Genome-Wide Identification and Expression Analysis of the YABBY Gene Family in Watermelon
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Identification of the YABBY Gene Family in Watermelon
2.3. Sequence Analysis of the YABBY Genes and Proteins
2.4. Phylogenetic and Syntenic Analysis
2.5. Expression of the YABBY Genes in Watermelon
3. Results
3.1. Identification and Chromosomal Location of YABBYs in Watermelon
3.2. Gene Structure and Encoding Protein Architecture of ClaYABBYs
3.3. Syntenic and Phylogenetic Analysis of ClaYABBYs
3.4. Expression Pattern of ClaYABBYs in Different Tissues
3.5. Expression Patterns of ClaYABBYs Under Drought and Salt Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef]
- Mo, H.; Wang, L.; Ma, S.; Yu, D.; Lu, L.; Yang, Z.; Yang, Z.; Li, F. Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of trihelix transcription factors. Gene 2019, 709, 36–47. [Google Scholar] [CrossRef]
- Eckardt, N.A. YABBY genes and the development and origin of seed plant leaves. Plant Cell 2010, 22, 2103. [Google Scholar] [CrossRef]
- Ha, C.M.; Jun, J.H.; Fletcher, J.C. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors. Genetics 2010, 186, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Yokota, S.; Hirayama, Y.; Imaichi, R.; Kato, M.; Gasser, C.S. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J. 2011, 67, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Han, H.Q.; Liu, Y.; Jiang, M.M.; Ge, H.Y.; Chen, H.Y. Identification and expression analysis of YABBY family genes associated with fruit shape in tomato (Solanum lycopersicum L.). Genet. Mol. Res. 2015, 14, 7079–7091. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, K.R.; Eshed, Y.; Baum, S.F.; Otsuga, D.; Drews, G.N.; Bowman, J.L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126, 4117–4128. [Google Scholar] [CrossRef]
- Bowman, J.L.; Smyth, D.R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 1999, 126, 2387–2396. [Google Scholar] [CrossRef]
- Toriba, T.; Harada, K.; Takamura, A.; Nakamura, H.; Ichikawa, H.; Suzaki, T.; Hirano, H.-Y. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol. Genet. Genom. 2007, 277, 457–468. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, Q.; Wang, L.; Jin, Y.; Xi, J.; Li, Z.; Qin, W.; Yang, Z.; Lu, L.; Chen, Q.; et al. Genome-Wide study of YABBY genes in upland cotton (Gossypium hirsutum) and their expression patterns under different stresses. Front. Genet. 2018, 9, 33. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Ge, D.; Yan, M.; Ren, Y.; Huang, X.; Yuan, Z. Genome-wide identification and expression of YABBY genes family during flower development in Punica granatum L. Gene 2020, 752, 144784. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Luo, R.X.; Sun, R.Q.; Yang, N.; Pu, J.J.; Gao, A.P.; Zhang, H. Genome-Wide Characterization and Identification of the YABBY Gene Family in Mango (Mangifera indica). Diversity 2022, 14, 861. [Google Scholar] [CrossRef]
- Yu, T.; Shen, S.; Xu, Y.; Wang, X.; Yu, Y.; Ma, B.; Chen, X. Identification and expression analysis of the YABBY gene family in strawberry (Fragaria × ananassa). Chin. J. Biotechnol. 2024, 40, 104–121. [Google Scholar] [CrossRef]
- Jiu, S.; Zhang, Y.; Han, P.; Han, Y.; Xu, Y.; Liu, G.; Leng, X. Genome-wide identification and expression analysis of VviYABs family reveal its potential functions in the developmental switch and stresses response during grapevine (Vitis vinifera) development. Front. Genet. 2022, 12, 762221. [Google Scholar] [CrossRef]
- Li, Z.; Li, G.; Cai, M.; Priyadarshani, S.V.G.N.; Aslam, M.; Zhou, Q.; Huang, X.; Wang, X.; Liu, Y.; Qin, Y. Genome-Wide Analysis of the YABBY Transcription Factor Family in Pineapple (Ananas comosus) and Functional Identification of AcYABBY4 Involvement in Salt Stress. Int. J. Mol. Sci. 2019, 20, 5863. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liao, X.Y.; Zheng, Y.; Zhu, M.J.; Yu, X.; Jiang, Y.T.; Zhang, D.; Ma, L.; Xu, X.Y.; Liu, Z.J.; et al. Genome-Wide Identification of the YABBY Gene Family in Seven Species of Magnoliids and Expression Analysis in Litsea. Plants 2021, 10, 21. [Google Scholar] [CrossRef]
- Gasser, C.S.; Skinner, D.J. Development and evolution of the unique ovules of flowering plants. Curr. Top. Dev. Biol. 2019, 131, 373–399. [Google Scholar] [CrossRef]
- Soundararajan, P.; Won, S.Y.; Park, D.S.; Lee, Y.H.; Kim, J.S. Comparative Analysis of the YABBY Gene Family of Bienertia sinuspersici, a Single-Cell C4 Plant. Plants 2019, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dong, N.; Shen, L.; Lu, M.; Zhai, J.; Zhao, Y.; Chen, L.; Wan, Z.; Liu, Z.; Ren, H.; et al. Genome-wide identification and expression profile of YABBY genes in Averrhoa carambola. PeerJ 2022, 9, e12558. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Van Houten, J.; Gonzalez, G.; Xiao, H.; van der Knaap, E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato (Solanum lycopersicum). Mol. Genet. Genom. 2013, 288, 111–129. [Google Scholar] [CrossRef]
- Yin, S.; Li, S.; Gao, Y.; Bartholomew, E.S.; Wang, R.; Yang, H.; Liu, C.; Chen, X.; Wang, Y.; Liu, X.; et al. Genome-Wide Identification of YABBY Gene Family in Cucurbitaceae and Expression Analysis in Cucumber (Cucumis sativus L.). Genes 2022, 13, 467. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Xu, Y.Y.; Xu, Z.H.; Chong, K. A rice (Oryza sativa) YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev. Genes Evol. 2007, 217, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, J.; Liu, H.; Wang, Z.; Nan, R.; Zhong, T.; Sun, M.; Wang, S.; Yao, Y.; Sun, F.; et al. Genome-wide analysis of the switchgrass YABBY family and functional characterization of PvYABBY14 in response to ABA and GA stress in Arabidopsis. BMC Plant Biol. 2024, 24, 114. [Google Scholar] [CrossRef]
- Han, X.; Yin, L.; Xue, H. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis. J. Integr. Plant Biol. 2012, 54, 486–499. [Google Scholar] [CrossRef]
- de Boer, H.J.; Thulin, M. Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data. PhytoKeys 2012, 12, 23–33. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; McGregor, C.; Liu, S.; Luan, F.; Gao, M.; Weng, Y. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theor. Appl. Genet. 2020, 133, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 1995, 11, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Sternberg, M.J.E. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 2009, 4, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.J.; Su, W.Z.; Zhou, C.; Teng, L.Y.; Tu, Z.W.; Zhu, Q.L. Genome-wide identification and stress response analysis of the OSCA gene family in Citrullus lanatus. J. South. Agric. 2021, 52, 3330–3339. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.X.; Wang, T.K.; Song, S.F.; Qiu, M.D.; Zhang, Z.S.; Zhang, L.C.; Fu, Y.F.; Li, L. Genome-wide identification and expression analysis of the YABBY family in Oryza sativa. Mol. Plant Breed. 2020, 18, 4845–4854. [Google Scholar] [CrossRef]
- Zhang, L.; Chong, Y.; Yang, X.; Fan, W.; Cheng, F.; Li, Y.; Hou, X.; Zhang, K. Comparative Transcriptome Reveals Conserved Gene Expression in Reproductive Organs in Solanaceae. Int. J. Mol. Sci. 2025, 26, 3568. [Google Scholar] [CrossRef] [PubMed]
- Buttar, Z.A.; Yang, Y.; Sharif, R.; Nan Wu, S.; Xie, Y.; Wang, C. Genome Wide Identification, Characterization, and Expression Analysis of YABBY-Gene Family in WHEAT (Triticum aestivum L.). Agronomy 2020, 10, 1189. [Google Scholar] [CrossRef]
- Zhao, S.P.; Lu, D.; Yu, T.F.; Ji, Y.J.; Zheng, W.J.; Zhang, S.X.; Chai, S.C.; Chen, Z.Y.; Cui, X.Y. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiol. Biochem. 2017, 119, 132–146. [Google Scholar] [CrossRef]






| Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
|---|---|---|
| ClaYABBY1 | CTGTCCTTGCGGTTAGTGT | TTAGGTGAAGGCAGAAGAA |
| ClaYABBY2 | GCTGGGGATTCAAGTAAGGACA | TCTATGTTGGTCACGTTCAGCA |
| ClaYABBY3 | GTTCAACCTTCCGACCACCT | GAATCCCAACCGCAAGGAGA |
| ClaYABBY4 | TTCAGTCTCAGGTTGGGT | AATTTGGAGAAGGGGACT |
| ClaYABBY5 | TTGTACCACCATTTTGTT | AATGAAGAGGAACCAGAG |
| ClaYABBY6 | TGGAGGAGATTTTCAAGGTGATT | GATTCACAACCCTCTCCTCTGC |
| ClaYABBY7 | TAAGCCCTCTTTTATCCC | GCTGTCCAAGCAGTAGTG |
| ClaYABBY8 | CGTTTTAGCGGTGAGTGT | TTGAAGAAGGGAGAAGCA |
| ClaYABBY9 | TCTTTGACATCGTGACCGTCC | GTTTGATGCCTGGGAATTTTGC |
| Gene Name | Gene ID 1 | Chromosome Location (bp) 1 | CDS Length (bp) 1 | Protein Length (aa) | Subcellular Localization 2 |
|---|---|---|---|---|---|
| ClaYABBY1 | Cla97C01G003950 | Chr01: 3,813,075-3,815,619 | 729 | 242 | Nucleus |
| ClaYABBY2 | Cla97C02G048590 | Chr02: 36,152,595-36,158,526 | 528 | 175 | Nucleus |
| ClaYABBY3 | Cla97C05G105600 | Chr05: 33,149,820-33,151,273 | 525 | 174 | Nucleus |
| ClaYABBY4 | Cla97C05G105790 | Chr05: 33,264,259-33,265,720 | 525 | 174 | Nucleus |
| ClaYABBY5 | Cla97C05G107630 | Chr05: 34,483,159-34,484,229 | 510 | 169 | Nucleus |
| ClaYABBY6 | Cla97C06G120470 | Chr06: 22,589,987-22,593,170 | 579 | 192 | Nucleus |
| ClaYABBY7 | Cla97C08G161640 | Chr08: 28,051,831-28,053,028 | 585 | 194 | Nucleus |
| ClaYABBY8 | Cla97C10G187530 | Chr10: 3,508,858-3,511,851 | 567 | 188 | Nucleus |
| ClaYABBY9 | Cla97C11G209590 | Chr11: 3,160,025-3,163,699 | 579 | 192 | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, X.; Ji, W.; Wu, F.; Panisaga, A.; Yu, T.; Gu, Z.; Ndeve, A.; Ma, B.; Chen, X. Genome-Wide Identification and Expression Analysis of the YABBY Gene Family in Watermelon. Agronomy 2026, 16, 177. https://doi.org/10.3390/agronomy16020177
Xu X, Ji W, Wu F, Panisaga A, Yu T, Gu Z, Ndeve A, Ma B, Chen X. Genome-Wide Identification and Expression Analysis of the YABBY Gene Family in Watermelon. Agronomy. 2026; 16(2):177. https://doi.org/10.3390/agronomy16020177
Chicago/Turabian StyleXu, Xinya, Weibo Ji, Fan Wu, Alfinda Panisaga, Tingting Yu, Zhimin Gu, Arsenio Ndeve, Bojun Ma, and Xifeng Chen. 2026. "Genome-Wide Identification and Expression Analysis of the YABBY Gene Family in Watermelon" Agronomy 16, no. 2: 177. https://doi.org/10.3390/agronomy16020177
APA StyleXu, X., Ji, W., Wu, F., Panisaga, A., Yu, T., Gu, Z., Ndeve, A., Ma, B., & Chen, X. (2026). Genome-Wide Identification and Expression Analysis of the YABBY Gene Family in Watermelon. Agronomy, 16(2), 177. https://doi.org/10.3390/agronomy16020177

