Miscanthus × giganteus Rhizobacterial Community Responses to Zn and Oil Sludge Co-Contamination
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Origin and Characteristics
2.2. Experimental Layout
2.3. Isolation of Strains Capable of Tolerating Contaminants and Promoting Plant Growth
2.4. 16S rRNA Gene Sequencing Analysis of Rhizosphere Soil
2.5. Bioinformatics and Statistical Analysis
3. Results
3.1. Diversity of Rhizosphere Communities
3.2. Taxonomic Structure of Rhizosphere Communities
3.3. Common and Unique Taxa Among Rhizosphere Bacterial Communities
3.4. Plant-Growth Promoting and Contaminant-Tolerant Microbial Strain Isolation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTs | Alcohol-benzene tars |
DW | Dry weight |
DNA | Deoxyribonucleic acid |
IAA | Indole-acetic acid |
LB | Luria–Bertani medium |
LSD | Least significant difference |
M×g | Miscanthus × giganteus |
MAGs | Metagenome-assembled genomes |
MBCA | Mono- and bicyclic aromatic hydrocarbons |
MPC | Maximum permissible concentration |
NCBI | National Centre for Biotechnology Information |
nMDS | Nonmetric multidimensional scaling |
OTU | Operational taxonomic unit |
PAHs | Polycyclic aromatic hydrocarbons |
PCA | Principal component analysis |
PCR | Polymerase chain reaction |
rRNA | Ribosomal ribonucleic acids |
References
- Das, S.; Raj, R.; Mangwani, N.; Dash, H.R.; Chakraborty, J. 2—Heavy Metals and Hydrocarbons: Adverse Effects and Mechanism of Toxicity. In Microbial Biodegradation and Bioremediation; Das, S., Ed.; Elsevier: Oxford, UK, 2014; pp. 23–54. ISBN 978-0-12-800021-2. [Google Scholar]
- Mukherjee, A.G.; Wanjari, U.R.; Eladl, M.A.; El-Sherbiny, M.; Elsherbini, D.M.A.; Sukumar, A.; Kannampuzha, S.; Ravichandran, M.; Renu, K.; Vellingiri, B.; et al. Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022, 27, 2577. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Interactions of Soil Chemical Contaminants, Soil Health, and Human Health. In Exploring Linkages Between Soil Health and Human Health; National Academies Press (US): Washington, DC, USA, 2024. [Google Scholar]
- Zhang, X.; Zhang, X.; Wang, S.; Zhao, S. Improved Remediation of Co-Contaminated Soils by Heavy Metals and PAHs with Biosurfactant-Enhanced Soil Washing. Sci. Rep. 2022, 12, 3801. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, J.; Xu, C.; Cai, Y.; Li, M.; Yang, Y.; Yang, G.; Meng, X.-Z.; Leib, J.; Zhangb, H.; et al. A Comprehensive Assessment of Heavy Metals, VOCs and Petroleum Hydrocarbon in Different Soil Layers and Groundwater at an Abandoned Al/Cu Industrial Site. Ecotoxicol. Environ. Saf. 2024, 284, 116927. [Google Scholar] [CrossRef] [PubMed]
- Omo-Okoro, P.; Ofori, P.; Amalapridman, V.; Dadrasnia, A.; Abbey, L.; Emenike, C. Soil Pollution and Its Interrelation with Interfacial Chemistry. Molecules 2025, 30, 2636. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.-G.; Hu, Q.; Zhao, F.-J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global Soil Pollution by Toxic Metals Threatens Agriculture and Human Health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Daâssi, D.; Qabil Almaghribi, F. Petroleum-Contaminated Soil: Environmental Occurrence and Remediation Strategies. 3 Biotech 2022, 12, 139. [Google Scholar] [CrossRef]
- Choden, D.; Pokethitiyook, P.; Poolpak, T.; Kruatrachue, M. Phytoremediation of Soil Co-Contaminated with Zinc and Crude Oil Using Ocimum gratissimum (L.) in Association with Pseudomonas Putida MU02. Int. J. Phytoremediat. 2021, 23, 181–189. [Google Scholar] [CrossRef]
- Gorlenko, N.V.; Timofeeva, S.S. Assessment of Environmental Damage from Oil Sludge to Land Resources in the Irkutsk Region. IOP Conf. Ser. Earth Environ. Sci. 2019, 229, 012019. [Google Scholar] [CrossRef]
- Sindireva, A.V.; Terentyev, G.R. Ecological Assessment of Heavy Metals and Petroleum Hydrocarbons Concentrations in Roadside Soils of Tyumen City. Soc. Ecol. Technol. 2023, 13, 57–76. [Google Scholar] [CrossRef]
- EPA US. Phytoremediation Resource Guide; Solid Waste and Emergency Response (5102G); U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office: Washington, DC, USA, 1999; p. 56. [Google Scholar]
- Gaskin, S.E.; Bentham, R.H. Rhizoremediation of Hydrocarbon Contaminated Soil Using Australian Native Grasses. Sci. Total Environ. 2010, 408, 3683–3688. [Google Scholar] [CrossRef]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant–Bacteria Partnerships for the Remediation of Hydrocarbon Contaminated Soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for Heavy Metal Removal: A Review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Yaqoob, S.; Zahoor, I.; Kazerooni, E.A. Phytostabilization of Contaminated Soils. Int. J. Chem. Biochem. Sci. (IJCBS) 2024, 25, 136–153. [Google Scholar]
- Heaton, E.A.; Dohleman, F.G.; Miguez, A.F.; Juvik, J.A.; Lozovaya, V.; Widholm, J.; Zabotina, O.A.; McIsaac, G.F.; David, M.B.; Voigt, T.B.; et al. Chapter 3—Miscanthus: A Promising Biomass Crop. In Advances in Botanical Research; Kader, J.-C., Delseny, M., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 56, pp. 75–137. [Google Scholar]
- Arnoult, S.; Obeuf, A.; Béthencourt, L.; Mansard, M.-C.; Brancourt-Hulmel, M. Miscanthus Clones for Cellulosic Bioethanol Production: Relationships between Biomass Production, Biomass Production Components, and Biomass Chemical Composition. Ind. Crops Prod. 2015, 63, 316–328. [Google Scholar] [CrossRef]
- Figala, J.; Vranová, V.; Rejšek, K.; Formánek, P. Giant Miscanthus (Miscanthus × giganteus Greef et Deu.)—A Promising Plant for Soil Remediation: A Mini Review. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 63, 2241–2246. [Google Scholar] [CrossRef]
- Krzyżak, J.; Pogrzeba, M.; Rusinowski, S.; Clifton-Brown, J.; McCALMONT, J.P.; Kiesel, A.; Mangold, A.; Mos, M. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil. Civ. Environ. Eng. Rep. 2017, 26, 121–132. [Google Scholar] [CrossRef]
- Nebeská, D.; Trögl, J.; Pidlisnyuk, V.; Popelka, J.; Veronesi Dáňová, P.; Usťak, S.; Honzík, R. Effect of Growing Miscanthus × giganteus on Soil Microbial Communities in Post-Military Soil. Sustainability 2018, 10, 4021. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Pidlisnyuk, V.; Abit, K.; Nurzhanov, C.; Kenessov, B.; Stefanovska, T.; Erickson, L. Comparative Assessment of Using Miscanthus × giganteus for Remediation of Soils Contaminated by Heavy Metals: A Case of Military and Mining Sites. Environ. Sci. Pollut. Res. 2019, 26, 13320–13333. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Erickson, L.; Stefanovska, T.; Popelka, J.; Hettiarachchi, G.; Davis, L.; Trögl, J. Potential Phytomanagement of Military Polluted Sites and Biomass Production Using Biofuel Crop Miscanthus × giganteus. Environ. Pollut. 2019, 249, 330–347. [Google Scholar] [CrossRef] [PubMed]
- Pidlisnyuk, V.; Herts, A.; Khomenchuk, V.; Mamirova, A.; Kononchuk, O.; Ust’ak, S. Dynamic of Morphological and Physiological Parameters and Variation of Soil Characteristics during Miscanthus × giganteus Cultivation in the Diesel-Contaminated Land. Agronomy 2021, 11, 798. [Google Scholar] [CrossRef]
- Gopal, M.; Gupta, A. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Front. Microbiol. 2016, 7, 1971. [Google Scholar] [CrossRef] [PubMed]
- Bakken, L. Culturable and Nonculturable Bacteria in Soil. In Modern Soil Microbiology; van Elsas, J.D., Trevors, J.T., Wellington, E.M.H., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 47–61. ISBN 978-0-8247-9436-1. [Google Scholar]
- Vieira, F.C.S.; Nahas, E. Comparison of Microbial Numbers in Soils by Using Various Culture Media and Temperatures. Microbiol. Res. 2005, 160, 197–202. [Google Scholar] [CrossRef]
- Fan, D.; Schwinghamer, T.; Smith, D.L. Isolation and Diversity of Culturable Rhizobacteria Associated with Economically Important Crops and Uncultivated Plants in Québec, Canada. Syst. Appl. Microbiol. 2018, 41, 629–640. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, C.; Liang, L.; Yi, Z.; Xue, S. Quantitative Assessment of the Potential for Soil Improvement by Planting Miscanthus on Saline-Alkaline Soil and the Underlying Microbial Mechanism. GCB Bioenergy 2021, 13, 1191–1205. [Google Scholar] [CrossRef]
- Guo, Y.; Nishizawa, T.; Sakagami, N.; Fujimura, R.; Kamijo, T.; Ohta, H. Root Bacteriome of a Pioneer Grass Miscanthus Condensatus along Restored Vegetation on Recent Miyake-Jima Volcanic Deposits. Rhizosphere 2021, 19, 100422. [Google Scholar] [CrossRef]
- Zhao, C.; Yue, Y.; Guo, Q.; Wu, J.; Song, J.; Wang, Q.; Li, C.; Hu, Y.; Wang, S.; Yuan, N.; et al. Metagenomic Insights into the Alteration of Soil N-Cycling-Related Microbiome and Functions under Long-Term Conversion of Cropland to Miscanthus. GCB Bioenergy 2023, 15, 1105–1118. [Google Scholar] [CrossRef]
- Kane, J.L.; Schartiger, R.G.; Daniels, N.K.; Freedman, Z.B.; McDonald, L.M.; Skousen, J.G.; Morrissey, E.M. Bioenergy Crop Miscanthus × giganteus Acts as an Ecosystem Engineer to Increase Bacterial Diversity and Soil Organic Matter on Marginal Land. Soil Biol. Biochem. 2023, 186, 109178. [Google Scholar] [CrossRef]
- Kane, J.L.; Liseski, K.B.; Dang, C.; Freedman, Z.B.; Morrissey, E.M. Trade or Scavenge? Miscanthus-Microbiome Interactions Depend upon Soil Fertility. Appl. Soil Ecol. 2024, 196, 105289. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Tian, W.; Li, Y.-J.; Sun, L.-N.; Chen, Y.; Zhang, H.; Li, Y.-Y.; Han, H. Responses of Rhizosphere Bacterial Communities, Their Functions and Their Network Interactions to Cd Stress under Phytostabilization by Miscanthus spp. Environ. Pollut. 2021, 287, 117663. [Google Scholar] [CrossRef]
- Li, D.; Voigt, T.B.; Kent, A.D. Plant and Soil Effects on Bacterial Communities Associated with Miscanthus × giganteus Rhizosphere and Rhizomes. GCB Bioenergy 2016, 8, 183–193. [Google Scholar] [CrossRef]
- Liu, Y.; Ludewig, U. Nitrogen-Dependent Bacterial Community Shifts in Root, Rhizome and Rhizosphere of Nutrient-Efficient Miscanthus × giganteus from Long-Term Field Trials. GCB Bioenergy 2019, 11, 1334–1347. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Yue, Y.; Hou, X.; Guo, Q.; Song, J.; Li, C.; Zhang, W.; Wang, C.; Hou, Y.; et al. Cropland-to-Miscanthus Conversion Alters Soil Bacterial and Archaeal Communities Influencing N-Cycle in Northern China. GCB Bioenergy 2021, 13, 1528–1544. [Google Scholar] [CrossRef]
- Ma, L.; Rocha, F.I.; Lee, J.; Choi, J.; Tejera, M.; Sooksa-Nguan, T.; Boersma, N.; VanLoocke, A.; Heaton, E.; Howe, A. The Impact of Stand Age and Fertilization on the Soil Microbiome of Miscanthus × giganteus. Phytobiomes J. 2021, 5, 51–59. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, W.; Shao, Y.; Li, Y.-J.; Lin, L.-A.; Zhang, Y.-J.; Han, H.; Chen, Z.-J. Miscanthus Cultivation Shapes Rhizosphere Microbial Community Structure and Function as Assessed by Illumina MiSeq Sequencing Combined with PICRUSt and FUNGUIld Analyses. Arch. Microbiol. 2020, 202, 1157–1171. [Google Scholar] [CrossRef]
- Ji, N.; Liang, D.; Clark, L.V.; Sacks, E.J.; Kent, A.D. Host Genetic Variation Drives the Differentiation in the Ecological Role of the Native Miscanthus Root-Associated Microbiome. Microbiome 2023, 11, 216. [Google Scholar] [CrossRef]
- Zhang, B.; Penton, C.R.; Xue, C.; Quensen, J.F.; Roley, S.S.; Guo, J.; Garoutte, A.; Zheng, T.; Tiedje, J.M. Soil Depth and Crop Determinants of Bacterial Communities under Ten Biofuel Cropping Systems. Soil Biol. Biochem. 2017, 112, 140–152. [Google Scholar] [CrossRef]
- Bourgeois, E.; Dequiedt, S.; Lelièvre, M.; van Oort, F.; Lamy, I.; Ranjard, L.; Maron, P.A. Miscanthus Bioenergy Crop Stimulates Nutrient-Cycler Bacteria and Fungi in Wastewater-Contaminated Agricultural Soil. Environ. Chem. Lett. 2015, 13, 503–511. [Google Scholar] [CrossRef]
- Pham, H.N.; Pham, P.A.; Nguyen, T.T.H.; Meiffren, G.; Brothier, E.; Lamy, I.; Michalet, S.; Dijoux-Franca, M.-G.; Nazaret, S. Influence of Metal Contamination in Soil on Metabolic Profiles of Miscanthus × giganteus Belowground Parts and Associated Bacterial Communities. Appl. Soil Ecol. 2018, 125, 240–249. [Google Scholar] [CrossRef]
- Sauvêtre, A.; Węgrzyn, A.; Yang, L.; Vestergaard, G.; Miksch, K.; Schröder, P.; Radl, V. Enrichment of Endophytic Actinobacteria in Roots and Rhizomes of Miscanthus × giganteus Plants Exposed to Diclofenac and Sulfamethoxazole. Environ. Sci. Pollut. Res. 2020, 27, 11892–11904. [Google Scholar] [CrossRef] [PubMed]
- Zadel, U.; Nesme, J.; Michalke, B.; Vestergaard, G.; Płaza, G.A.; Schröder, P.; Radl, V.; Schloter, M. Changes Induced by Heavy Metals in the Plant-Associated Microbiome of Miscanthus × giganteus. Sci. Total Environ. 2020, 711, 134433. [Google Scholar] [CrossRef]
- Muratova, A.; Golubev, S.; Romanova, V.; Sungurtseva, I.; Nurzhanova, A. Effect of Heavy-Metal-Resistant PGPR Inoculants on Growth, Rhizosphere Microbiome and Remediation Potential of Miscanthus × giganteus in Zinc-Contaminated Soil. Microorganisms 2023, 11, 1516. [Google Scholar] [CrossRef]
- Nebeská, D.; Trögl, J.; Ševců, A.; Špánek, R.; Marková, K.; Davis, L.; Burdová, H.; Pidlisnyuk, V. Miscanthus × giganteus Role in Phytodegradation and Changes in Bacterial Community of Soil Contaminated by Petroleum Industry. Ecotoxicol. Environ. Saf. 2021, 224, 112630. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, Z.-Z.; Wang, J.-X.; Zhang, M.; Xu, Y.-X.; Wu, X.-J. Interaction of Heavy Metals and Pyrene on Their Fates in Soil and Tall Fescue (Festuca arundinacea). Environ. Sci. Technol. 2014, 48, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Somtrakoon, K.; Chouychai, W. Removal of Phenanthrene and Cadmium from Co-Contaminated Alkaline Soil by Carpet Grass, Iam Weed and Winged Bean. J. Environ. Biol. 2018, 39, 558–564. [Google Scholar] [CrossRef]
- Jeelani, N.; Yang, W.; Qiao, Y.; Li, J.; An, S.; Leng, X. Individual and Combined Effects of Cadmium and Polycyclic Aromatic Hydrocarbons on the Phytoremediation Potential of Xanthium sibiricum in Co-Contaminated Soil. Int. J. Phytoremediat. 2018, 20, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Lyubun, Y.; Muratova, A.; Dubrovskaya, E.; Sungurtseva, I.; Turkovskaya, O. Combined Effects of Cadmium and Oil Sludge on Sorghum: Growth, Physiology, and Contaminant Removal. Environ. Sci. Pollut. Res. 2020, 27, 22720–22734. [Google Scholar] [CrossRef]
- Conlon, R.; Dowling, D.N.; Germaine, K.J. Assessing Microbial Activity and Rhizoremediation in Hydrocarbon and Heavy Metal-Impacted Soil. Microorganisms 2025, 13, 848. [Google Scholar] [CrossRef]
- Odion, E.E.; Ma, J.; Brau, L.; Lim, J.W.; Lin, C. Interactive Effects of Heavy Metals and Soil Conditioners on Rhizodegradation of Long-Chain Petroleum Hydrocarbons in Soils. Environ. Pollut. 2025, 384, 126995. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, F.; Bao, Y. Variations of Microbiota and Metabolites in Rhizosphere Soil of Carmona microphylla at the Co-Contaminated Site with Polycyclic Aromatic Hydrocarbons and Heavy Metals. Ecotoxicol. Environ. Saf. 2025, 290, 117734. [Google Scholar] [CrossRef]
- Muratova, A.; Lyubun, Y.; Sungurtseva, I.; Turkovskaya, O.; Nurzhanova, A. Physiological and Biochemical Characteristic of Miscanthus × giganteus Grown in Heavy Metal—Oil Sludge Co-Contaminated Soil. J. Environ. Sci. 2022, 115, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Van, H.-T.; Hoang, V.H.; Nga, L.T.Q.; Nguyen, V.Q. Effects of Zn Pollution on Soil: Pollution Sources, Impacts and Solutions. Results Surf. Interfaces 2024, 17, 100360. [Google Scholar] [CrossRef]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant Microbial Diversity Is Suggested as the Key to Future Biocontrol and Health Trends. FEMS Microbiol. Ecol. 2017, 93, fix050. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil Microbiome: Diversity, Benefits and Interactions with Plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification Systems for Naming Soils and Creating Legends for Soil Maps (Update 2015); World Soil Resources: Rome, Italy, 2014. [Google Scholar]
- GOST 26483-85; Soils. Preparation of Salt Extract and Determination of Its pH by CINAO Method. CINAO: Minsk, Belarus, 1986.
- GOST 26207-91; Soils. Determination of Mobile Compounds of Phosphorus and Potassium by Kirsanov Method Modified by CINAO. StandardInform: Moscow, Russia, 1993.
- GOST 26488-85; Soils. Determination of Nitrates by CINAO Methods. Russian Institute of Standardization: Moscow, Russia, 2021.
- GOST 26489-85; Soils. Determination of Exchangeable Ammonium by CINAO Method. Russian Institute of Standardization: Moscow, Russia, 2021.
- GN 2.1.7.2511-09; Tentative Allowable Concentrations (TAC) of Chemicals in Soils: Hygienic Standards. Russian Federal Service on Customers’ Rights Protection and Human Well-being Surveillance: Moscow, Russia, 2009.
- Golubev, S.N.; Schelud’ko, A.V.; Muratova, A.Y.U.; Makarov, O.E.; Turkovskaya, O.V. Assessing the Potential of Rhizobacteria to Survive under Phenanthrene Pollution. Water Air Soil Pollut. 2009, 198, 5–16. [Google Scholar] [CrossRef]
- Muratova, A.; Hübner, T.; Narula, N.; Wand, H.; Turkovskaya, O.; Kuschk, P.; Jahn, R.; Merbach, W. Rhizosphere Microflora of Plants Used for the Phytoremediation of Bitumen-Contaminated Soil. Microbiol. Res. 2003, 158, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Belimov, A.A.; Hontzeas, N.; Safronova, V.I.; Demchinskaya, S.V.; Piluzza, G.; Bullitta, S.; Glick, B.R. Cadmium-Tolerant Plant Growth-Promoting Bacteria Associated with the Roots of Indian Mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 2005, 37, 241–250. [Google Scholar] [CrossRef]
- Muromtsev, G.S. Some Methods for Studying the Dissolution of Calcium Phosphates by Microorganisms. Microbiologiya 1957, 26, 172–178. [Google Scholar]
- Kiyohara, H.; Nagao, K.; Yana, K. Rapid Screen for Bacteria Degrading Water-Insoluble, Solid Hydrocarbons on Agar Plates. Appl. Environ. Microbiol. 1982, 43, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef]
- Lewin, E.; Clifton-Brown, J.; Jensen, E.; Lewandowski, I.; Krzyżak, J.; Pogrzeba, M.; Hartung, J.; Wolfmüller, C.; Kiesel, A. Testing Agronomic Treatments to Improve the Establishment of Novel Miscanthus Hybrids on Marginal Land. Agronomy 2025, 15, 1297. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M. Induction of Plant Tolerance to Semi-Arid Environments by Beneficial Soil Microorganisms—A Review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Lichtfouse, E., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 121–135. ISBN 978-90-481-2716-0. [Google Scholar]
- Gureeva, M.V.; Gureev, A.P. Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. Int. J. Mol. Sci. 2023, 24, 9122. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Rao, T.S. Chapter 36—Molecular Evolution of Xenobiotic Degrading Genes and Mobile DNA Elements in Soil Bacteria. In Microbial Diversity in the Genomic Era; Das, S., Dash, H.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 657–678. ISBN 978-0-12-814849-5. [Google Scholar]
- Staninska-Pięta, J.; Czarny, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Wolko, Ł.; Nowak, J.; Cyplik, P. Heavy Metals as a Factor Increasing the Functional Genetic Potential of Bacterial Community for Polycyclic Aromatic Hydrocarbon Biodegradation. Molecules 2020, 25, 319. [Google Scholar] [CrossRef]
- Piacenza, E.; Campora, S.; Carfì Pavia, F.; Chillura Martino, D.F.; Laudicina, V.A.; Alduina, R.; Turner, R.J.; Zannoni, D.; Presentato, A. Tolerance, Adaptation, and Cell Response Elicited by Micromonospora Sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization. Int. J. Mol. Sci. 2022, 23, 12631. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Bilal, S.; Khan, A.L.; Shahzad, R.; Kim, Y.-H.; Imran, M.; Khan, M.J.; Al-Harrasi, A.; Kim, T.H.; Lee, I.-J. Mechanisms of Cr(VI) Resistance by Endophytic Sphingomonas Sp. LK11 and Its Cr(VI) Phytotoxic Mitigating Effects in Soybean (Glycine max L.). Ecotoxicol. Environ. Saf. 2018, 164, 648–658. [Google Scholar] [CrossRef]
- Oubohssaine, M.; Sbabou, L.; Aurag, J. Native Heavy Metal-Tolerant Plant Growth Promoting Rhizobacteria Improves Sulla spinosissima (L.) Growth in Post-Mining Contaminated Soils. Microorganisms 2022, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Hu, Y.; Zhang, X.; Zhou, D.; Xu, J.; Rensing, C.; Zhang, L.; Xing, S.; Ni, W.; Yang, W. Biochar Loaded with Bacteria Enhanced Cd/Zn Phytoextraction by Facilitating Plant Growth and Shaping Rhizospheric Microbial Community. Environ. Pollut. 2023, 327, 121559. [Google Scholar] [CrossRef] [PubMed]
- Ortúzar, M.; Trujillo, M.E.; Román-Ponce, B.; Carro, L. Micromonospora Metallophores: A Plant Growth Promotion Trait Useful for Bacterial-Assisted Phytoremediation? Sci. Total Environ. 2020, 739, 139850. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Kim, J. Sphingomonas olei Sp. Nov., with the Ability to Degrade Aliphatic Hydrocarbons, Isolated from Oil-Contaminated Soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 2731–2738. [Google Scholar] [CrossRef] [PubMed]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From Diversity and Genomics to Functional Role in Environmental Remediation and Plant Growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Recent Advances in the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mycobacterium Species. In The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions; Šašek, V., Glaser, J.A., Baveye, P., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 51–73. ISBN 978-94-010-0131-1. [Google Scholar]
- Deng, Y.; Mou, T.; Wang, J.; Su, J.; Yan, Y.; Zhang, Y.-Q. Characterization of Three Rapidly Growing Novel Mycobacterium Species with Significant Polycyclic Aromatic Hydrocarbon Bioremediation Potential. Front. Microbiol. 2023, 14, 1225746. [Google Scholar] [CrossRef]
- Antoun, H.; Prévost, D. Ecology of Plant Growth Promoting Rhizobacteria. In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–38. ISBN 978-1-4020-4152-5. [Google Scholar]
- Mohanram, S.; Kumar, P. Rhizosphere Microbiome: Revisiting the Synergy of Plant-Microbe Interactions. Ann. Microbiol. 2019, 69, 307–320. [Google Scholar] [CrossRef]
- Babu, A.G.; Kim, J.-D.; Oh, B.-T. Enhancement of Heavy Metal Phytoremediation by Alnus firma with Endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater. 2013, 250–251, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Y.; Rafiq, M.T.; Khan, K.Y.; Pan, F.; Yang, X.; Feng, Y. Improvement of Cadmium Uptake and Accumulation in Sedum alfredii by Endophytic Bacteria Sphingomonas SaMR12: Effects on Plant Growth and Root Exudates. Chemosphere 2014, 117, 367–373. [Google Scholar] [CrossRef]
- Hao, X.; Xie, P.; Zhu, Y.-G.; Taghavi, S.; Wei, G.; Rensing, C. Copper Tolerance Mechanisms of Mesorhizobium amorphae and Its Role in Aiding Phytostabilization by Robinia pseudoacacia in Copper Contaminated Soil. Environ. Sci. Technol. 2015, 49, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Control Soil | Zn-Spiked Soil | Zn- & Oil Sludge-Spiked Soil | Oil Sludge-Spiked Soil |
---|---|---|---|---|---|
pH | − | 5.64 | 5.37 | 5.54 | 5.53 |
NO3-N | mg kg−1 | 37.8 ± 6.29 | 18.6 ± 0.71 | 17.0 ± 3.24 | 20.6 ± 0.20 |
NH4-N | mg kg−1 | 31.7 ± 1.55 | 39.6 ± 2.14 | 31.7 ± 1.87 | 31.8 ± 6.60 |
P2O5 | mg kg−1 | 63.8 ± 0.98 | 51.0 ± 6.53 | 53.2 ± 5.55 | 58.3 ± 4.57 |
Treatment | Observed Features | Chao1 | Shannon Index | Simpson Index | Faith PD |
---|---|---|---|---|---|
Control soil | 1054 ± 148 | 1062 ± 147 | 8.74 ± 0.18 | 0.994 ± 0.001 | 82.5 ± 8.96 |
Zn-spiked soil | 709 ± 130 * | 718 ± 135 * | 8.46 ± 0.39 | 0.995 ± 0.002 | 64.3 ± 9.64 |
Oil sludge-spiked soil | 575 ± 202 * | 582 ± 208 * | 8.26 ± 0.43 | 0.995 ± 0.001 | 49.3 ± 14.8 * |
Zn- & oil sludge-spiked soil | 814 ± 207 | 822 ± 211 | 8.77 ± 0.35 | 0.997 ± 0.001 * | 71.9 ± 15.8 |
Isolate | N2 Fixation | P Mobilization | Siderophore Production | IAA Synthesis | Resistance, mM | HC Degradation | |
---|---|---|---|---|---|---|---|
Zn2+ | Pb2+ | ||||||
Chitinophaga sp. Zn19 | + | – | + | + | 4.0 | – | – |
Mycolicibacterium sp. Pb113 | + | – | + | + | – | ≥5.0 | + (Phe) |
Stenotrophomonas sp. Zn210 | – | – | – | ± | ≥5.0 | – | + (alk) |
Mesorhizobium sp. Pb210 | + | ++ | ± | + | – | 2.5 | + (Phe) |
Mycolicibacterium sp. Pb216 | + | – | + | + | – | 3.0 | + (Phe) |
Microbacterium sp. Pb24 | + | + | – | + | – | 3.0 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzhanova, A.; Boulygina, E.; Sungurtseva, I.; Mamirova, A.; Berzhanova, R.; Muratova, A. Miscanthus × giganteus Rhizobacterial Community Responses to Zn and Oil Sludge Co-Contamination. Agronomy 2025, 15, 2232. https://doi.org/10.3390/agronomy15092232
Nurzhanova A, Boulygina E, Sungurtseva I, Mamirova A, Berzhanova R, Muratova A. Miscanthus × giganteus Rhizobacterial Community Responses to Zn and Oil Sludge Co-Contamination. Agronomy. 2025; 15(9):2232. https://doi.org/10.3390/agronomy15092232
Chicago/Turabian StyleNurzhanova, Asil, Eugenia Boulygina, Irina Sungurtseva, Aigerim Mamirova, Ramza Berzhanova, and Anna Muratova. 2025. "Miscanthus × giganteus Rhizobacterial Community Responses to Zn and Oil Sludge Co-Contamination" Agronomy 15, no. 9: 2232. https://doi.org/10.3390/agronomy15092232
APA StyleNurzhanova, A., Boulygina, E., Sungurtseva, I., Mamirova, A., Berzhanova, R., & Muratova, A. (2025). Miscanthus × giganteus Rhizobacterial Community Responses to Zn and Oil Sludge Co-Contamination. Agronomy, 15(9), 2232. https://doi.org/10.3390/agronomy15092232