Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area and Experimental Design
2.2. Experimental Design
2.3. Cotton AGB Data Collection
2.4. UAV Data Acquisition and Preprocessing
2.5. Image Feature Extraction
2.5.1. Spectral Feature Extraction
2.5.2. Texture Feature Extraction
2.5.3. Canopy Height (CH) Extraction
2.6. Method
2.6.1. Image Feature Fusion Method
2.6.2. Methods of Variable Selection
2.6.3. Model Construction
2.7. Evaluation of Model Accuracy
3. Results
3.1. Temporal Dynamics of Cotton Canopy Characteristics Derived from UAV Multispectral Data
3.1.1. Visual Changes in Multi-Temporal UAV Multispectral Imagery
3.1.2. Temporal Variation in Spectral, Textural Features and CHM
3.2. Spearman’s Correlation Analysis Between Spectral and Texture Features and Cotton AGB Across Five Growth Stages
3.3. Spectral and Texture Feature Selection Based on Variance Inflation Factor (VIF) Across Five Growth Stages of Cotton
3.4. Temporal Variation in Spearman’s Correlation Correlations Between AGB and Spectral, Texture, and CHM
3.5. Cotton AGB Estimation Model for Five Growth Periods of Cotton
3.5.1. Comparing Different Image Feature Fusion Methods for Estimating Cotton AGB
3.5.2. Comparison of Different Algorithms for Estimating Cotton AGB
3.5.3. Optimal Strategy for Estimating Cotton AGB via Integration of Image-Feature Fusion Approaches and Models
3.6. Performance of Cotton AGB Prediction at Different Cotton Growth Stages
4. Discussion
4.1. Insights into the Role of Multi-Feature Fusion for AGB Estimation
4.2. Advantages of CNN for AGB Estimation
4.3. Study Limitations and Prospects for Future Research
4.4. Main Contributions of the Research
5. Conclusions
- The fusion of spectral, textural features, and CH outperforms single spectral features, spectral and texture features fusion, and spectral features and CH fusion. The method integrating spectral, textural features, and CH achieved the highest estimation precision in this study, indicating that combining multiple feature information may more comprehensively reflect the spatial variation in aboveground biomass.
- Deep learning algorithms outperformed traditional methods. In this study, a CNN yielded superior AGB estimates compared to traditional machine learning algorithms like BRR and RFR, demonstrating their advantage in handling complex nonlinear relationships between multiple remote sensing features and AGB.
- The “multiple feature fusion and CNN” strategy yielded the best performance under the study conditions. Integrating spectral, textural features, and CH with the CNN algorithm for estimating cotton AGB demonstrated best performance (R2 = 0.80, RMSE = 0.17 kg·m−2, and MAE = 0.11 kg·m−2), indicating its potential applicability under the current experimental setup and providing a reference technical approach for biomass estimation in agricultural remote sensing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Brand, H.J.; Sui, R.; Thomson, S.J.; Furukawa, T.; Ebelhar, M.W. Cotton Yield Estimation Using Very High-Resolution Digital Images Acquired with a Low-Cost Small Unmanned Aerial Vehicle. Trans. ASABE 2016, 59, 1563–1574. [Google Scholar]
- Zhang, J.; Fang, H.; Zhou, H.; Sanogo, S.; Ma, Z. Genetics, Breeding, and Marker-Assisted Selection for Verticillium Wilt Resistance in Cotton. Crop Sci. 2014, 54, 1289–1303. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-Ground Biomass Estimation and Yield Prediction in Potato by Using UAV-Based RGB and Hyperspectral Imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Virk, G.; Adhikari, B.N.; Hinze, L.L.; Hequet, E.F.; Stelly, D.M.; Kelly, C.M.; Hague, S.; Percy, R.G.; Dever, J.K. Physiological Contributors to Yield in Advanced Cotton Breeding Lines. Crop Sci. 2023, 63, 3264–3276. [Google Scholar] [CrossRef]
- Khan, A.; Kong, X.; Najeeb, U.; Zheng, J.; Tan, D.K.Y.; Akhtar, K.; Munsif, F.; Zhou, R. Planting Density Induced Changes in Cotton Biomass Yield, Fiber Quality, and Phosphorus Distribution under Beta Growth Model. Agronomy 2019, 9, 500. [Google Scholar] [CrossRef]
- Aierken, N.; Yang, B.; Li, Y.; Jiang, P.; Pan, G.; Li, S. A Review of Unmanned Aerial Vehicle–Based Remote Sensing and Machine Learning for Cotton Crop Growth Monitoring. Comput. Electron. Agric. 2024, 227, 109601. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W. Modeling Grassland Above-Ground Biomass Based on Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wang, M.; Fan, Q.; Tian, H.; Qiao, X.; Li, Y. Applications of UAS in Crop Biomass Monitoring: A Review. Front. Plant Sci. 2021, 12, 616689. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Lin, H.; Dong, Y.; Qiang, Z. A Review of the Application of UAV Multispectral Remote Sensing Technology in Precision Agriculture. Smart Agric. Technol. 2025, 12, 101406. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating Biomass of Winter Oilseed Rape Using Vegetation Indices and Texture Metrics Derived from UAV Multispectral Images. Comput. Electron. Agric. 2019, 166, 105026. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F. New Textural Indicators for Assessing Above-Ground Cotton Biomass Extracted from Optical Imagery Obtained via Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 4170. [Google Scholar] [CrossRef]
- Chen, M.; Yin, C.; Lin, T.; Liu, H.; Wang, Z.; Jiang, P.; Ali, S.; Tang, Q.; Jin, X. Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton. Agronomy 2024, 14, 1313. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Li, Z.; Yang, G. Estimation of Potato Above-Ground Biomass Based on Unmanned Aerial Vehicle Red–Green–Blue Images with Different Texture Features and Crop Height. Front. Plant Sci. 2022, 13, 938216. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Song, L.; Su, X.; Li, J.; Zheng, J.; Zhu, X.; Ren, L.; Wang, W.; Li, X. Optimizing Window Size and Directional Parameters of GLCM Texture Features for Estimating Rice AGB Based on UAVs Multispectral Imagery. Front. Plant Sci. 2023, 14, 1284235. [Google Scholar] [CrossRef]
- Zubair, A.R.; Alo, O.A. Grey Level Co-Occurrence Matrix (GLCM) Based Second Order Statistics for Image Texture Analysis. arXiv 2024, arXiv:2403.04038. [Google Scholar] [CrossRef]
- Liu, H.; Dong, P. A New Method for Generating Canopy Height Models from Discrete-Return LiDAR Point Clouds. Remote Sens. Lett. 2014, 5, 575–582. [Google Scholar] [CrossRef]
- Valluvan, A.B.; Raj, R.; Pingale, R.; Jagarlapudi, A. Canopy Height Estimation Using Drone-Based RGB Images. Smart Agric. Technol. 2023, 4, 100145. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Chang, J.; Caffe, M. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning. Sensors 2023, 23, 9708. [Google Scholar]
- Luo, S.; Jiang, X.; He, Y.; Li, J.; Jiao, W.; Zhang, S.; Xu, F.; Han, Z.; Sun, J.; Yang, J.; et al. Multi-Dimensional Variables and Feature Parameter Selection for Aboveground Biomass Estimation of Potato Based on UAV Multispectral Imagery. Front. Plant Sci. 2022, 13, 948249. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, W.; Li, H.; Yang, Z.; Li, J. Monitoring of Vegetation Chlorophyll Content in Photovoltaic Areas Using UAV-Mounted Multispectral Imaging. Front. Plant Sci. 2025, 16, 1643945. [Google Scholar] [CrossRef]
- Grüner, E.; Wachendorf, M.; Astor, T. The Potential of UAV-Borne Spectral and Textural Information for Predicting Aboveground Biomass and N Fixation in Legume–Grass Mixtures. PLoS ONE 2020, 15, e0234703. [Google Scholar] [CrossRef]
- Xu, T.; Wang, F.; Xie, L.; Yao, X.; Zheng, J.; Li, J.; Chen, S. Integrating the Textural and Spectral Information of UAV Hyperspectral Images for the Improved Estimation of Rice Aboveground Biomass. Remote Sens. 2022, 14, 2534. [Google Scholar] [CrossRef]
- Zou, M.; Liu, Y.; Fu, M.; Li, C.; Zhou, Z.; Meng, H.; Xing, E.; Ren, Y. Combining Spectral and Texture Feature of UAV Image with Plant Height to Improve LAI Estimation of Winter Wheat at Jointing Stage. Front. Plant Sci. 2024, 14, 1272049. [Google Scholar] [CrossRef]
- Lv, Z.; Meng, R.; Man, J.; Zeng, L.; Wang, M.; Xu, B.; Gao, R.; Sun, R.; Zhao, F. Modeling of Winter Wheat fAPAR by Integrating Unmanned Aircraft Vehicle-Based Optical, Structural and Thermal Measurement. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102407. [Google Scholar] [CrossRef]
- Yin, Q.; Yu, X.; Li, Z.; Du, Y.; Ai, Z.; Qian, L.; Huo, X.; Fan, K.; Wang, W.; Hu, X. Estimating Summer Maize Biomass by Integrating UAV Multispectral Imagery with Crop Physiological Parameters. Plants 2024, 13, 3070. [Google Scholar] [CrossRef]
- Astor, T.; Dayananda, S.; Nautiyal, S.; Wachendorf, M. Vegetable Crop Biomass Estimation Using Hyperspectral and RGB 3D UAV Data. Agronomy 2020, 10, 1600. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High-Resolution Wheat Yield Mapping Using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Qi, H. Monitoring of Peanut Leaves Chlorophyll Content Based on Drone-Based Multispectral Image Feature Extraction. Comput. Electron. Agric. 2021, 187, 106292. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Niu, Y.; Chávez, J.L.; Shao, G.; Zhang, H. Evaluating the Sensitivity of Water-Stressed Maize Chlorophyll and Structure Based on UAV-Derived Vegetation Indices. Comput. Electron. Agric. 2021, 185, 106174. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Aghdam, H.H.; Heravi, E.J. Guide to Convolutional Neural Networks; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Agbona, A.; Teare, B.; Ruiz-Guzman, H.; Dobreva, I.D.; Everett, M.E.; Adams, T.; Montesinos-Lopez, O.A.; Kulakow, P.A.; Hays, D.B. Prediction of Root Biomass in Cassava Based on Ground Penetrating Radar Phenomics. Remote Sens. 2021, 13, 4908. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef]
- Vawda, M.I.; Lottering, R.; Mutanga, O.; Peerbhay, K.; Sibanda, M. Comparing the Utility of Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) on Sentinel-2 MSI to Estimate Dry Season Aboveground Grass Biomass. Sustainability 2024, 16, 1051. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the Relationship of NDVI with Leaf Area Index in a Deciduous Forest Site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Romano, E.; Brambilla, M.; Chianucci, F.; Tattoni, C.; Puletti, N.; Chirici, G.; Travaglini, D.; Giannetti, F. Estimating Canopy and Stand Structure in Hybrid Poplar Plantations from Multispectral UAV Imagery. Ann. For. Res. 2024, 67, 143–154. [Google Scholar] [CrossRef]
- Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. Crop Height Estimation Based on UAV Images. Comput. Electron. Agric. 2021, 185, 106155. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. China Surface Climate Daily Data Set (V3.0). China Meteorological Administration: Beijing. Available online: http://data.cma.cn (accessed on 30 November 2025).
- Zhang, Y.; Liu, X.; Sun, W.; You, T.; Qi, X. Multi-Threshold Remote Sensing Image Segmentation Based on Improved Black-Winged Kite Algorithm. Biomimetics 2025, 10, 331. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publication SP-351; NASA: Washington, DC, USA, 1974; Volume 1. [Google Scholar]
- Wang, F.M.; Huang, J.F.; Tang, Y.L.; Wang, X.Z. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Yan, Z.J. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.; Viña, A.; Ciganda, V. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular Sensitivity Analysis of Vegetation Indices Derived from CHRIS/PROBA Data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Raper, T.B.; Varco, J.J. Canopy-Scale Wavelength and Vegetative Index Sensitivities to Cotton Growth Parameters and Nitrogen Status. Precis. Agric. 2015, 16, 62–76. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E., III. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing Leaf Pigment Content with a Reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Earth Lab. Canopy Height Models, Digital Surface Models & Digital Elevation Models. Earth Data Science, University of Colorado Boulder. Available online: https://earthdatascience.org/courses/use-data-open-source-python/data-stories/what-is-lidar-data/lidar-chm-dem-dsm/ (accessed on 26 October 2025).
- Samadzadegan, F.; Toosi, A.; Dadrass Javan, F. A Critical Review on Multi-Sensor and Multi-Platform Remote Sensing Data Fusion Approaches: Current Status and Prospects. Int. J. Remote Sens. 2025, 46, 1327–1402. [Google Scholar] [CrossRef]
- Cai, T.; Chang, C.; Zhao, Y.; Wang, X.; Yang, J.; Dou, P.; Otgonbayar, M.; Zhang, G.; Zeng, Y.; Wang, J. Within-Season Estimates of 10 m Aboveground Biomass Based on Landsat, Sentinel-2 and PlanetScope Data. Sci. Data 2024, 11, 1276. [Google Scholar] [CrossRef]
- Sedgwick, P. Spearman’s Rank Correlation Coefficient. BMJ 2014, 349, g7327. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Montesinos-López, A.; Montesinos-López, O.A.; de los Campos, G.; Crossa, J.; Burgueño, J.; Luna-Vázquez, F.J. Bayesian Functional Regression as an Alternative Statistical Analysis of High-Throughput Phenotyping Data of Modern Agriculture. Plant Methods 2018, 14, 46. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. Digital Aerial Photogrammetry for Uneven-Aged Forest Management: Assessing the Potential to Reconstruct Canopy Structure and Estimate Living Biomass. Remote Sens. 2019, 11, 338. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Deep Neural Network Algorithm for Estimating Maize Biomass Based on Simulated Sentinel-2A Vegetation Indices and Leaf Area Index. Crop J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Herrero-Huerta, M.; Gonzalez-Aguilera, D.; Rodriguez-Gonzalvez, P.; Hernandez-Lopez, D.; Fernandez-Hernandez, J.; Turias, I.; Boyko, A.; Lindenbergh, R.; Di Stefano, F. Canopy Roughness: A New Phenotypic Trait to Estimate Biomass. Plant Phenomics 2020, 2020, 6735967. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man, Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Kümmerer, R.; Noack, P.O.; Bauer, B. Using High-Resolution UAV Imaging to Measure Canopy Height of Diverse Cover Crops and Predict Biomass. Remote Sens. 2023, 15, 1520. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Zhao, G.; Wu, Q.; Liang, W.; Ren, N.; Cao, H.; Zou, L. Mapping Rapeseed (Brassica napus L.) Aboveground Biomass in Different Periods Using Optical and Phenotypic Metrics Derived from UAV Hyperspectral and RGB Imagery. Front. Plant Sci. 2024, 15, 1504119. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Sun, Z.; Li, J.; Jin, X.; Zhu, W.; Bian, J.; Ma, L.; Zeng, Y.; Su, Z. Deep Convolutional Neural Networks for Estimating Maize Above-Ground Biomass Using Multi-Source UAV Images: A Comparison with Traditional Machine Learning Algorithms. Precis. Agric. 2023, 24, 92–113. [Google Scholar] [CrossRef]
- Zu, J.; Yang, H.; Wang, J.; Cai, W.; Yang, Y. Inversion of Winter Wheat Leaf Area Index from UAV Multispectral Images: Classical vs. Deep Learning Approaches. Front. Plant Sci. 2024, 15, 1367828. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Zhang, Q.; Zhu, X.; Zhou, K. Chlorophyll Content Estimation of Ginkgo Seedlings Based on Deep Learning and Hyperspectral Imagery. Forests 2024, 15, 2010. [Google Scholar] [CrossRef]


















| Dataset | Sample Size | Mean (kg·m−2) | Maximum (kg·m−2) | Minimum (kg·m−2) | Standard Deviation (kg·m−2) | Variance | Coefficient of Variation |
|---|---|---|---|---|---|---|---|
| Total sample set | 375 | 0.51 | 1.80 | 0.05 | 0.39 | 0.15 | 0.77 |
| Image Data Acquisition Time | Growing Stage of Cotton | Time Since Emergence (Day) | Drone Platform Model | Sensor Model | Flight Level (m) | Ground Resolution (m) | Front and Side Overlap |
|---|---|---|---|---|---|---|---|
| 20 April 2023 | bare soil stage | - | M300RTK | MS600PRO | 15 | 0.01 | 80% + 80% |
| 14 June 2023 | seedling stage | 44 | 15 | 0.01 | 80% + 80% | ||
| 28 June 2023 | squaring stage | 58 | 15 | 0.01 | 80% + 80% | ||
| 18 July 2023 | flowering stage | 78 | 15 | 0.01 | 80% + 80% | ||
| 2 August 2023 | boll setting stage | 92 | 15 | 0.01 | 80% + 80% | ||
| 22 August 2023 | boll opening stage | 112 | 15 | 0.01 | 80% + 80% |
| Number | Spectral Indices | Definition | Reference |
|---|---|---|---|
| 1 | B | Blue | - |
| 2 | G | Green | - |
| 3 | R | Red | - |
| 4 | NIR | Nir | - |
| 5 | RE1 | RedEdge1 | - |
| 6 | RE2 | RedEdge2 | - |
| 7 | Normalized difference vegetation index (NDVI) | [44] | |
| 8 | Green-normalized difference vegetation index (GNDVI) | [45] | |
| 9 | Triangular vegetation index (TVI) | [46] | |
| 10 | Optimized soil-adjusted vegetation index (OSAVI) | [47] | |
| 11 | Soil-adjusted vegetation index (SAVI) | [48] | |
| 12 | Ratio vegetation index (RVI) | [49] | |
| 13 | Ratio vegetation index 2 (RVI2) | [50] | |
| 14 | Enhanced vegetation index (EVI) | [51] | |
| 15 | Green chlorophyll index (GCI) | [52] | |
| 16 | Red-edge1 chlorophyll index (RECI1) | [52] | |
| 17 | Red-edge2 chlorophyll index 2 (RECI2) | [52] | |
| 18 | Green–red vegetation index (GRVI) | [53] | |
| 19 | Normalized difference vegetation index 2 (NDVIgb) | [54] | |
| 20 | Normalized difference red-edge1 (NDRE1) | [55] | |
| 21 | Normalized difference red-edge2 (NDRE2) | [55] | |
| 22 | Normalized difference red-edge1 index (NDREI1) | [56] | |
| 23 | Normalized difference red-edge2 index 2 (NDREI2) | [57] | |
| 24 | Simplified canopy chlorophyll content index (SCCCI1) | [57] | |
| 25 | Simplified canopy chlorophyll content index 2 (SCCCI2) | [57] | |
| 26 | Optimized soil-adjusted vegetation index 2 (OSAVI1) | [47] | |
| 27 | Modified chlorophyll absorption in reflectance index (MCARI1) | [58] | |
| 28 | Modified chlorophyll absorption in reflectance index 2 (MCARI2) | [58] | |
| 29 | Transformed chlorophyll absorption in reflectance index (TCARI1) | [58] | |
| 30 | Transformed chlorophyll absorption in reflectance index 2 (TCARI2) | [58] | |
| 31 | MCARI1/OSAVI2 (M/O2 1) | [59] | |
| 32 | MCARI2/OSAVI2 (M/O2 2) | [59] | |
| 33 | TCARI1/OSAVI2 (T/O2 1) | - | |
| 34 | TCARI2/OSAVI2 (T/O2 2) | - | |
| 35 | Wide dynamic range vegetation index (WDRVI) | [58] | |
| 36 | Green–red ratio index (GRRI) | [60] |
| Image Feature Fusion Method | Norm | Feature Variables |
|---|---|---|
| Spectral features | Spec | original bands, 30 vegetation indices |
| Fusion of spectral and textural features | Spec + Text | original bands, 30 vegetation indices, 48 texture indices from original bands |
| Fusion of spectral and canopy height | Spec + CH | original bands, 30 vegetation indices; CHM |
| Fusion of spectral, textural, and canopy height | Spec + Text + CH | original bands, 30 vegetation indices; 48 texture indices from original bands; CHM |
| Layer Name | Filter Size/Neurons | Activation Function |
|---|---|---|
| Input layer | - | - |
| Convolution layer 1 | 1 × 3 × 16 | ReLU |
| Batch normalization 1 | - | - |
| Convolution layer 2 | 1 × 3 × 32 | ReLU |
| Batch normalization 2 | - | - |
| Flattening | - | - |
| Fully connected layer 1 | 64 | ReLU |
| Dropout (0.15) | - | - |
| Fully connected layer 2 (Output) | 1 | Linear |
| Feature | Feature Indicators | VIF |
|---|---|---|
| Spectral feature | WDRVI | 1.33 |
| TVI | 6.19 | |
| OSAVI1 | 6.30 | |
| Textural feature | NIR_ASM | 2.05 |
| NIR_ENT | 2.05 | |
| Canopy height | CHM | - |
| Image Feature Fusion Method | Norm | Model | Number of Variables | Variable Name | Test Sets | ||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (kg·m−2) | MAE (kg·m−2) | |||||
| Spectral features | Spec | BRR | 3 | WDRVI, TVI, OSAVI1 | 0.57 | 0.25 | 0.19 |
| RFR | 0.62 | 0.24 | 0.16 | ||||
| CNN | 0.67 | 0.22 | 0.15 | ||||
| Fusion of spectral and textural features | Spec + Text | BRR | 5 | WDRVI, TVI, OSAVI1, NIR_ASM, NIR_ENT | 0.58 | 0.25 | 0.18 |
| RFR | 0.72 | 0.20 | 0.15 | ||||
| CNN | 0.74 | 0.19 | 0.13 | ||||
| Fusion of spectral features and canopy height | Spec + CH | BRR | 4 | WDRVI, TVI, OSAVI1, CHM | 0.71 | 0.21 | 0.15 |
| RFR | 0.77 | 0.19 | 0.13 | ||||
| CNN | 0.78 | 0.18 | 0.12 | ||||
| Fusion of spectral, textural features and canopy height | Spec + Text + CH | BRR | 6 | WDRVI, TVI, OSAVI1, NIR_ASM, NIR_ENT, CHM | 0.72 | 0.21 | 0.15 |
| RFR | 0.78 | 0.18 | 0.12 | ||||
| CNN | 0.80 | 0.17 | 0.11 | ||||
| Image Feature Fusion Method | Norm | Variable Name | Model | Growing Stage of Cotton | Test Sets | ||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (kg·m−2) | MAE (kg·m−2) | |||||
| Fusion of spectral, textural, and canopy height (CH) | Spec + Text + CH | WDRVI, TVI, OSAVI1, NIR_ASM, NIR_ENT, CHM | CNN | seedling stage | −1.72 | 0.04 | 0.03 |
| squaring stage | 0.27 | 0.08 | 0.06 | ||||
| flowering stage | 0.10 | 0.16 | 0.12 | ||||
| boll setting stage | 0.35 | 0.22 | 0.16 | ||||
| boll opening stage | 0.49 | 0.27 | 0.21 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, S.; Wang, X.; Cui, H.; Liang, Q.; Ning, S.; Yang, H.; Wang, P.; Sheng, J. Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model. Agronomy 2026, 16, 74. https://doi.org/10.3390/agronomy16010074
Huang S, Wang X, Cui H, Liang Q, Ning S, Yang H, Wang P, Sheng J. Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model. Agronomy. 2026; 16(1):74. https://doi.org/10.3390/agronomy16010074
Chicago/Turabian StyleHuang, Shuhan, Xinjun Wang, Hanyu Cui, Qingfu Liang, Songrui Ning, Haoran Yang, Panfeng Wang, and Jiandong Sheng. 2026. "Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model" Agronomy 16, no. 1: 74. https://doi.org/10.3390/agronomy16010074
APA StyleHuang, S., Wang, X., Cui, H., Liang, Q., Ning, S., Yang, H., Wang, P., & Sheng, J. (2026). Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model. Agronomy, 16(1), 74. https://doi.org/10.3390/agronomy16010074

