | |
| 82 | 44.81 | 15 | 8.20 | 14 | 7.65 | 51 | 27.87 | 21 | 11.48 | |||
| Area * | ||||||||||||
| Central and Eastern Europe | 7 | 3.83 | 8 | 4.37 | 2 | 1.09 | 6 | 3.28 | 8 | 4.37 | 31 | 16.94 |
| Northern Europe | 9 | 4.92 | 3 | 1.64 | 0 | 0.00 | 8 | 4.37 | 0 | 0.00 | 20 | 10.93 |
| Southern Europe | 40 | 21.86 | 3 | 1.64 | 5 | 2.73 | 6 | 3.28 | 4 | 2.19 | 58 | 31.69 |
| Western Europe | 26 | 14.21 | 1 | 0.55 | 7 | 3.83 | 31 | 16.94 | 9 | 4.92 | 74 | 40.44 |
| Crop type | ||||||||||||
| Arable crops | 49 | 26.78 | 15 | 8.20 | 13 | 7.10 | 49 | 26.78 | 11 | 6.01 | 137 | 74.86 |
| Field vegetables crops | 21 | 11.48 | 1 | 0.55 | 1 | 0.55 | 23 | 12.57 | ||||
| Olive trees | 1 | 0.55 | 1 | 0.55 | 2 | 1.09 | ||||||
| Orchards | 6 | 3.28 | 0.00 | 6 | 3.28 | |||||||
| Vineyards | 5 | 2.73 | 2 | 1.09 | 7 | 3.83 | ||||||
| Permanent grasslands | 1 | 0.55 | 6 | 3.28 | 7 | 3.83 | ||||||
| Monitoring and Evaluation | DSS | Scouting | Sensing Technologies | Subtotal | ||||
|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | n | % | |
| 12 | 24.00 | 10 | 20.00 | 28 | 56.00 | |||
| Area * | ||||||||
| Central and Eastern Europe | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| Northern Europe | 4 | 8.00 | 4 | 8.00 | 4 | 8.00 | 12 | 24.00 |
| Southern Europe | 2 | 4.00 | 4 | 8.00 | 11 | 22.00 | 17 | 34.00 |
| Western Europe | 6 | 12.00 | 2 | 4.00 | 13 | 26.00 | 21 | 42.00 |
| Crop type | ||||||||
| Arable crops | 11 | 22.00 | 10 | 20.00 | 27 | 54.00 | 48 | 96.00 |
| Field vegetable crops | 1 | 2.00 | 1 | 2.00 | ||||
| Orchards | ||||||||
| Olive trees | ||||||||
| Vineyards | 1 | 2.00 | 1 | 2.00 | ||||
| Permanent Grasslands | ||||||||
| Multiple | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gagliardi, L.; Tramacere, L.G.; Antichi, D.; Frasconi, C.; Sbrana, M.; Sileoni, G.; Monacci, E.; Pagano, L.; Darra, N.; Kriezi, O.; et al. Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review. Agronomy 2026, 16, 220. https://doi.org/10.3390/agronomy16020220
Gagliardi L, Tramacere LG, Antichi D, Frasconi C, Sbrana M, Sileoni G, Monacci E, Pagano L, Darra N, Kriezi O, et al. Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review. Agronomy. 2026; 16(2):220. https://doi.org/10.3390/agronomy16020220
Chicago/Turabian StyleGagliardi, Lorenzo, Lorenzo Gabriele Tramacere, Daniele Antichi, Christian Frasconi, Massimo Sbrana, Gabriele Sileoni, Edoardo Monacci, Luciano Pagano, Nicoleta Darra, Olga Kriezi, and et al. 2026. "Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review" Agronomy 16, no. 2: 220. https://doi.org/10.3390/agronomy16020220
APA StyleGagliardi, L., Tramacere, L. G., Antichi, D., Frasconi, C., Sbrana, M., Sileoni, G., Monacci, E., Pagano, L., Darra, N., Kriezi, O., Garcia, B. E., Kasimati, A., Tataridas, A., Antonopoulos, N., Gazoulis, I., Lazarou, E., Godfrey, K., Tatnell, L., Guilbert, C., ... Fountas, S. (2026). Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review. Agronomy, 16(2), 220. https://doi.org/10.3390/agronomy16020220

