Genome-Wide Association Study Identifies Candidate Genes Regulating Berry Color in Grape (Vitis vinifera L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotyping of Berry Color Traits
2.3. Genome-Wide Association Analysis
2.4. Candidate-Gene Selection and Functional Annotation
2.5. DNA and RNA Extraction, Reverse Transcription
2.6. qRT-PCR Analysis of Candidate Genes
2.7. Construction and Transformation of Candidate Genes
2.8. Overexpression and Subcellular Localization
2.9. Total Anthocyanin Quantification
2.10. Statistical Analysis
3. Results
3.1. Phenotypic Variation and Correlation Analysis
3.2. GWAS for Skin and Flesh Color
3.3. Candidate-Gene Mining and KEGG Enrichment
3.4. Expression Patterns of Candidate Genes
3.5. Subcellular Localization and Overexpression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| GWAS | Genome-wide association study |
| SNP | Single-nucleotide polymorphism |
| GLM | Generalized linear model |
| MAF | Minor allele frequency |
| PVE | Phenotypic variance explained |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| CTAB | Cetyltrimethylammonium bromide |
| MES | 2-(N-morpholino)ethanesulfonic acid |
| SD | Standard deviation |
| Chr. | Chromosome |
| SC | Skin color |
| FC | Flesh color |
References
- Jia, H.; Zhang, C.; Pervaiz, T.; Zhao, P.; Liu, Z.; Wang, B.; Wang, C.; Zhang, L.; Fang, J.; Qian, J. Jasmonic acid involves in grape fruit ripening and resistant against botrytis cinerea. Funct. Integr. Genom. 2016, 16, 79–94. [Google Scholar] [CrossRef]
- Guzmanardiles, R.E.; Pegoraro, C.; Maia, L.C.D.; de Oliveira, A.C. Genetic changes in the genus Vitis and the domestication of vine. Front. Plant Sci. 2023, 13, 1019311. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Zhang, C.; Yan, H.; Nai, G.; Bao, J.; Sun, P.; Liu, Y.; Zhang, J.; Pu, Z.; Li, S.; et al. Research progress on grapevine response mechanisms and alleviation measures under salt stress. J. Plant Growth Regul. 2025, 44, 3411–3424. [Google Scholar] [CrossRef]
- Dong, T.; Zheng, T.; Fu, W.; Guan, L.; Jia, H.; Fang, J. The effect of ethylene on the color change and resistance to botrytis cinerea infection in ‘kyoho’ grape fruits. Foods 2020, 9, 892. [Google Scholar] [CrossRef]
- de Souza Leao, P.C.; Cruz, C.D.; Motoike, S.Y. Genetic diversity of table grape based on morphoagronomic traits. Sci. Agric. 2011, 68, 42–49. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Di Gaspero, G.; Marconi, R.; Nonis, A.; Peterlunger, E.; Paillard, S.; Adam-Blondon, A.; Testolin, R. Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genom. 2006, 7, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Wang, X.; Xia, G.; Pan, Q.; Fan, R.; Wu, F.; Yu, X.; Zhang, D. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 2006, 142, 220–232. [Google Scholar] [CrossRef]
- Czemmel, S.; Heppel, S.C.; Bogs, J. R2r3 MYB transcription factors: Key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 2012, 249, S109–S118. [Google Scholar] [CrossRef] [PubMed]
- Ageorges, A.; Fernandez, L.; Vialet, S.; Merdinoglu, D.; Terrier, N.; Romieu, C. Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci. 2006, 170, 372–383. [Google Scholar] [CrossRef]
- Gomez, C.; Conejero, G.; Torregrosa, L.; Cheynier, V.; Terrier, N.; Ageorges, A. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthomate transporters and GST. Plant. J. 2011, 67, 960–970. [Google Scholar] [CrossRef]
- Francisco, R.M.; Regalado, A.; Ageorges, A.; Burla, B.J.; Bassin, B.; Eisenach, C.; Zarrouk, O.; Vialet, S.; Marlin, T.; Chaves, M.M.; et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-o-glucosides. Plant Cell 2013, 25, 1840–1854. [Google Scholar] [CrossRef]
- Jiu, S.; Guan, L.; Leng, X.; Zhang, K.; Haider, M.S.; Yu, X.; Zhu, X.; Zheng, T.; Ge, M.; Wang, C.; et al. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) Skin coloration. Plant Biotechnol. J. 2021, 19, 1216–1239. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Fernandes, F.; Pinto-Carnide, O.; Valentao, P.; Falco, V.; Martin, J.P.; Ortiz, J.M.; Arroyo-Garcia, R.; Andrade, P.B.; Castro, I. Identification of vitis vinifera l. Grape berry skin color mutants and polyphenolic profile. Food Chem. 2016, 194, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 2015, 20, 576–585. [Google Scholar] [CrossRef]
- Adam-Blondon, A.; Roux, C.; Claux, D.; Butterlin, G.; Merdinoglu, D.; This, P. Mapping 245 SSR markers on the Vitis vinifera genome: A tool for grape genetics. Theor. Appl. Genet. 2004, 109, 1017–1027. [Google Scholar] [CrossRef]
- Doligez, A.; Adam-Blondon, A.F.; Cipriani, G.; Di Gaspero, G.; Laucou, V.; Merdinoglu, D.; Meredith, C.P.; Riaz, S.; Roux, C.; This, P. An integrated SSR map of grapevine based on five mapping populations. Theor. Appl. Genet. 2006, 113, 369–382. [Google Scholar] [CrossRef]
- Di Gaspero, G.; Cipriani, G.; Adam-Blondon, A.; Testolin, R. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for r-gene candidates. Theor. Appl. Genet. 2007, 114, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, M.; Malacarne, G.; Troggio, M.; Faes, G.; Stefanini, M.; Grando, M.S.; Velasco, R. A grapevine (Vitis vinifera L.) Genetic map integrating the position of 139 expressed genes. Theor. Appl. Genet. 2008, 116, 1129–1143. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449, 463–467. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends. Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, J.; Zeng, X.; Guo, H.; Luo, Y.; Kear, P.; Zhang, S.; Zhu, G. Genome-wide analysis of MYB gene family in potato provides insights into tissue-specific regulation of anthocyanin biosynthesis. Hortic. Plant J. 2021, 7, 129–141. [Google Scholar] [CrossRef]
- Garcia-Abadillo, J.; Barba, P.; Carvalho, T.; Sosa-Zuniga, V.; Lozano, R.; Carvalho, H.F.; Garcia-Rojas, M.; Salazar, E.; Sanchez, J.I. Dissecting the complex genetic basis of pre- and post-harvest traits in Vitis vinifera L. Using genome-wide association studies. Hortic. Res. 2024, 11, uhad283. [Google Scholar] [CrossRef]
- Zhang, C.A.; Wu, J.Y.; Cui, L.W.; Fang, J.G. Mining of candidate genes for grape berry cracking using a genome-wide association study. J. Integr. Agric. 2022, 21, 2291–2304. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Zhang, S.; Yadav, V.; Zhong, H.; Zhang, F.; Zhou, X.; Wu, X.; Cao, X.; Cui, L. Mining candidate genes for grape seed traits based on a genome-wide association study. Hortic. Plant J. 2024, 11, 1847–1864. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, L.; Fang, J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC Plant Biol. 2022, 22, 42. [Google Scholar] [CrossRef]
- Guo, D.; Zhao, H.; Li, Q.; Zhang, G.; Jiang, J.; Liu, C.; Yu, Y. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] Based on genotyping-by-sequencing markers. Hortic. Res. 2019, 6, 11. [Google Scholar] [CrossRef]
- Hu, L.; Xu, T.; Cai, Y.; Qin, Y.; Zheng, Q.; Chen, T.; Gong, L.; Yang, J.; Zhao, Y.; Chen, J.; et al. Identifying candidate genes for grape (Vitis vinifera L.) Fruit firmness through genome-wide association studies. J. Agric. Food Chem. 2025, 73, 8413–8425. [Google Scholar] [CrossRef]
- NY/T 2563-2014; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability—Grapevine (Vitis L.). Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2014.
- Sun, Q.; He, L.; Sun, L.; Xu, H.; Fu, Y.; Sun, Z.; Zh u, B.; Duan, C.; Pan, Q. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. Front. Plant Sci. 2023, 14, 1142139. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids. Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Wicker, L. Anthocyanin pigments in the skin of lychee fruit. J. Food Sci. 1991, 56, 466–468. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zheng, J.; Wang, G.; Sun, C.; Ferguson, I.B.; Chen, K. Bioactive components and antioxidant capacity of chinese bayberry (Myrica rubra Sieb. and Zucc.) Fruit in relation to fruit maturity and postharvest storage. Eur. Food Res. Technol. 2008, 227, 1091–1097. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Ye, J.; Xu, F. Fruit quality of Vitis vinifera: How plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2022, 305, 111404. [Google Scholar] [CrossRef]
- Dar, J.A.; Wani, A.A.; Ahmed, M.; Nazir, R.; Zargar, S.M.; Javaid, K. Peel colour in apple (malus × domestica borkh.): An economic quality parameter in fruit market. Sci. Hortic. 2019, 244, 50–60. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, J.; Han, X.; Li, J.; Gao, Y.; Richards, C.M.; Zhang, C.; Tian, Y.; Liu, G.; Gul, H.; et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 2019, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Molloy, C.; Hunt, M.; Deng, C.H.; Wiedow, C.; Andre, C.; Dare, A.; Mcghie, T. GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple. Hortic. Res. 2022, 9, uhac218. [Google Scholar] [CrossRef]
- Barry, G.; Van Wyk, A. Low-temperature cold shock may induce rind colour development of ‘nules clementine’ mandarin (Citrus reticulata blanco) fruit. Postharvest Biol. Technol. 2006, 40, 82–88. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, X.; Li, Y.; Xu, Y.; Chen, Y.; Chen, Y.; Hu, X.; Li, X.; Sun, X.; Gong, J. Regulation of chlorophyll and carotenoid metabolism in citrus fruit. Hortic. Plant J. 2024, 11, 951–962. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Deng, S.; Chen, J.; Han, J.; Zhu, R.; Zeng, K.; Deng, L. Transcription factor CcbHLH66 regulates mandarin fruit coloration via modulating the expression of chlorophyll degradation related genes CcRCCR and CcNYC. Postharvest Biol. Technol. 2024, 218, 113188. [Google Scholar] [CrossRef]
- Fang, J.; Jogaiah, S.; Guan, L.; Sun, X.; Abdelrahman, M. Coloring biology in grape skin: A prospective strategy for molecular farming. Physiol. Plant. 2018, 164, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Dai, Z.; Wu, B.; Wu, J.; Merlin, I.; Hilbert, G.; Renaud, C.; Gomes, E.; Edwards, E.; Li, S.; et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 2016, 243, 23–41. [Google Scholar] [CrossRef]
- Porret, N.; Cousins, P.; Owens, C. (265) DNA sequence variation within the promoter of VvmybA1 associates with flesh pigmentation of intensely colored grape varieties. Hortscience 2006, 41, 1049C–1049. [Google Scholar] [CrossRef]
- Oglesby, L.; Ananga, A.; Obuya, J.; Ochieng, J.; Cebert, E.; Tsolova, V. Anthocyanin accumulation in muscadine berry skins is influenced by the expression of the MYB transcription factors, MybA1, and MYBCS1. Antioxidants 2016, 5, 35. [Google Scholar] [CrossRef]
- Matus, J.T.; Cavallini, E.; Loyola, R.; Hoell, J.; Finezzo, L.; Dal Santo, S.; Vialet, S.; Commisso, M.; Roman, F.; Schubert, A.; et al. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. Plant. J. 2017, 91, 220–236. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Zhang, W.; Zheng, H.; Xu, X.; Li, H.; Sun, C.; Hu, H.; Zhao, W.; Ma, R.; et al. Promoter replication of grape MYB transcription factor is associated with a new red flesh phenotype. Plant Cell Rep. 2024, 43, 136. [Google Scholar] [CrossRef]
- Niu, T.Q.; Gao, Z.D.; Zhang, P.F.; Zhang, X.J.; Gao, M.Y.; Ji, W.; Fan, W.X.; Wen, P.F. MYBA2 gene involved in anthocyanin and flavonol biosynthesis pathways in grapevine. Genet. Mol. Res. 2016, 15, gmr15048922. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Song, M.; Wang, Z.; Zhai, Y.; Hu, C.; Perl, A.; Ma, H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC Plant Biol. 2023, 23, 361. [Google Scholar] [CrossRef]
- Larson, R.L.; Bussard, J.B. Microsomal flavonoid 3′-monooxygenase from maize seedlings. Plant Physiol. 1986, 80, 483–486. [Google Scholar] [CrossRef]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.E.; Rashotte, A.M.; Murphy, A.S.; Normanly, J.; Tague, B.W.; Peer, W.A.; Taiz, L.; Muday, G.K. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol. 2001, 126, 524–535. [Google Scholar] [CrossRef] [PubMed]








| Trait | Year | Median | SD | Skewness | Kurtosis | CV (%) |
|---|---|---|---|---|---|---|
| SC | 2023 | 3 | 2.63 | 0.15 | −1.71 | 68.73 |
| 2024 | 3 | 2.67 | 0.17 | −1.70 | 69.98 | |
| FC | 2023 | 3 | 2.05 | 0.72 | −0.38 | 64.93 |
| 2024 | 3 | 1.97 | 0.77 | −0.14 | 63.94 |
| Trait | SNP Number | Chr. | Position | p Value | PVE (%) | |
|---|---|---|---|---|---|---|
| 2023 | 2024 | |||||
| SC | 6 | 2 | 13,719,029 | 1.00062049929719 × 10−11 | 2.3454624722796 × 10−12 | 50.51 |
| 2 | 13,994,887 | 2.05162388497504 × 10−11 | 5.77052842059382 × 10−12 | 48.62 | ||
| 2 | 14,165,423 | 3.18447527371019 × 10−11 | 3.29005199794487 × 10−12 | 47.48 | ||
| 2 | 14,172,328 | 2.17544166712701 × 10−11 | 1.10665911509871 × 10−12 | 48.47 | ||
| 2 | 15,492,758 | 9.62413481319484 × 10−11 | 1.95439517603571 × 10−12 | 44.64 | ||
| 2 | 15,746,630 | 6.9159475429752 × 10−12 | 2.45414669520784 × 10−12 | 51.50 | ||
| Trait | SNP Number | Chr. | Position | p Value | PVE (%) | |
|---|---|---|---|---|---|---|
| 2023 | 2024 | |||||
| FC | 5 | 9 | 781,254 | 9.67357699192453 × 10−6 | 7.2829093913397 × 10−6 | 17.21 |
| 9 | 798,828 | 3.77475294729629 × 10−6 | 8.31795325381981 × 10−7 | 18.97 | ||
| 9 | 1,139,732 | 1.48972742603315 × 10−6 | 2.1883336234629 × 10−6 | 20.74 | ||
| 15 | 8,046,679 | 6.77020426963325 × 10−6 | 3.29441642148634 × 10−6 | 17.88 | ||
| 16 | 16,906,520 | 3.19154622927779 × 10−6 | 9.7105139181244 × 10−6 | 19.29 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, Z.; Xu, Y.; Xu, T.; Yu, C.; Fang, C.; Hu, L.; Huang, L.; Zheng, Q.; Zhou, Y.; Zhou, S.; et al. Genome-Wide Association Study Identifies Candidate Genes Regulating Berry Color in Grape (Vitis vinifera L.). Agronomy 2026, 16, 121. https://doi.org/10.3390/agronomy16010121
Yang Z, Xu Y, Xu T, Yu C, Fang C, Hu L, Huang L, Zheng Q, Zhou Y, Zhou S, et al. Genome-Wide Association Study Identifies Candidate Genes Regulating Berry Color in Grape (Vitis vinifera L.). Agronomy. 2026; 16(1):121. https://doi.org/10.3390/agronomy16010121
Chicago/Turabian StyleYang, Zhongyi, Yangshengkai Xu, Tao Xu, Chao Yu, Congling Fang, Lingling Hu, Liufei Huang, Qianqian Zheng, Yuxuan Zhou, Shuyi Zhou, and et al. 2026. "Genome-Wide Association Study Identifies Candidate Genes Regulating Berry Color in Grape (Vitis vinifera L.)" Agronomy 16, no. 1: 121. https://doi.org/10.3390/agronomy16010121
APA StyleYang, Z., Xu, Y., Xu, T., Yu, C., Fang, C., Hu, L., Huang, L., Zheng, Q., Zhou, Y., Zhou, S., & Wu, Y. (2026). Genome-Wide Association Study Identifies Candidate Genes Regulating Berry Color in Grape (Vitis vinifera L.). Agronomy, 16(1), 121. https://doi.org/10.3390/agronomy16010121

