Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials and Locations
2.2. Experimental Design
2.2.1. Determination of Corn Yield and Its Constituent Factors
2.2.2. Determination of Dry Matter and Nitrogen Concentrations in the Upper Part of the Corn Field
2.3. Relevant Calculation Formulas
2.4. Data Processing and Analysis
3. Results
3.1. The Yields and Constituent Factors of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.1.1. The Yields of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.1.2. The Yield Components of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.2. Dry Matter Accumulation, Distribution, and Transport of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.2.1. Dry Matter Accumulation of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.2.2. Dry Matter Distribution of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.2.3. Dry Matter Transfer of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.3. Nitrogen Accumulation, Distribution and Transport of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.3.1. Nitrogen Accumulation of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.3.2. Nitrogen Distribution of Different Corn Varieties Under Different Nitrogen Fertilizer Levels
3.3.3. Nitrogen Transfer of Different Maize Varieties with Different Nitrogen Fertilizers
3.4. The Nitrogen Absorption and Utilization Efficiency of Different Corn Varieties with Different Nitrogen Fertilizer Levels
3.5. Correlation Analysis of Yield and Its Constituent Factors, Nitrogen Use Efficiency and Dry Matter, and Nitrogen Accumulation and Transport
4. Discussion
4.1. The Influence of Different Corn Varieties on Yield and Constituent Factors Under Different Nitrogen Fertilizer Levels
4.2. The Effects of Different Corn Varieties on Dry Matter Accumulation, Distribution, and Transport Under Different Nitrogen Fertilizer Levels
4.3. The Effects of Different Corn Varieties on Nitrogen Accumulation, Distribution, Transport, and Utilization Efficiency Under Different Nitrogen Fertilizer Levels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307. [Google Scholar] [CrossRef]
- Li, S.K.; Zhao, J.R.; Dong, S.T.; Zhao, M.; Li, C.H.; Cui, Y.H.; Liu, Y.H.; Gao, J.L.; Wang, L.C.; Wang, P. Research progress and prospects of maize cultivation in China. Sci. Agric. Sin. 2017, 50, 19. [Google Scholar]
- Mao, X.L.; Yin, S.Y.; Liu, H.H. Response of maize yield to climate change in North China during 1960–2020. J. Arid Land Res. Environ. 2022, 36, 193–200. [Google Scholar]
- Cai, C.Z.; Hou, L.Y.; Wang, H.; Xiong, Y.L.; Liao, C.J.; Zeng, X.S. Analysis of world maize yield potential based on ARIMA model. Grain Issues Res. 2020, 6, 24–30. [Google Scholar]
- Liu, Y.Q.; Gu, J.; Ma, N.N.; Li, X.; Yin, G.H.; Sun, S. Optimizing Spring Maize Growth and Yield through Balanced Irrigation and Nitrogen Application: A TOPSIS Method Approach. Agronomy 2024, 14, 1825. [Google Scholar] [CrossRef]
- Cheng, S.H.; Liu, Y.P.; Peng, J. Effects of nitrogen reduction combined with arbuscular mycorrhizal fungi on yield traits and nitrogen metabolism of summer maize. J. Maize Sci. 2024, 32, 101–110. [Google Scholar]
- Li, X.Y.; Ji, X.J.; Wang, X.L.; Long, A.R.; Wang, Z.Y.; Yang, Z.H.; Gong, X.W.; Jiang, Y.; Qi, H. Effects of straw returning combined with nitrogen application on spring maize yield and grain quality. Acta Agron. Sin. 2025, 51, 696–712. [Google Scholar]
- Wang, L.M.; Ye, Y.L.; Chen, F.J.; Shang, Y.F. Effects of nitrogen application on yield and nitrogen efficiency of different maize varieties. Chin. J. Eco-Agric. 2012, 20, 529–535. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.B.; Wu, M.; Yang, Z.S.; Li, J. Effects of nitrogen application on yield, dry matter and nitrogen accumulation of maize inbred lines with different nitrogen efficiency types. Soil Fertil. Sci. China 2021, 2, 221–227. [Google Scholar]
- He, X.; Gu, L.; Wang, D.; Bare, M.; Schaaf, G.; Apostolakis, A.; Meijide, A.; Chen, X.P.; Hochholdinger, F.; Yu, P. Rhizosheath inhabiting Massilia are linked to heterosis in roots of maize. Nat. Commun. 2025, 16, 10777. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, Y.; Liu, J.; Liu, X.J.; Wu, Y.; Zhao, J.L.; Wang, Y.B.; Fang, W.J.; Zhao, L.; Li, W.Q.; et al. Optimizing thiamine pyrophosphate metabolism enhances crop yield and quality. Nat. Commun. 2025. [Google Scholar] [CrossRef]
- Cui, W.F.; Gao, J.L.; Yu, X.F.; Wang, Z.G.; Sun, J.Y.; Hu, S.P.; Su, Y.J.; Xie, M. Screening of high-yield and nitrogen-efficient maize varieties and their indicators. Crops 2016, 6, 38–43. [Google Scholar] [CrossRef]
- Zang, C.Z.; Wang, Y.J.; Zhang, J.; Hu, F.; Li, G.Q.; Zheng, G.Q. Effects of different nitrogen fertilizer modes on yield, protein quality and nitrogen utilization characteristics of summer maize. J. Maize Sci. 2015, 23, 108–113. [Google Scholar]
- Li, J.; Cao, H.; Li, S.; Dong, X.N.; Zhao, Z.; Jia, Z.T.; Yuan, L.X. Genetic and molecular mechanisms underlying nitrogen use efficiency in maize. J. Genet. Genom. 2024, 52, 276–286. [Google Scholar] [CrossRef]
- Qu, Z.; Luo, N.; Guo, J.; Xu, J.; Wang, P.; Meng, Q.F. Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization. Renew. Sustain. Energy Rev. 2024, 199, 114471. [Google Scholar] [CrossRef]
- Cui, S.L. Effects of Nitrogen Forms on Nitrogen Uptake, Utilization and Yield Formation of Maize Varieties with Different Low Nitrogen Tolerance. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2023. [Google Scholar]
- Guo, H.; Shi, Y. Effects of Nitrogen Fertilizer on Leaf Senescence, Nitrogen Translocation Efficiency and Carbon-Nitrogen Ratio in Summer Maize during Flowering and Grain-filling Stage. Jiangsu Agric. Sci. 2023, 51, 76–86. [Google Scholar]
- Wu, Y.W.; Li, Q.; Jin, R.; Chen, W.; Liu, X.L.; Kong, F.L.; Ke, Y.P.; Shi, H.C.; Yuan, J.C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J. Integr. Agric. 2018, 18, 1246–1256. [Google Scholar] [CrossRef]
- Chisaka, A.; Zaman, A.M.; Cairns, J.T.A.; Magorokosho, C.; Das, B.; Masuka, B.; Olsen, M.; Prasanna, M. Low-N stress tolerant maize hybrids have higher fertilizer N recovery efficiency and reduced N-dilution in the grain compared to susceptible hybrids under low N conditions. Plant Prod. Sci. 2020, 23, 417–423. [Google Scholar]
- Yang, Y.L. Screening of Maize Varieties with Different Nitrogen Efficiencies and Their Differences in Nitrogen Uptake and Utilization in Cinnamon Soil Region. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2020. [Google Scholar]
- Wang, S.L. Study on Nitrogen Uptake, Utilization and Canopy Vegetation Index of Maize Varieties with Different Nitrogen Efficiencies. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2022. [Google Scholar]
- Wang, H.; Chen, Y.; Xu, J.; Yin, L.N.; Wang, S.W.; Deng, X.P. Yield Stability, Dry Matter Accumulation and Distribution Differences of Maize Varieties under Different Water and Nitrogen Environments. Agric. Res. Arid. Areas 2024, 42, 71–84. [Google Scholar]
- Wang, S.L.; Mu, X.Y.; Yang, Y.L.; Xu, J.M.; Liu, T.X.; Wen, T.; Fu, J.; Zheng, Y.Z.; Zhao, Y.L.; Li, H.P.; et al. Effects of nitrogen supply levels on nitrogen uptake, dry matter formation and yield of maize varieties with different nitrogen efficiencies. J. Maize Sci. 2023, 31, 118–130. [Google Scholar]
- Wang, J.; Han, J.L.; Yang, M.; Yao, D.; Zhou, Y.F.; Wang, W.B.; Wu, Z.X.; Yang, Q. Study on nitrogen absorption, translocation and metabolism of different nitrogen efficient maize varieties. J. Nucl. Agric. Sci. 2020, 34, 2800–2812. [Google Scholar]
- Zhao, L.; Hou, Z.A.; Huang, T.; Li, S.X.; Zhang, Y.; Liu, L.P. Effects of nitrogen fertilizer rate on maize yield and nutrient uptake. Xinjiang Agric. Sci. 2014, 51, 275–283. [Google Scholar]
- Li, H.J. Effects of Nitrogen Application Rate on Nitrogen Uptake and Utilization of Maize Varieties with Different Nitrogen Efficiencies and Their Physiological Mechanisms. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2022. [Google Scholar]
- Li, W.L.; Lyu, Y.J.; Liu, X.M.; Dong, T.; Cao, X.B.; Gu, W.R.; Wei, D. Effects of nitrogen fertilizer on nitrogen metabolism enzymes, nitrogen utilization and yield of maize with different nitrogen efficiencies. Southwest China J. Agric. Sci. 2018, 31, 1829–1835. [Google Scholar]
- Men, Z.R. Response of Yield and Nitrogen Use Efficiency of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Application Rate. Master’s Thesis, Shandong Agricultural University, Tai’an, Chian, 2024. [Google Scholar]
- Wen, D.H.; Wu, X.L.; Xu, J.K.; Li, X.M.; Zhang, Y.X. Effects of different fertilization treatments on maize yield and fertilizer utilization efficiency. Tillage Cult. 2025, 45, 102–105. [Google Scholar]
- Chen, N.N.; Ji, R.P.; Mi, N.; Zhang, S.J.; Yu, W.Y.; Fang, Y.; Zhang, Y.S. Response of spring maize growth, yield and grain quality to reduced nitrogen application. J. Meteorol. Environ. 2021, 37, 86–92. [Google Scholar]
- Guo, Q.L. Analysis of the Degree of Over-Fertilization and Its Influencing Factors of Major Grain Crops in China. Master’s Thesis, Jiangxi University of Finance and Economics, Nanchang, China, 2019. [Google Scholar]
- Zhai, J.; Xue, J.; Zhang, Y.M.; Zhang, G.Q.; Shen, D.P.; Wang, Q.; Liu, C.W.; Li, S.K. Effects of nitrogen application rate on stalk lodging resistance traits of densely planted spring maize under integrated water and fertilizer conditions. J. Maize Sci. 2021, 29, 137–144. [Google Scholar]
- Juan, Y.H.; Wang, R.; Sun, W.T.; Xing, Y.H.; Sui, S.J.; Lu, D.; Mao, B.C. Effects of nitrogen application patterns on nutrient accumulation characteristics of spring maize. J. Nucl. Agric. Sci. 2011, 25, 143–148. [Google Scholar]
- Li, Q.J.; Zhang, Y.; Hu, W.; Meng, F.X.; Feng, G.P.; Hu, G.Z.; Liu, X.L. Effects of nitrogen management on dry matter accumulation, nitrogen absorption and distribution, and yield of maize. J. Plant Nutr. Fertil. 2011, 17, 755–760. [Google Scholar]
- Cui, C.; Gao, J.L.; Yu, X.F.; Wang, Z.G.; Sun, J.Y.; Hu, S.P.; Su, Y.J.; Xie, M. Characteristics of dry matter and nitrogen translocation during grain filling stage in high-yielding spring maize genotypes with different nitrogen efficiencies. J. Plant Nutr. Fertil. 2013, 19, 1337–1345. [Google Scholar]
- Guo, J.M.; Wang, Y.H.; Di, A.B.; Chen, X.P. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg·ha−1) maize. Field Crops Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.L.; Wen, T.; Xu, J.; Huang, B.; Yan, S.F.; Gao, G.Q.; Li, H.; Qiao, J. On correlation between canopy vegetation and growth indexes of maize varieties with different nitrogen efficiencies. Open Life Sci. 2023, 18, 20220566. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.J. Response of Spring Maize to Soil Nitrogen Supply and Study on Nitrogen Fertilizer Recommendation Indicators. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2009. [Google Scholar]
- Chang, C.; Wang, J.; Xu, L.; Wang, H.J.; Wang, Y.B.; Zhao, H.Y. Screening of High-Yielding and Nitrogen-Efficient Spring Maize Varieties and Analysis of Their Nitrogen Reduction Potential and Nitrogen Utilization Characteristics. J. Maize Sci. 2022, 30, 142–149. [Google Scholar]
- Ma, Z.B.; Tang, H.H.; Wang, Q.Y.; Li, R.J.; Dong, X.R.; Zhang, D.D.; Dong, Z.Q. Effects of chlormequat combined with basal nitrogen application on nitrogen metabolism and nitrogen utilization characteristics of summer maize. J. Maize Sci. 2020, 28, 130–136. [Google Scholar]
- Wu, Y.; Pu, W.; Zhao, B.; Wei, G.; Kong, F.L.; Yuan, J.C. Post-anthesis Carbon and Nitrogen Accumulation and Translocation Characteristics in Maize Varieties with Different Low Nitrogen Tolerance. Acta Agron. Sin. 2021, 47, 915–928. [Google Scholar] [CrossRef]
- Yan, W.; Li, X.; Zhao, R.; Zhang, C.Y.; Guo, Y.L.; Huang, M.; Li, J.W.; Liu, B.; Ding, Y.; Ding, Z.H.; et al. Study on Yield and Nitrogen Use Efficiency of Different Maize Varieties. J. Maize Sci. 2023, 31, 119–127. [Google Scholar]
- Yu, Y. Response Characteristics of Maize with Different Nitrogen Efficiencies to Nitrogen Supply and Transcriptome & Proteome Analysis. Doctoral Dissertation, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar]



| N Level (kg·ha−1) | Cultivar | Kernel Ratio (%) | 100-Grain Weight (g) | Ear Length (cm) | Ear Diameter (cm) | Row Number Per Ear | Grain Number Per Row | Number Per Ear |
|---|---|---|---|---|---|---|---|---|
| N0 | JP450 | 0.82 b | 32.7 a | 14.4 a | 4.6 a | 14.9 a | 26.1 a | 389.1 a |
| XY335 | 0.86 a | 32.5 a | 15.4 a | 4.3 a | 14.5 a | 25.1 a | 365.2 a | |
| QL368 | 0.86 a | 34.9 a | 15.5 a | 4.7 a | 14.7 a | 27.4 a | 401.6 a | |
| N50 | JP450 | 0.82 b | 33.6 c | 16.0 a | 4.7 a | 15.6 a | 25.9 a | 404.1 a |
| XY335 | 0.87 a | 34.7 b | 15.1 a | 4.5 a | 15.3 a | 27.1 a | 413.6 a | |
| QL368 | 0.86 a | 36.5 a | 15.4 a | 4.7 a | 15.1 a | 27.4 a | 413.0 a | |
| N100 | JP450 | 0.84 b | 31.9 a | 15.7 a | 4.4 a | 16.1 a | 26.8 b | 432.5 a |
| XY335 | 0.87 a | 33.9 a | 16.1 a | 4.4 a | 15.7 a | 26.9 b | 424.3 a | |
| QL368 | 0.86 a | 34.2 a | 15.6 a | 4.7 a | 15.6 a | 28.7 a | 448.5 a | |
| N150 | JP450 | 0.83 b | 34.7 a | 16.7 a | 4.8 a | 15.9 a | 27.8 b | 440.3 a |
| XY335 | 0.87 a | 35.1 a | 16.5 a | 4.6 a | 15.2 a | 29.7 ab | 452.4 a | |
| QL368 | 0.87 a | 36.5 a | 16.7 a | 4.7 a | 14.7 a | 30.8 a | 452.0 a | |
| N200 | JP450 | 0.83 b | 31.1 b | 17.1 a | 4.9 a | 15.9 a | 29.9 a | 474.2 a |
| XY335 | 0.86 a | 35.5 a | 17.5 a | 4.6 a | 14.9 a | 31.8 a | 475.3 a | |
| QL368 | 0.87 a | 35.4 a | 16.3 a | 4.8 a | 15.1 a | 31.4 a | 473.3 a | |
| N250 | JP450 | 0.84 a | 33.7 c | 16.6 a | 4.9 a | 16.0 a | 27.8 a | 452.4 a |
| XY335 | 0.83 a | 36.4 b | 16.4 a | 4.6 a | 15.6 a | 29.5 a | 452.9 a | |
| QL368 | 0.86 a | 39.7 a | 16.0 a | 4.9 a | 14.8 a | 29.9 a | 457.7 a | |
| N300 | JP450 | 0.83 b | 32.1 a | 15.6 a | 4.7 a | 15.4 a | 29.0 a | 446.2 a |
| XY335 | 0.86 a | 36.2 a | 16.4 a | 4.6 a | 15.1 a | 30.1 a | 453.7 a | |
| QL368 | 0.86 a | 36.9 a | 16.0 a | 4.9 a | 15.3 a | 29.4 a | 450.5 a | |
| N350 | JP450 | 0.82 b | 34.6 b | 17.0 a | 4.7 a | 15.7 a | 27.4 b | 431.9 a |
| XY335 | 0.86 a | 35.3 b | 15.5 a | 4.5 a | 15.2 a | 28.3 ab | 430.2 a | |
| QL368 | 0.86 a | 37.4 a | 16.3 a | 4.9 a | 15.1 a | 29.4 a | 442.6 a | |
| ANOVA | C | NS | ** | ** | ** | NS | ** | ** |
| N | NS | ** | ** | ** | NS | ** | * | |
| C × N | NS | ** | ** | ** | ** | ** | ** |
| N Level | Cultivar | Tasseling (t·ha−1) | Silking (t·ha−1) | Blister (t·ha−1) | Maturity (t·ha−1) |
|---|---|---|---|---|---|
| N0 | JP450 | 3.0 c | 5.7 b | 8.1 c | 12.9 a |
| XY335 | 3.3 a | 6.1 a | 8.5 a | 12.7 a | |
| QL368 | 3.2 b | 5.8 b | 8.4 b | 13.1 a | |
| N50 | JP450 | 2.9 b | 5.7 b | 9.7 b | 15.1 b |
| XY335 | 3.1 b | 6.1 a | 9.8 b | 15.2 b | |
| QL368 | 3.5 a | 6.0 a | 10.8 a | 16.6 a | |
| N100 | JP450 | 3.1 b | 6.0 a | 9.8 b | 15.5 c |
| XY335 | 3.1 b | 5.9 a | 9.9 b | 16.8 b | |
| QL368 | 3.6 a | 6.1 a | 10.9 a | 17.8 a | |
| N150 | JP450 | 3.2 b | 6.2 b | 9.9 b | 17.1 a |
| XY335 | 3.2 b | 6.9 a | 10.1 b | 18.0 a | |
| QL368 | 3.7 a | 6.8 a | 11.1 a | 18.8 a | |
| N200 | JP450 | 3.5 a | 6.4 a | 10.3 a | 15.7 b |
| XY335 | 3.5 a | 6.7 a | 10.7 a | 17.5 a | |
| QL368 | 3.5 a | 6.7 a | 11.0 a | 17.6 b | |
| N250 | JP450 | 3.0 b | 6.4 c | 9.7 b | 16.0 b |
| XY335 | 3.3 ab | 7.5 a | 10.6 a | 15.9 b | |
| QL368 | 3.6 a | 6.9 b | 10.9 a | 18.4 a | |
| N300 | JP450 | 3.1 b | 6.5 c | 10.6 b | 15.9 b |
| XY335 | 3.4 a | 7.2 b | 10.1 b | 17.9 a | |
| QL368 | 3.7 a | 7.8 a | 11.4 a | 18.2 a | |
| N350 | JP450 | 3.1 b | 6.4 b | 10.2 b | 15.9 b |
| XY335 | 3.2 b | 6.6 b | 10.6 ab | 16.3 b | |
| QL368 | 3.6 a | 8.3 a | 11.0 a | 19.4 a | |
| ANOVA | C | ** | ** | ** | ** |
| N | ** | ** | ** | ** | |
| C × N | ** | ** | ** | ** |
| N Level | Cultivar | Tasseling | Silking | Blister | Maturity | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Stem | Leaf | Stem | Leaf | Ear | Stem | Leaf | Bracteal + Axis | Grain | Stem | Leaf | Bracteal + Axis | Grain | ||
| N0 | JP450 | 52.6 a | 47.4 b | 62.1 a | 27.7 b | 10.2 a | 47.0 a | 17.0 a | 21.3 a | 14.7 a | 26.4 a | 11.6 b | 16.2 a | 45.8 a |
| XY335 | 48.8 b | 51.2 a | 66.7 a | 27.5 b | 5.0 a | 39.4 a | 20.5 a | 27.6 a | 12.5 a | 27.3 a | 13.1 ab | 16.1 a | 43.6 a | |
| QL368 | 49.9 b | 50.0 a | 62.3 b | 28.7 a | 9.0 b | 46.7 a | 20.8 a | 18.1 a | 14.4 a | 27.2 a | 13.4 a | 13.9 a | 45.4 a | |
| N50 | JP450 | 50.7 b | 49.3 b | 63.0 ab | 28.8 a | 8.1 ab | 40.7 a | 17.3 b | 23.5 a | 18.5 a | 21.7 b | 10.3 b | 16.4 a | 51.6 a |
| XY335 | 48.9 c | 51.1 a | 64.2 a | 29.9 a | 5.8 b | 39.9 a | 19.4 ab | 23.9 a | 16.7 a | 24.8 a | 11.7 ab | 13.2 b | 50.3 a | |
| QL368 | 53.0 a | 46.9 c | 60.7 b | 29.4 a | 9.9 a | 39.8 a | 18.2 a | 21.7 a | 20.1 a | 23.8 a | 11.0 a | 13.5 b | 51.7 a | |
| N100 | JP450 | 49.1 a | 50.9 a | 62.2 a | 28.4 a | 9.5 a | 41.1 a | 16.5 b | 22.6 a | 19.8 a | 22.4 a | 10.9 a | 16.1 a | 50.6 a |
| XY335 | 50.6 a | 49.4 a | 62.3 a | 28.5 a | 9.2 a | 41.1 a | 19.5 a | 19.4 b | 19.9 a | 24.0 a | 11.8 a | 13.9 a | 50.3 a | |
| QL368 | 50.5 a | 49.5 a | 58.8 b | 30.1 a | 11.1 a | 41.1 a | 17.6 b | 19.7 ab | 21.5 a | 25.0 a | 11.2 a | 13.9 a | 49.8 a | |
| N150 | JP450 | 51.7 a | 48.3 b | 54.1 b | 27.8 a | 18.1 a | 40.1 a | 17.6 ab | 23.5 a | 18.7 b | 20.6 b | 9.6 a | 16.5 a | 53.2 a |
| XY335 | 48.8 b | 51.2 a | 61.5 a | 27.9 a | 10.5 b | 40.2 a | 18.4 a | 22.7 b | 18.7 b | 22.9 a | 10.2 a | 13.5 b | 53.4 b | |
| QL368 | 52.6 a | 47.4 b | 60.5 a | 28.9 a | 10.5 b | 38.8 a | 16.3 b | 22.9 b | 21.9 a | 22.1 ab | 10.6 a | 14.6 b | 52.7 b | |
| N200 | JP450 | 52.3 a | 47.8 b | 55.5 b | 26.4 a | 18.1 a | 39.0 a | 16.6 b | 21.6 a | 22.9 a | 20.4 b | 9.9 a | 16.8 a | 52.8 a |
| XY335 | 52.3 a | 47.7 b | 61.9 a | 27.1 a | 11.0 b | 39.9 a | 16.8 ab | 22.1 a | 21.8 a | 26.5 a | 10.8 a | 13.1 b | 49.5 b | |
| QL368 | 48.4 b | 51.6 a | 61.1 a | 28.3 a | 10.6 b | 37.5 a | 18.4 a | 22.4 a | 21.8 a | 20.6 b | 10.3 a | 15.6 a | 53.5 a | |
| N250 | JP450 | 51.3 a | 48.7 a | 55.9 a | 29.5 a | 14.4 a | 38.9 a | 16.5 a | 26.2 a | 18.5 b | 23.1 a | 9.9 a | 15.9 a | 51.0 b |
| XY335 | 49.3 a | 50.7 a | 58.6 a | 27.5 a | 13.9 a | 39.2 a | 19.4 a | 23.9 a | 17.5 b | 21.4 a | 10.2 a | 14.8 a | 53.6 a | |
| QL368 | 51.7 a | 48.3 a | 57.9 a | 28.2 a | 13.9 a | 36.7 a | 17.2 a | 23.6 a | 22.5 a | 21.4 a | 10.3 a | 14.9 a | 53.4 a | |
| N300 | JP450 | 49.5 a | 50.6 a | 57.5 a | 24.4 a | 18.1 a | 38.4 a | 15.5 a | 24.4 a | 21.7 a | 21.5 b | 10.6 a | 16.7 a | 51.1 b |
| XY335 | 52.4 a | 47.6 a | 55.4 b | 27.4 a | 17.2 a | 38.6 a | 17.4 a | 23.3 a | 20.7 a | 23.9 a | 11.0 a | 14.8 b | 50.3 b | |
| QL368 | 51.5 a | 48.5 a | 56.6 ab | 26.3 a | 17.1 a | 38.5 a | 17.2 a | 24.3 a | 19.9 a | 21.4 b | 9.9 a | 14.7 b | 54.0 a | |
| N350 | JP450 | 51.4 a | 48.9 a | 54.6 b | 27.7 a | 17.67 b | 34.4 b | 15.9 b | 30.1 a | 19.6 ab | 20.8 a | 10.3 a | 18.4 a | 50.6 b |
| XY335 | 48.1 b | 51.9 a | 60.7 a | 27.2 a | 12.09 c | 39.7 a | 18.9 a | 24.0 b | 17.3 b | 23.4 a | 10.5 a | 14.2 b | 51.9 ab | |
| QL368 | 50.9 a | 49.4 a | 53.0 b | 26.1 a | 20.8 a | 38.0 a | 18.1 a | 23.6 b | 20.2 a | 21.4 a | 9.9 a | 14.3 b | 54.4 a | |
| ANOVA | C | ** | ** | ** | ** | ** | NS | ** | NS | ** | ** | ** | ** | ** |
| N | NS | NS | ** | ** | ** | * | ** | NS | ** | ** | ** | NS | ** | |
| C × N | NS | NS | ** | ** | ** | NS | ** | NS | ** | ** | NS | NS | ** | |
| N Level | Cultivar | RAP (t·ha−1) | CRAP (%) | DMP (t·ha−1) | CDMP (%) |
|---|---|---|---|---|---|
| N0 | JP450 | 0.29 a | 4.8 a | 7.2 a | 95.2 a |
| XY335 | 0.4 a | 7.3 a | 6.6 b | 92.7 a | |
| QL368 | 0.18 a | 3 a | 7.3 a | 97.0 a | |
| N50 | JP450 | 0.57 a | 7.3 a | 9.4 a | 92.7 c |
| XY335 | 0.22 b | 2.9 b | 9.1 a | 97.1 b | |
| QL368 | 0.06 c | 0.7 c | 10.4 a | 99.3 a | |
| N100 | JP450 | 0.53 a | 6.7 a | 9.5 b | 93.3 b |
| XY335 | 0.21 b | 2.5 b | 10.8 a | 97.5 a | |
| QL368 | 0.11 b | 1.3 b | 11.7 a | 98.7 a | |
| N150 | JP450 | 0.21 b | 2.3 b | 10.9 a | 97.7 b |
| XY335 | 0.46 a | 4.8 a | 11.2 a | 95.2 c | |
| QL368 | 0.09 c | 0.9 c | 12.0 a | 99.1 a | |
| N200 | JP450 | 0.29 b | 3.5 b | 9.3 b | 96.5 a |
| XY335 | 0.64 a | 7.4 a | 10.8 a | 92.6 b | |
| QL368 | 0.49 ab | 5.5 ab | 9.9 b | 94.5 ab | |
| N250 | JP450 | 0.27 b | 3.3 b | 9.6 b | 96.7 a |
| XY335 | 0.34 a | 4.9 a | 8.5 b | 95.1 b | |
| QL368 | 0.29 b | 3.0 b | 11.5 a | 96.9 a | |
| N300 | JP450 | 0.25 b | 3.1 b | 9.5 b | 96.9 a |
| XY335 | 0.26 b | 2.9 b | 10.7 a | 97.1 a | |
| QL368 | 0.63 a | 3.4 a | 10.4 a | 96.6 b | |
| N350 | JP450 | 0.43 ab | 5.3 a | 9.5 b | 94.7 b |
| XY335 | 0.26 b | 3.0 b | 9.8 b | 96.9 a | |
| QL368 | 0.52 a | 4.9 ab | 11.1 a | 95.1 ab | |
| ANOVA | C | ** | ** | ** | ** |
| N | ** | ** | ** | ** | |
| C × N | ** | ** | ** | ** |
| N Level | Cultivar | Tasseling (kg·ha−1) | Silking (kg·ha−1) | Blister (kg·ha−1) | Maturity (kg·ha−1) |
|---|---|---|---|---|---|
| N0 | JP450 | 33.8 b | 61.7 a | 75.6 a | 96.9 b |
| XY335 | 38.9 b | 68.3 a | 76.1 a | 95.3 a | |
| QL368 | 41.2 a | 63.4 a | 71.1 a | 104.4 a | |
| N50 | JP450 | 35.4 b | 64.2 a | 95.8 a | 127.0 b |
| XY335 | 39.3 b | 68.6 a | 90.3 a | 124.9 a | |
| QL368 | 53.4 a | 68.5 a | 90.9 a | 140.5 a | |
| N100 | JP450 | 38.5 b | 68.2 a | 106.9 b | 132.1 b |
| XY335 | 40.7 b | 72.1 a | 119.1 ab | 140.8 ab | |
| QL368 | 53.0 a | 74.3 a | 130.4 a | 162.9 a | |
| N150 | JP450 | 42.1 b | 74.4 c | 109.4 b | 141.6 b |
| XY335 | 45.8 b | 102.6 b | 116.8 ab | 161.1 ab | |
| QL368 | 54.4 a | 89.5 a | 136.4 a | 170.9 a | |
| N200 | JP450 | 49.0 b | 79.9 a | 121.5 a | 139.9 b |
| XY335 | 50.4 b | 83.3 a | 127.1 a | 165.3 a | |
| QL368 | 61.1 a | 84.7 a | 138.8 a | 158.2 a | |
| N250 | JP450 | 39.4 b | 80.9 b | 115.4 b | 140.6 b |
| XY335 | 45.5 b | 97.3 ab | 130.1 ab | 154.1 ab | |
| QL368 | 62.5 a | 89.2 b | 137.4 a | 169.3 a | |
| N300 | JP450 | 44.9 c | 90.3 b | 122.7 b | 141.4 a |
| XY335 | 53.8 b | 104.8 a | 127.3 b | 180.4 a | |
| QL368 | 67.1 a | 105.7 a | 145.2 a | 195.0 a | |
| N350 | JP450 | 46.4 b | 92.5 b | 122.5 b | 143.7 b |
| XY335 | 50.7 b | 94.9 b | 128.3 ab | 152.9 b | |
| QL368 | 61.5 a | 123.1 a | 135.76 a | 195.7 a | |
| ANOVA | C | ** | ** | ** | ** |
| N | ** | ** | ** | ** | |
| C × N | ** | ** | ** | ** |
| N Level | Cultivar | Tasseling | Silking | Blister | Maturity | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Stem | Leaf | Stem | Leaf | Ear | Stem | Leaf | Bracteal + Axis | Grain | Stem | Leaf | Bracteal + Axis | Grain | ||
| N0 | JP450 | 29.2 a | 70.8 a | 36.4 a | 47.1 ab | 16.4 a | 25.2 a | 30.6 a | 15.1 a | 29.0 a | 7.8 b | 13.6 a | 7.8 a | 70.8 a |
| XY335 | 29.5 a | 70.5 a | 36.2 a | 44.0 b | 19.8 a | 21.3 a | 31.4 a | 17.5 a | 29.8 a | 10.6 a | 14.9 a | 7.7 a | 66.8 b | |
| QL368 | 30.8 a | 69.2 a | 38.5 a | 45.6 a | 15.9 a | 22.9 a | 30.6 a | 14.5 a | 31.9 a | 8.0 b | 13.6 a | 7.3 a | 71.0 a | |
| N50 | JP450 | 29.9 a | 70.1 a | 39.7 a | 46.8 b | 13.5 a | 20.7 a | 28.8 a | 14.6 a | 35.9 a | 9.3 a | 13.1 a | 7.2 ab | 70.5 a |
| XY335 | 26.3 a | 73.7 a | 36.9 ab | 51.8 a | 11.2 b | 19.7 a | 27.8 a | 17.8 ab | 34.6 a | 9.6 a | 12.6 a | 5.5 b | 72.3 a | |
| QL368 | 31.6 a | 68.4 a | 34.3 b | 49.9 a | 15.8 a | 19.6 a | 28.4 a | 12.5 a | 39.4 a | 7.9 a | 11.4 a | 7.8 a | 72.9 a | |
| N100 | JP450 | 27.2 a | 72.8 a | 31.2 b | 53.9 a | 14.8 a | 21.2 a | 32.3 a | 13.9 a | 32.6 b | 7.7 a | 13.1 a | 7.3 a | 71.9 a |
| XY335 | 29.1 a | 70.9 a | 37.8 a | 46.6 b | 15.6 a | 18.2 a | 35.9 a | 12.1 a | 33.7 b | 9.4 a | 13.1 a | 7.5 a | 69.9 a | |
| QL368 | 30.0 a | 69.9 a | 33.9 ab | 48.1 b | 17.9 a | 19.9 a | 24.9 b | 13.8 a | 41.3 a | 10.1 a | 12.9 a | 7.3 a | 69.7 a | |
| N150 | JP450 | 37.1 a | 62.9 a | 26.9 b | 51.8 a | 21.3 a | 23.9 a | 31.7 a | 15.9 a | 28.5 b | 7.5 a | 13.2 a | 7.7 a | 71.5 b |
| XY335 | 35.9 a | 64.1 a | 40.8 a | 44.4 b | 14.73 b | 20.6 ab | 32.4 a | 14.5 a | 32.5 b | 6.5 a | 9.8 b | 5.7 a | 78.1 a | |
| QL368 | 33.8 a | 66.2 a | 38.2 a | 45.3 b | 16.6 b | 18.1 b | 26.3 a | 16.5 a | 39.2 a | 6.8 a | 10.7 a | 7.4 a | 75.1 b | |
| N200 | JP450 | 29.9 a | 70.1 a | 29.9 a | 46.9 a | 23.3 a | 22.4 a | 29.3 a | 10.4 b | 37.8 a | 9.9 a | 13.1 a | 6.6 b | 70.4 a |
| XY335 | 34.6 a | 65.4 a | 33.8 a | 47.5 a | 18.7 b | 18.16 b | 31.1 a | 16.0 a | 34.7 a | 9.6 a | 12.2 a | 5.6 ab | 72.6 a | |
| QL368 | 31.4 a | 68.6 a | 33.8 a | 47.8 a | 18.4 b | 20.5 ab | 29.4 a | 12.6 b | 37.5 a | 7.9 a | 11.6 a | 8.1 a | 72.4 a | |
| N250 | JP450 | 33.6 a | 66.4 a | 37.2 a | 43.8 a | 19.0 b | 23.7 a | 30.0 b | 14.6 a | 31.7 b | 8.3 a | 12.6 a | 8.5 a | 70.5 b |
| XY335 | 32.8 a | 67.2 a | 32.6 a | 45.5 a | 21.9 a | 17.8 b | 33.3 a | 18.2 a | 30.7 b | 6.5 a | 11.2 b | 6.3 a | 75.9 a | |
| QL368 | 34.6 a | 65.4 a | 33.7 a | 43.7 a | 22.6 a | 19.5 b | 26.2 c | 16.1 a | 38.2 a | 6.7 a | 11.6 ab | 6.4 a | 75.3 a | |
| N300 | JP450 | 31.0 a | 68.9 a | 33.2 a | 43.8 a | 23.0 a | 21.7 a | 29.9 a | 13.0 a | 35.4 a | 9.8 a | 14.1 b | 7.6 a | 68.5 a |
| XY335 | 34.2 a | 65.8 a | 32.6 a | 43.6 a | 23.8 a | 20.8 a | 31.5 a | 13.8 a | 34.0 a | 10.5 a | 11.6 b | 7.7 a | 70.2 a | |
| QL368 | 34.8 a | 65.2 a | 31.7 a | 45.4 a | 22.9 a | 21.7 a | 28.5 a | 16.8 a | 33.1 a | 10.3 a | 10.7 a | 7.3 a | 71.7 a | |
| N350 | JP450 | 38.0 a | 62.0 b | 28.3 b | 46.9 a | 24.8 a | 19.7 a | 33.6 a | 15.9 a | 30.9 a | 6.7 a | 15.3 a | 8.7 a | 69.2 b |
| XY335 | 29.5 b | 70.5 a | 27.0 a | 44.3 a | 28.7 a | 21.5 a | 30.7 a | 22.2 a | 25.6 b | 7.2 a | 12.5 ab | 5.5 b | 74.8 a | |
| QL368 | 35.8 ab | 64.2 ab | 29.3 b | 40.9 b | 29.8 a | 20.4 a | 29.9 a | 16.4 a | 33.3 a | 7.3 a | 11.1 b | 5.4 b | 76.1 a | |
| ANOVA | C | NS | NS | ** | ** | NS | * | ** | * | ** | NS | * | ** | ** |
| N | NS | NS | ** | ** | ** | NS | NS | * | ** | ** | * | NS | ** | |
| C × N | NS | NS | ** | ** | ** | NS | NS | NS | ** | NS | NS | NS | NS | |
| N Level | Cultivar | NRAk (g·ha−1) | NRR (%) | CNRA (%) | NAP (kg·ha−1) | CNAP (%) |
|---|---|---|---|---|---|---|
| N0 | JP450 | 32.76 a | 61.67 a | 49.36 a | 31.28 a | 50.64 a |
| XY335 | 27.44 a | 53.75 b | 45.54 b | 28.02 a | 54.46 a | |
| QL368 | 31.37 a | 59.08 b | 44.27 b | 40.96 a | 55.73 a | |
| N50 | JP450 | 30.49 a | 60.25 a | 44.21 a | 59.64 a | 55.79 b |
| XY335 | 32.41 a | 54.4 b | 36.66 b | 55.38 a | 63.34 a | |
| QL368 | 31.97 a | 56.2 b | 33.68 b | 62.51 a | 66.32 a | |
| N100 | JP450 | 33.65 a | 60.09 a | 43.35 a | 49 b | 56.65 b |
| XY335 | 32.25 a | 48.31 b | 30.27 b | 68.65 a | 69.73 a | |
| QL368 | 31.02 a | 47.06 b | 29.45 b | 70.79 a | 70.55 a | |
| N150 | JP450 | 38.18 b | 56.16 a | 37.12 b | 57.81 b | 62.88 b |
| XY335 | 44.52 a | 56.35 a | 39.65 a | 55.48 b | 60.35 b | |
| QL368 | 39.99 b | 52.95 b | 39.66 a | 72.61 a | 60.34 a | |
| N200 | JP450 | 33.72 b | 50.27 b | 33.12 b | 58.23 b | 66.88 b |
| XY335 | 46.23 a | 55.32 a | 38.25 a | 65 b | 61.75 a | |
| QL368 | 37.27 b | 54.23 a | 32.09 b | 76.53 ab | 67.91 ab | |
| N250 | JP450 | 41.25 a | 61.58 ab | 47.95 a | 47.28 b | 52.05 b |
| XY335 | 50.51 a | 64.74 a | 43.16 a | 54.18 b | 56.84 b | |
| QL368 | 39.35 a | 54.83 b | 29.95 b | 82.4 a | 70.05 a | |
| N300 | JP450 | 38.84 a | 52.86 a | 39.2 a | 49.37 b | 60.8 b |
| XY335 | 41 a | 50.19 a | 31.74 b | 76.52 a | 68.26 a | |
| QL368 | 41.24 a | 50.63 a | 29.9 b | 86.85 a | 70.1 a | |
| N350 | JP450 | 41.75 b | 55.9 b | 40.42 a | 50.57 b | 59.58 a |
| XY335 | 47.26 a | 59.35 a | 38.59 a | 66.56 ab | 61.41 a | |
| QL368 | 46.2 ab | 55.8 b | 30.69 b | 80.06 a | 69.31 a | |
| ANOVA | C | ** | ** | ** | ** | ** |
| N | ** | ** | ** | ** | ** | |
| C × N | ** | ** | ** | ** | * |
| N Level | Cultivar | NHI | GNY | PFPN | NAE | NRE | NDMPE | NPE |
|---|---|---|---|---|---|---|---|---|
| N0 | JP450 | 0.69 a | 72.46 b | - | - | - | 134.39 a | 66.99 a |
| XY335 | 0.64 b | 73.43 b | - | - | - | 133.02 a | 69.93 a | |
| QL368 | 0.68 a | 93.48 a | - | - | - | 125.56 a | 74.52 a | |
| N50 | JP450 | 0.71 a | 81.95 b | 142.03 c | 13.11 a | 60.29 a | 119.85 a | 59.23 a |
| XY335 | 0.71 a | 90.09 a | 155.77 b | 22.98 a | 59.16 a | 122.08 a | 62.59 a | |
| QL368 | 0.67 a | 95.37 a | 170.68 a | 15.24 a | 72.25 a | 117 a | 60.95 a | |
| N100 | JP450 | 0.68 a | 88.99 b | 77.97 a | 13.5 a | 35.28 a | 117.75 a | 59.16 a |
| XY335 | 0.7 a | 95.4 a | 81.54 a | 15.15 a | 45.44 a | 119.8 a | 58.36 a | |
| QL368 | 0.65 a | 98.42 a | 82.64 a | 14.92 b | 58.45 a | 109.99 a | 50.96 b | |
| N150 | JP450 | 0.73 a | 96.11 b | 56.42 a | 13.45 a | 32.83 a | 120.56 a | 60.32 a |
| XY335 | 0.76 a | 114.17 a | 59.7 ab | 15.44 a | 37.5 a | 112.07 b | 55.9 b | |
| QL368 | 0.73 a | 118.25 a | 62.22 a | 10.4 a | 43.52 a | 110.23 b | 54.64 b | |
| N200 | JP450 | 0.73 a | 108.39 b | 43.82 b | 11.59 a | 21.53 c | 112.27 a | 62.67 a |
| XY335 | 0.72 a | 126.62 a | 45.79 b | 12.59 a | 34.99 a | 106.1 a | 55.4 b | |
| QL368 | 0.73 a | 130.11 a | 49.46 a | 10.6 a | 26.99 b | 104.67 a | 62.5 a | |
| N250 | JP450 | 0.73 a | 109.28 b | 34.94 b | 9.16 a | 17.5 a | 113.98 a | 62.19 a |
| XY335 | 0.76 a | 117.62 b | 34.5 b | 7.95 a | 23.5 a | 103.75 a | 56.04 b | |
| QL368 | 0.78 a | 135.01 a | 40.48 a | 9.39 a | 25.95 a | 109.25 a | 60.07 a | |
| N300 | JP450 | 0.7 a | 99.62 b | 27.15 a | 5.67 a | 14.86 b | 112.92 a | 57.4 a |
| XY335 | 0.72 a | 130.99 a | 30.6 a | 8.47 a | 28.37 a | 99.37 b | 50.9 b | |
| QL368 | 0.71 a | 134.14 a | 31.88 a | 5.97 a | 30.2 a | 93.57 b | 49.09 b | |
| N350 | JP450 | 0.72 a | 102.24 b | 22.57 b | 4.15 a | 13.37 b | 110.38 a | 55.03 a |
| XY335 | 0.81 a | 116.02 b | 22.92 b | 3.95 a | 16.44 b | 107.37 a | 52.8 a | |
| QL368 | 0.77 a | 133.59 a | 26.67 a | 4.47 a | 26.1 a | 99.08 a | 47.69 b | |
| ANOVA | C | NS | ** | ** | ** | ** | ** | ** |
| N | NS | ** | ** | ** | ** | ** | ** | |
| C × N | ** | NS | ** | ** | ** | ** | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, Y.; Wen, T.; Wang, H.; Ma, J.; Shi, X.; Yan, S.; Mu, X.; Li, C.; Zheng, H.; Liu, D.; et al. Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer. Agronomy 2026, 16, 109. https://doi.org/10.3390/agronomy16010109
Yang Y, Wen T, Wang H, Ma J, Shi X, Yan S, Mu X, Li C, Zheng H, Liu D, et al. Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer. Agronomy. 2026; 16(1):109. https://doi.org/10.3390/agronomy16010109
Chicago/Turabian StyleYang, Yulong, Tao Wen, Huifeng Wang, Junfeng Ma, Xinlong Shi, Shufeng Yan, Xinyuan Mu, Chunmiao Li, Haoying Zheng, Dian Liu, and et al. 2026. "Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer" Agronomy 16, no. 1: 109. https://doi.org/10.3390/agronomy16010109
APA StyleYang, Y., Wen, T., Wang, H., Ma, J., Shi, X., Yan, S., Mu, X., Li, C., Zheng, H., Liu, D., & Zhao, X. (2026). Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer. Agronomy, 16(1), 109. https://doi.org/10.3390/agronomy16010109

