Fertility Status and Soil Quality Assessment of Chernozem and Stagnosol Soils Under Organic Farming Practices
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Soil Sampling and Site Selection
2.3. Soil Laboratory Analyses and Calculations
2.4. Statistical Analysis
3. Results
3.1. Basic Physical and Chemical Properties of Investigated Soils
3.2. Bulk Density
3.3. Soil Organic Carbon
Hot-Water Extractable Organic Carbon
3.4. Enzymatic Activities
3.5. Soil Parameter Relationships in the Organic System
3.6. PCA of Soil Properties Under Different Management Systems
4. Discussion
4.1. Effects of Organic Farming on Bulk Density
4.2. Effects of Organic Farming on Soil Organic Carbon
Effects of Organic Farming on Hot-Water Extractable Organic Carbon
4.3. Effects of Organic Farming on Soil Enzymatic Activities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 10 July 2025).
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Lal, R. Sustainable soil management and food security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- O’Brien, P.; Kral-O’Brien, K.; Hatfield, J.L. Agronomic approach to understanding climate change and food security. Agron. J. 2021, 113, 4616–4626. [Google Scholar] [CrossRef]
- Bibi, F.; Rahman, A. An overview of climate change impacts on agriculture and their mitigation strategies. Agriculture 2023, 13, 1508. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health: The Cornell Framework, 3rd ed.; Cornell University: Geneva, Switzerland, 2017. [Google Scholar]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Ličina, V.; Nešić, L.; Belić, M.; Hadžić, V.; Sekulić, P.; Vasin, J.; Ninkov, J. The soils of Serbia and their degradation. Field Veg. Crop Res. 2011, 48, 285–290. [Google Scholar]
- Kovačević, D.; Čabilovski, R.; Petković, K.; Štrbac, M.; Jaćimović, G.; Manojlović, M. The concentrations of Zn and Cd in soil and corn plants affected by phosphorus fertilization in a long-term field experiment. Pak. J. Agric. Sci. 2021, 58, 1681–1688. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Nat. Commun. 2020, 11, 5511. [Google Scholar] [CrossRef]
- Manojlović, M.; Pivić, R. The role of soil in carbon cycling and climate change mitigation. In Forestry and Environment Initiative; FEA: Belgrade, Serbia, 2020. [Google Scholar]
- Lal, R. Regenerative agriculture for food and climate. J. Soil Water Conserv. 2020, 75, 123A–124A. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T. Soil quality, organic agriculture and environmental sustainability: A review. Agron. Sustain. Dev. 2022, 42, 35. [Google Scholar]
- Manojlovic, M.; Cabilovski, R.; Kalentic, M. Soil Fertility: Organic vs. Conventional Farming Systems in Vojvodina, northern Serbia. In Book of Abstract. International Conference on Organic Agriculture and Agro-Eco Tourism in the Mediterranean; DIO: Zakynthos, Greece, 2011. [Google Scholar]
- Manojlović, M.; Čabilovski, R. Soil fertility as a base for organic farming in Vojvodina. In Proceedings of the 22nd International Symposium “Safe Food Production”, Trebinje, Bosnia and Herzegovina, 19–25 June 2011. [Google Scholar]
- Republic Hydrometeorological Service of Serbia (RHMS). Basic Climate Characteristics for the Territory of Serbia (Standard Normal Period 1961–1990). Belgrade, Serbia. Available online: https://www.hidmet.gov.rs/data/klimatologija_static/eng/Klima_Srbije.pdf (accessed on 15 July 2025).
- Republic Hydrometeorological Service of Serbia (RHMS). Annual Bulletin for 2019. Belgrade, Serbia. 2019. Available online: https://www.hidmet.gov.rs (accessed on 15 July 2025).
- Republic Hydrometeorological Service of Serbia (RHMS). Annual Bulletin for 2023. Belgrade, Serbia. 2023. Available online: https://www.hidmet.gov.rs (accessed on 15 July 2025).
- Tommerup, E.C. The Field Description of the Physical Properties of Soils, First Commission of Commission I—Soil Physics of the International Society of Soil Science; International Society of Soil Science: Versailles, France, 1934; pp. 155–158. [Google Scholar]
- ISO 10390:2021; Soil Quality—Determination of pH. International Organization for Standardization (ISO): Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75243.html (accessed on 18 July 2025).
- Egner, H.; Riehm, H.; Domingo, W.R. Investigations of the chemical soil analysis as a basis for the evaluation of nutrient status in soil II: Chemical extraction methods for phosphorus and potassium determination. K. Lantbruksakademiens Ann. 1960, 26, 195–215. [Google Scholar]
- ISO 14235:2005; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 18 July 2025).
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Thalmann, A. Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Assay of urease activity in soils. Soil Biol. Biochem. 1972, 4, 479–487. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Araya, S.N.; Mitchell, J.P.; Hopmans, J.W.; Ghezzehei, T.A. Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage. Soil 2022, 8, 177–198. [Google Scholar] [CrossRef]
- Mahabadi, S.H.; Shorafa, M.; Motesharezadeh, B.; Etesami, H. Mitigating soil compaction and enhancing corn (Zea mays L.) growth through biological and non-biological amendments. BMC Plant Biol. 2025, 25, 74. [Google Scholar] [CrossRef] [PubMed]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Gebre, A.B. Comparison of bulk density methods in determining soil organic carbon storage under different land use types. J. Soil Sci. Environ. Manag. 2018, 9, 13–20. [Google Scholar] [CrossRef]
- Bilibio, C.; Uteau, D.; Horvat, M.; Rosskopf, U.; Junge, S.M.; Finckh, M.R.; Peth, S. Impact of ten years conservation tillage in organic farming on soil physical properties in a loess soil—Northern Hesse, Germany. Agriculture 2023, 13, 133. [Google Scholar] [CrossRef]
- Williams, D.M.; Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Organic farming and soil physical properties: An assessment after 40 years. Agron. J. 2017, 109, 600–609. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Francis, C.A. Do organic farming practices improve soil physical properties? Soil Use Manag. 2023, 40, e12999. [Google Scholar] [CrossRef]
- Gerke, J. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Ortner, M.; Seidel, M.; Semella, S.; Udelhoven, T.; Vohland, M.; Thiele-Bruhn, S. Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics. Soil 2022, 8, 113–131. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Leifeld, J.; Zimmermann, M.; Fuhrer, J.; Conen, F. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob. Change Biol. 2009, 15, 668–679. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef]
- Velmourougane, K. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica 2016, 2016, 3604026. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mader, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [PubMed]
- Mihelič, R.; Pintarič, S.; Eler, K.; Suhadolc, M. Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: A comparison of long-term non-inversion minimum tillage and conventional tillage. Biol. Fertil. Soils 2024, 60, 341–355. [Google Scholar] [CrossRef]
- Manojlović, M.; Aćìn, V.; Šeremešić, S. Long-term effects of agronomic practices on the soil organic carbon sequestration in Chernozem. Arch. Agron. Soil Sci. 2008, 54, 353–367. [Google Scholar] [CrossRef]
- Hu, T.; Sørensen, P.; Olesen, J.E. Soil carbon varies between different organic and conventional management schemes in arable agriculture. Eur. J. Agron. 2018, 94, 79–88. [Google Scholar] [CrossRef]
- Raimondi, G.; Maucieri, C.; Squartini, A.; Stevanato, P.; Tolomio, M.; Toffanin, A.; Borin, M. Soil indicators for comparing medium-term organic and conventional agricultural systems. Eur. J. Agron. 2023, 142, 126669. [Google Scholar] [CrossRef]
- Hijbeek, R.V.; van Ittersum, M.K.; ten Berge, H.F.; Gort, G.; Spiegel, H.; Whitmore, A.P. Do organic inputs matter–a meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 2017, 411, 293–303. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef]
- Cai, A.; Feng, W.; Zhang, W.; Xu, M. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 2016, 172, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sarkar, B.; Sarkar, S.; Churchman, J.; Bolan, N.; Mandal, S.; Menon, M.; Purakayastha, T.J.; Beerling, D.J. Stabilization of soil organic carbon as influenced by clay mineralogy. Adv. Agron. 2018, 148, 33–84. [Google Scholar]
- Leifeld, J.; Reiser, R.; Oberholzer, H.R. Consequences of conventional versus organic farming on soil carbon: Results from a 27-year field experiment. Agron. J. 2009, 101, 1204–1218. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Leifeld, J.; Fuhrer, J. Organic farming and soil carbon sequestration: What do we really know about the benefits? Ambio 2010, 39, 585–599. [Google Scholar] [CrossRef]
- Ćirić, V.; Belić, M.; Nešić, L.; Šeremešić, S.; Pejić, B.; Bezdan, A.; Manojlović, M. The sensitivity of water extractable soil organic carbon fractions to land use in three soil types. Arch. Agron. Soil Sci. 2016, 62, 1654–1664. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Martínez, J.M.; Limbozzi, F. Labile soil organic carbon for assessing soil quality: Influence of management practices and edaphic conditions. Catena 2018, 171, 316–326. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Tobiašová, E. The Potential of the Soil for Stabilisation of Organic Carbon in Soil Aggregates. Agriculture 2015, 61, 50–60. [Google Scholar] [CrossRef][Green Version]
- Tobiašová, E.; Lemanowicz, J.; Dębska, B.; Kunkelová, M.; Sakáč, J. The effect of reduced and conventional tillage systems on soil aggregates and organic carbon parameters of different soil types. Agriculture 2023, 13, 818. [Google Scholar] [CrossRef]
- Dubovik, E.V.; Dubovik, D.V. Relationships between the organic carbon content and structural state of typical chernozem. Eurasian Soil Sci. 2019, 52, 150–161. [Google Scholar] [CrossRef]
- Fernández-Romero, M.L.; Clark, J.M.; Collins, C.D.; Parras-Alcántara, L.; Lozano-García, B. Evaluation of optical techniques for characterising soil organic matter quality in agricultural soils. Soil Till. Res. 2016, 155, 450–460. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; Page, A.L., Ed.; The American Society of Agronomy: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The effect of organic and conventional farming systems with different tillage on soil properties and enzymatic activity. Agronomy 2020, 10, 1809. [Google Scholar] [CrossRef]
- Krzywy-Gawrońska, E. Enzymatic Activity of Urease and Degydrogenase in Soil Fertilized With GWDA Compost with or without a PRPSOL Addition. Pol. J. Environ. Stud. 2012, 21, 949–955. [Google Scholar]
- Zaborowska, M.; Woźny, G.; Wyszkowska, J.; Kucharski, J. Biostimulation of the activity of microorganisms and soil enzymes through fertilisation with composts. Soil Res. 2018, 56, 737–751. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic activity of loess soil in organic and conventional farming systems. Agriculture 2020, 10, 135. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Zwydak, M. The relationship between soil properties, enzyme activity and land use. For. Res. Pap. 2017, 78, 39–44. [Google Scholar] [CrossRef]
- Yu, P.; Tang, X.; Zhang, A.; Fan, G.; Liu, S. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China. Sci. Total Environ. 2019, 687, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Futa, B.; Myszura-Dymek, B.; Wesolowska, S. Integrated assessment of the impact of conventional and organic farming systems on soil biochemical indicators. Int. Agrophys. 2024, 38, 177–185. [Google Scholar] [CrossRef]
- Wen, L.; Peng, Y.; Zhou, Y.; Cai, G.; Lin, Y.; Li, B. Effects of conservation tillage on soil enzyme activities of global cultivated land: A meta-analysis. J. Environ. Manag. 2023, 345, 118904. [Google Scholar] [CrossRef]
- Rieznik, S.; Havva, D.; Chekar, O. Enzymatic activity of typical chernozems under the conditions of the organic farming systems. Sci. Papers Ser. A Agron. 2021, 64, 114–119. [Google Scholar]
Location | Land Use | Sand (%) | Silt (%) | Clay (%) | Soil Texture | Location | Land Use | Sand (%) | Silt (%) | Clay (%) | Soil Texture |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Organic plot I * | 62.72 | 26.56 | 10.72 | Loam | 6 | Organic plot I ** | 40.60 | 41.84 | 17.56 | Clay loam |
Organic plot II * | 76.16 | 14.76 | 9.08 | Fine sandy loam | Organic plot II ** | 40.08 | 40.04 | 19.88 | Clay loam | ||
Conventional plot | 59.08 | 29.00 | 11.92 | Loam | Conventional plot | 43.20 | 37.36 | 19.44 | Clay loam | ||
Pasture | 79.84 | 11.52 | 8.64 | Fine sandy loam | Pasture | 44.28 | 38.36 | 17.36 | Clay loam | ||
2 | Organic plot I * | 60.16 | 28.28 | 11.56 | Loam | 7 | Organic plot I ** | 52.12 | 35.28 | 12.60 | Loam |
Organic plot II * | 65.52 | 23.44 | 11.04 | Fine sandy loam | Organic plot II ** | 51.76 | 33.12 | 15.12 | Clay loam | ||
Conventional plot | 60.68 | 28.08 | 11.24 | Loam | Conventional plot | 52.08 | 36.80 | 11.12 | Loam | ||
Pasture | 73.60 | 17.76 | 8.64 | Fine sandy loam | Pasture | 55.52 | 31.64 | 12.84 | Loam | ||
3 | Organic plot I * | 53.36 | 33.20 | 13.44 | Loam | 8 | Organic plot I ** | 38.24 | 39.20 | 22.56 | Clay loam |
Organic plot II * | 51.96 | 32.28 | 15.76 | Clay loam | Organic plot II ** | 35.44 | 42.20 | 22.36 | Clay loam | ||
Conventional plot | 46.44 | 38.88 | 14.68 | Loam | Conventional plot | 35.36 | 36.96 | 27.68 | Loamy clay | ||
Pasture | 60.56 | 30.20 | 9.24 | Loam | Pasture | 40.64 | 37.68 | 21.68 | Clay loam | ||
4 | Organic plot I * | 60.16 | 27.64 | 12.20 | Loam | 9 | Organic plot I ** | 42.04 | 36.88 | 21.08 | Clay loam |
Organic plot II * | 57.60 | 28.76 | 13.64 | Loam | Organic plot II ** | 43.32 | 37.40 | 19.28 | Clay loam | ||
Conventional plot | 57.60 | 30.36 | 12.04 | Loam | Conventional plot | 49.12 | 34.40 | 16.48 | Clay loam | ||
Pasture | 67.68 | 19.68 | 12.64 | Fine sandy loam | Pasture | 47.12 | 36.44 | 16.44 | Clay loam | ||
5 | Organic plot I * | 38.68 | 37.28 | 24.0 | Clay loam | 10 | Organic plot I ** | 49.12 | 36.16 | 14.72 | Loam |
Organic plot II * | 37.28 | 40.64 | 22.10 | Clay loam | Organic plot II ** | 45.60 | 38.88 | 15.52 | Clay loam | ||
Conventional plot | 35.16 | 38.44 | 26.4 | Loamy clay | Conventional plot | 48.16 | 35.36 | 16.48 | Clay loam | ||
Pasture | 42.86 | 37.24 | 19.9 | Clay loam | Pasture | 49.76 | 36.56 | 13.68 | Loam |
Location | Land Use | Sand (%) | Silt (%) | Clay (%) | Soil Texture |
---|---|---|---|---|---|
11 | Organic plot I ** | 35.72 | 47.76 | 16.52 | Silty clay loam |
Organic plot II ** | 35.52 | 44.88 | 19.60 | Clay loam | |
Conventional plot | 36.84 | 40.64 | 22.52 | Clay loam | |
Pasture | 40.04 | 45.12 | 14.84 | Silty loam | |
12 | Organic plot I ** | 40.28 | 38.52 | 21.20 | Clay loam |
Organic plot II ** | 41.44 | 41.56 | 17.00 | Clay loam | |
Conventional plot | 33.20 | 41.12 | 25.68 | Loamy clay | |
Pasture | 43.32 | 41.16 | 15.52 | Clay loam | |
13 | Organic plot I ** | 34.36 | 36.00 | 29.64 | Loamy clay |
Organic plot II ** | 36.80 | 38.00 | 25.20 | Loamy clay | |
Conventional plot | 42.28 | 30.32 | 27.40 | Loamy clay | |
Pasture | 44.48 | 30.60 | 24.92 | Clay loam | |
14 | Organic plot I ** | 33.12 | 45.08 | 21.80 | Silty clay loam |
Organic plot II ** | 34.32 | 40.20 | 25.48 | Loamy clay | |
Conventional plot | 32.16 | 40.96 | 26.88 | Loamy clay | |
Pasture | 34.04 | 37.20 | 28.76 | Loamy clay | |
15 | Organic plot I ** | 29.40 | 47.96 | 22.64 | Silty clay loam |
Organic plot II ** | 34.72 | 46.12 | 19.16 | Silty clay loam | |
Conventional plot | 35.70 | 39.18 | 25.12 | Loamy clay | |
Pasture | 34.76 | 45.04 | 20.20 | Silty clay loam |
Land Use | pH H2O | pH KCl | CaCO3 (%) | AL-P2O5 mg 100 g−1 | AL-K2O mg 100 g−1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Chernozem | ||||||||||
Organic plot * (mean I + II) | 7.93 ± 0.28 | 7.20 ± 0.40 | 8.83 ± 4.74 | 21.69 ± 6.15 | 25.97 ± 6.71 | |||||
Min 7.53 | Max 8.34 | Min 6.45 | Max 7.63 | Min 2.76 | Max 17.75 | Min 12.94 | Max 31.06 | Min 15.03 | Max 35.32 | |
Organic plot ** (mean I + II) | 8.00 ± 0.18 | 7.15 ± 0.30 | 8.83 ± 6.28 | 21.39 ± 7.80 | 25.65 ± 4.49 | |||||
Min 7.65 | Max 8.22 | Min 6.57 | Max 7.43 | Min 2.97 | Max 20.43 | Min 12.50 | Max 39.22 | Min 20.02 | Max 36.45 | |
Conventional plot | 7.90 ± 0.43 | 7.11 ± 0.51 | 9.80 ± 5.29 | 22.91 ± 11.75 | 22.99 ± 4.43 | |||||
Min 8.00 | Max 8.16 | Min 5.70 | Max 7.48 | Min 2.75 | Max 20.19 | Min 7.85 | Max 49.64 | Min 13.93 | Max 27.81 | |
Pasture | 7.96 ± 0.14 | 7.25 ± 0.19 | 8.67 ± 5.51 | 17.10 ± 7.96 | 28.21 ± 8.72 | |||||
Min 7.77 | Max 8.15 | Min 6.94 | Max 7.53 | Min 3.81 | Max 21.68 | Min 5.56 | Max 29.93 | Min 17.63 | Max 39.78 | |
Stagnosol | ||||||||||
Organic plot ** (mean I + II) | 6.65 ± 0.49 | 5.74 ± 0.54 | 2.52 ± 0.47 | 31.27 ± 19.34 | 37.74 ± 8.98 | |||||
Min 5.63 | Max 7.18 | Min 4.65 | Max 6.24 | Min 1.64 | Max 3.28 | Min 3.53 | Max 49.57 | Min 22.51 | Max 48.31 | |
Conventional plot | 6.04 ± 0.78 | 5.05 ± 0.85 | 2.52 ± 0.30 | 14.96 ± 23.32 | 26.28 ± 5.47 | |||||
Min 5.14 | Max 7.29 | Min 4.08 | Max 6.43 | Min 2.05 | Max 2.77 | Min 0.88 | Max 56.39 | Min 21.15 | Max 34.54 | |
Pasture | 6.22 ± 0.37 | 5.29 ± 0.46 | 2.79 ± 0.46 | 12.26 ± 14.25 | 23.11 ± 11.07 | |||||
Min 5.59 | Max 6.49 | Min 4.53 | Max 5.72 | Min 2.05 | Max 3.18 | Min 0.37 | Max 34.32 | Min 11.66 | Max 38.73 |
System | SOC Content Change vs. Pasture (%) | SOC Content Change Organic vs. Conventional (%) | SOC Stock Change vs. Pasture (%) | SOC Stock Change Organic vs. Conventional (%) |
---|---|---|---|---|
Chernozem | ||||
Organic plot * (mean I + II) | −20.08 | 10.93 | −23.50 | −1.58 |
Organic plot ** (mean I + II) | −32.28 | −6.01 | −29.07 | −8.74 |
Conventional plot | −27.95 | −22.27 | ||
Stagnosol | ||||
Organic plot ** (mean I + II) | −9.55 | 28.57 | −11.43 | 16.47 |
Conventional plot | −29.65 | −23.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štrbac, M.; Manojlović, M.; Ćirić, V.; Đurić, S.; Čabilovski, R.; Petković, K.; Kovačević, D.; Vijuk, M. Fertility Status and Soil Quality Assessment of Chernozem and Stagnosol Soils Under Organic Farming Practices. Agronomy 2025, 15, 2214. https://doi.org/10.3390/agronomy15092214
Štrbac M, Manojlović M, Ćirić V, Đurić S, Čabilovski R, Petković K, Kovačević D, Vijuk M. Fertility Status and Soil Quality Assessment of Chernozem and Stagnosol Soils Under Organic Farming Practices. Agronomy. 2025; 15(9):2214. https://doi.org/10.3390/agronomy15092214
Chicago/Turabian StyleŠtrbac, Mirna, Maja Manojlović, Vladimir Ćirić, Simonida Đurić, Ranko Čabilovski, Klara Petković, Dragan Kovačević, and Mirjana Vijuk. 2025. "Fertility Status and Soil Quality Assessment of Chernozem and Stagnosol Soils Under Organic Farming Practices" Agronomy 15, no. 9: 2214. https://doi.org/10.3390/agronomy15092214
APA StyleŠtrbac, M., Manojlović, M., Ćirić, V., Đurić, S., Čabilovski, R., Petković, K., Kovačević, D., & Vijuk, M. (2025). Fertility Status and Soil Quality Assessment of Chernozem and Stagnosol Soils Under Organic Farming Practices. Agronomy, 15(9), 2214. https://doi.org/10.3390/agronomy15092214