Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Measurement and Preprocessing
2.2.1. Gross Primary Productivity and Meteorological Data
2.2.2. Solar-Induced Chlorophyll Fluorescence Data
2.2.3. Data Normalization
2.3. Research Methods
2.3.1. Correlation Analysis
2.3.2. Feature Importance Evaluation
2.3.3. Machine Learning Models
2.3.4. GPP Estimation Based on the Light Use Efficiency Mode
2.4. Statistical Testing
3. Results
3.1. Correlation and Simulation Between SIF and GPP
3.2. Simulation Scenario Setup
3.3. Machine Learning Model Simulation Accuracy
3.4. Comparison of Machine Learning Models and LUE Model Simulation Accuracy of GPP at Different Growth Stages
4. Discussion
4.1. Performance Differences Among Machine Learning Models and the Advantages of LSM
4.2. Improvement in Machine Learning Model Accuracy by Incorporating SIF
4.3. Comparison of GPP Estimation Accuracy Between LUE Model and Machine Learning Models
4.4. Research Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A Critical Review of Methods, Principles and Progress for Estimating the Gross Primary Productivity of Terrestrial Ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Gabaldón-Leal, C.; Sánchez-Virosta, Á.; Doña, C.; González-Piqueras, J.; Sánchez, J.M.; López-Urrea, R. Ground Measurements and Remote Sensing Modeling of Gross Primary Productivity and Water Use Efficiency in Almond Agroecosystems. Agriculture 2024, 14, 1589. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Gao, S.; Wang, G. Impact of Physiological and Phenological Change on Carbon Uptake on the Tibetan Plateau Revealed through GPP Estimation Based on Spaceborne Solar-Induced Fluorescence. Sci. Total Environ. 2019, 663, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, H.; Wang, M.; Gu, Q.; Ding, Z.; Ma, M.; Liu, R.; Tang, X. Contrasting Performance of the Remotely-Derived GPP Products over Different Climate Zones across China. Remote Sens. 2019, 11, 1855. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q. Overview on Estimation Accuracy of Gross Primary Productivity with Remote Sensing Methods. J. Remote Sens. 2018, 22, 234–252. [Google Scholar] [CrossRef]
- Desai, A.R.; Richardson, A.D.; Moffat, A.M.; Kattge, J.; Hollinger, D.Y.; Barr, A.; Falge, E.; Noormets, A.; Papale, D.; Reichstein, M.; et al. Cross-Site Evaluation of Eddy Covariance GPP and RE Decomposition Techniques. Agric. For. Meteorol. 2008, 148, 821–838. [Google Scholar] [CrossRef]
- Stoy, P.C.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.-Y.; Novick, K.A.; Uebelherr, J.M.; Oren, R. An Evaluation of Models for Partitioning Eddy Covariance-Measured Net Ecosystem Exchange into Photosynthesis and Respiration. Agric. For. Meteorol. 2006, 141, 2–18. [Google Scholar] [CrossRef]
- Barcza, Z.; Kern, A.; Davis, K.J.; Haszpra, L. Analysis of the 21-Years Long Carbon Dioxide Flux Dataset from a Central European Tall Tower Site. Agric. For. Meteorol. 2020, 290, 108027. [Google Scholar] [CrossRef]
- Wang, M.; Sun, R.; Zhu, A.; Xiao, Z. Evaluation and Comparison of Light Use Efficiency and Gross Primary Productivity Using Three Different Approaches. Remote Sens. 2020, 12, 1003. [Google Scholar] [CrossRef]
- Chen, S.; Sui, L.; Liu, L.; Liu, X. Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sens. 2022, 14, 57. [Google Scholar] [CrossRef]
- Dalmagro, H.J.; Lathuillière, M.J.; de Arruda, P.H.Z.; Silva Júnior, A.A.D.; Sallo, F.d.S.; Couto, E.G.; Johnson, M.S. Carbon Exchange in Rainfed and Irrigated Cropland in the Brazilian Cerrado. Agric. For. Meteorol. 2022, 316, 108881. [Google Scholar] [CrossRef]
- Xie, X.; Li, A. An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas. J. Geophys. Res. Atmos. 2020, 125, e2019JD031702. [Google Scholar] [CrossRef]
- Madani, N.; Kimball, J.S.; Affleck, D.L.R.; Kattge, J.; Graham, J.; van Bodegom, P.M.; Reich, P.B.; Running, S.W. Improving Ecosystem Productivity Modeling through Spatially Explicit Estimation of Optimal Light Use Efficiency. J. Geophys. Res. Biogeosci. 2014, 119, 1755–1769. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Juszczak, R. Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) Studies from Ground, UAV, Airborne to Spaceborne Observations. Sensors 2020, 20, 1144. [Google Scholar] [CrossRef]
- Gao, H.; Liu, S.; Lu, W.; Smith, A.R.; Valbuena, R.; Yan, W.; Wang, Z.; Xiao, L.; Peng, X.; Li, Q.; et al. Global Analysis of the Relationship between Reconstructed Solar-Induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP). Remote Sens. 2021, 13, 2824. [Google Scholar] [CrossRef]
- Pickering, M.; Cescatti, A.; Duveiller, G. Sun-Induced Fluorescence as a Proxy for Primary Productivity across Vegetation Types and Climates. Biogeosciences 2022, 19, 4833–4864. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhang, X.; Gu, X.; Yu, L.; Cai, H.; Peng, X. Using Solar-Induced Chlorophyll Fluorescence to Predict Winter Wheat Actual Evapotranspiration through Machine Learning and Deep Learning Methods. Agric. Water Manag. 2025, 309, 109322. [Google Scholar] [CrossRef]
- Du, R.; Xiang, Y.; Chen, J.; Lu, X.; Wu, Y.; He, Y.; Xiang, R.; Zhang, Z.; Chen, Y. Potential of Solar-Induced Chlorophyll Fluorescence (SIF) to Access Long-Term Dynamics of Soil Salinity Using OCO-2 Satellite Data and Machine Learning Method. Geoderma 2024, 444, 116855. [Google Scholar] [CrossRef]
- Peng, G.C.Y.; Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; et al. Multiscale Modeling Meets Machine Learning: What Can We Learn? Arch. Computat. Methods Eng. 2021, 28, 1017–1037. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, X.; Wang, Y.; Li, Y.; Lin, D.; Shen, H. GPP Estimation by Transfer Learning with Combined Solar-Induced Chlorophyll Fluorescence and Eddy Covariance Data. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104503. [Google Scholar] [CrossRef]
- Barbierato, E.; Gatti, A. The Challenges of Machine Learning: A Critical Review. Electronics 2024, 13, 416. [Google Scholar] [CrossRef]
- Ang, Y.; Shafri, H.Z.M.; Lee, Y.P.; Abidin, H.; Bakar, S.A.; Hashim, S.J.; Che’Ya, N.N.; Hassan, M.R.; Lim, H.S.; Abdullah, R. A Novel Ensemble Machine Learning and Time Series Approach for Oil Palm Yield Prediction Using Landsat Time Series Imagery Based on NDVI. Geocarto Int. 2022, 37, 9865–9896. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, M.M.; Shohan, A.A.; Pulok, R.A.; Akter, S.; Ahmed, M.T. Deep Neural Network-Based Approach to Identify the Paddy Leaf Disease Using ResNet50-V2. In Proceedings of the 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT), Bengaluru, India, 20–21 October 2023; pp. 1–6. [Google Scholar]
- Gao, B.; Liu, Y.; Li, Y.; Li, H.; Li, M.; He, W. A Vision-Language Model for Predicting Potential Distribution Land of Soybean Double Cropping. Front. Environ. Sci. 2025, 12, 1515752. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.; Pan, Y.; Huang, X.; Wu, J.; Wang, X. Strength of Stacking Technique of Ensemble Learning in Rockburst Prediction with Imbalanced Data: Comparison of Eight Single and Ensemble Models. Nat. Resour. Res. 2021, 30, 1795–1815. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.P.; Rane, J. Ensemble Deep Learning and Machine Learning: Applications, Opportunities, Challenges, and Future Directions. Stud. Med. Health Sci. 2024, 1, 18–41. [Google Scholar] [CrossRef]
- Kumar, P.; Champa, H.N. Enhancing Agricultural Yield: A Unified Stacking Ensemble Method for Crop Recommendations Using Soil Properties and Weather Attributes. Int. J. Environ. Sci. 2025, 11, 671–684. [Google Scholar]
- Xue, Y.; Zhang, Z.; Li, X.; Liang, H.; Yin, L. A Review of Evapotranspiration Estimation Models: Advances and Future Development. Water Resour. Manag. 2025, 39, 3641–3657. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The Recent Developments in Cloud Removal Approaches of MODIS Snow Cover Product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef]
- Goodrich, J.P.; Campbell, D.I.; Clearwater, M.J.; Rutledge, S.; Schipper, L.A. High Vapor Pressure Deficit Constrains GPP and the Light Response of NEE at a Southern Hemisphere Bog. Agric. For. Meteorol. 2015, 203, 54–63. [Google Scholar] [CrossRef]
- Meroni, M.; Picchi, V.; Rossini, M.; Cogliati, S.; Panigada, C.; Nali, C.; Lorenzini, G.; Colombo, R. Leaf Level Early Assessment of Ozone Injuries by Passive Fluorescence and Photochemical Reflectance Index. Int. J. Remote Sens. 2008, 29, 5409–5422. [Google Scholar] [CrossRef]
- Chang, C.Y.; Guanter, L.; Frankenberg, C.; Köhler, P.; Gu, L.; Magney, T.S.; Grossmann, K.; Sun, Y. Systematic Assessment of Retrieval Methods for Canopy Far-Red Solar-Induced Chlorophyll Fluorescence Using High-Frequency Automated Field Spectroscopy. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005533. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, F.; Liu, X.; Yu, Q.; Wang, Y.; Peng, X.; Cai, H.; Lu, X. Direct Estimation of Photosynthetic CO2 Assimilation from Solar-Induced Chlorophyll Fluorescence (SIF). Remote Sens. Environ. 2022, 271, 112893. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Sun, Y.; Yu, L.; Xu, J.; Gu, X.; Cai, H. Effects of Straw Mulching and Plastic Mulching on Maize Yield and Crop Water Productivity in China: A Meta-Analysis. Agric. Water Manag. 2025, 315, 109549. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Wei, Z.-W.; Wang, B.-H.; Han, X.-P. Measuring Mixing Patterns in Complex Networks by Spearman Rank Correlation Coefficient. Phys. A Stat. Mech. Its Appl. 2016, 451, 440–450. [Google Scholar] [CrossRef]
- Posnett, D.; Devanbu, P.; Filkov, V. MIC Check: A Correlation Tactic for ESE Data. In Proceedings of the 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), Zurich, Switzerland, 2–3 June 2012; pp. 22–31. [Google Scholar]
- Magklaras, A.; Gogos, C.; Alefragis, P.; Birbas, A. Enhancing Parameters Tuning of Overlay Models with Ridge Regression: Addressing Multicollinearity in High-Dimensional Data. Mathematics 2024, 12, 3179. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Jahed Armaghani, D.; Tahir, M.M.; Pham, B.T.; Huynh, V.V. A Combination of Feature Selection and Random Forest Techniques to Solve a Problem Related to Blast-Induced Ground Vibration. Appl. Sci. 2020, 10, 869. [Google Scholar] [CrossRef]
- Muriira, L.M.; Zhao, Z.; Min, G. Exploiting Linear Support Vector Machine for Correlation-Based High Dimensional Data Classification in Wireless Sensor Networks. Sensors 2018, 18, 2840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Haghani, A. A Gradient Boosting Method to Improve Travel Time Prediction. Transp. Res. Part C Emerg. Technol. 2015, 58, 308–324. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Chan, J.Y.-L.; Leow, S.M.H.; Bea, K.T.; Cheng, W.K.; Phoong, S.W.; Hong, Z.-W.; Chen, Y.-L. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, 10, 1283. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, Z. Exploring the Best-Matching Plant Traits and Environmental Factors for Vegetation Indices in Estimates of Global Gross Primary Productivity. Remote Sens. 2022, 14, 6316. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H. A Combined Feature Screening Approach of Random Forest and Filterbased Methods for Ultra-High Dimensional Data. Curr. Bioinform. 2022, 17, 344–357. [Google Scholar] [CrossRef]
- Adesina, D.; Hsieh, C.-C.; Sagduyu, Y.E.; Qian, L. Adversarial Machine Learning in Wireless Communications Using RF Data: A Review. IEEE Commun. Surv. Tutor. 2023, 25, 77–100. [Google Scholar] [CrossRef]
- Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef] [PubMed]
- Guelman, L. Gradient Boosting Trees for Auto Insurance Loss Cost Modeling and Prediction. Expert Syst. Appl. 2012, 39, 3659–3667. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, H.; Zhang, J.; Li, S.; Li, J.; Yao, F.; Mahecha, M.D.; Peng, J. Global Assessment of Terrestrial Productivity in Response to Water Stress. Sci. Bull. 2024, 69, 2352–2356. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Cheng, R. Solar-Induced Chlorophyll Fluorescence (SIF): Towards a Better Understanding of Vegetation Dynamics and Carbon Uptake in Arctic-Boreal Ecosystems. Curr. Clim. Change Rep. 2024, 10, 13–32. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Malenovský, Z.; Magney, T.; Van Wittenberghe, S.; Fernández-Marín, B.; Maignan, F.; Zhang, Y.; Maseyk, K.; Atherton, J.; Albert, L.P.; et al. Chlorophyll a Fluorescence Illuminates a Path Connecting Plant Molecular Biology to Earth-System Science. Nat. Plants 2021, 7, 998–1009. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Wu, J.; Du, R.; Chen, M.; Zhao, B.; Yang, R. Assessing the Potential of Red Solar-Induced Chlorophyll Fluorescence for Drought Monitoring in Different Growth Stages of Winter Wheat. Ecol. Indic. 2024, 161, 111960. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wang, X.; Chen, B.; Chen, J.; Wang, J.; Huang, M.; Wang, Z.; Ma, L.; Wang, P.; et al. Exploring the Superiority of Solar-Induced Chlorophyll Fluorescence Data in Predicting Wheat Yield Using Machine Learning and Deep Learning Methods. Comput. Electron. Agric. 2022, 192, 106612. [Google Scholar] [CrossRef]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M. Dynamic Photosynthesis in Different Environmental Conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll Fluorescence Tracks Seasonal Variations of Photosynthesis from Leaf to Canopy in a Temperate Forest. Glob. Change Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, H.; Yue, X.; Liu, X.; Xia, Z.; Wang, J.; Xiao, J.; Li, X.; Zhang, F. Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data. Remote Sens. 2025, 17, 2064. [Google Scholar] [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y.; et al. Development of a Two-Leaf Light Use Efficiency Model for Improving the Calculation of Terrestrial Gross Primary Productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Kong, D.; Yuan, D.; Li, H.; Zhang, J.; Yang, S.; Li, Y.; Bai, Y.; Zhang, S. Improving the Estimation of Gross Primary Productivity across Global Biomes by Modeling Light Use Efficiency through Machine Learning. Remote Sens. 2023, 15, 2086. [Google Scholar] [CrossRef]
- Du, D.; Zheng, C.; Jia, L.; Chen, Q.; Jiang, M.; Hu, G.; Lu, J. Estimation of Global Cropland Gross Primary Production from Satellite Observations by Integrating Water Availability Variable in Light-Use-Efficiency Model. Remote Sens. 2022, 14, 1722. [Google Scholar] [CrossRef]
- Luo, C.; Carey, M.J. LSM-Based Storage Techniques: A Survey. VLDB J. 2020, 29, 393–418. [Google Scholar] [CrossRef]
- Chen, A.; Ricciuto, D.; Mao, J.; Wang, J.; Lu, D.; Meng, F. Improving E3SM Land Model Photosynthesis Parameterization via Satellite SIF, Machine Learning, and Surrogate Modeling. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003135. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, P.; Fu, Z.; Jiang, J.; Wu, J.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Improving the Spatial and Temporal Estimation of Ecosystem Respiration Using Multi-Source Data and Machine Learning Methods in a Rainfed Winter Wheat Cropland. Sci. Total Environ. 2023, 871, 161967. [Google Scholar] [CrossRef]
- Hou, F.; Liu, S.; Yin, W.-X.; Gan, L.-L.; Pang, H.-T.; Lv, J.-Q.; Liu, Y.; Wang, H.-C. Machine Learning for High-Precision Simulation of Dissolved Organic Matter in Sewer: Overcoming Data Restrictions with Generative Adversarial Networks. Sci. Total Environ. 2024, 947, 174469. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Van Rie, J.; Den Boer, B.; Galle, A.; Zhao, H.; Chang, T.; He, Z.; Zhu, X.-G. Diurnal and Seasonal Variations of Photosynthetic Energy Conversion Efficiency of Field Grown Wheat. Front. Plant Sci. 2022, 13, 817654. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Yang, R.; Chen, Q.; Deng, T.; Yue, M.; Zhang, B.; Gu, Q. Tracking the Influence of Drought Events on Winter Wheat Using Long-Term Gross Primary Production and Yield in the Wei River Basin, China. Agric. Water Manag. 2023, 275, 108019. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, Cross-Mission Comparison, and Global Monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Merbold, L.; Law, B.; Arain, A.; Beringer, J.; et al. Global Comparison of Light Use Efficiency Models for Simulating Terrestrial Vegetation Gross Primary Production Based on the LaThuile Database. Agric. For. Meteorol. 2014, 192–193, 108–120. [Google Scholar] [CrossRef]
- Chen, R.; Liu, L.; Liu, X. Leaf Chlorophyll Contents Dominates the Seasonal Dynamics of SIF/GPP Ratio: Evidence from Continuous Measurements in a Maize Field. Agric. For. Meteorol. 2022, 323, 109070. [Google Scholar] [CrossRef]
- Duan, W.; Liu, X.; Chen, J.; Du, S.; Liu, L.; Jing, X. Investigating the Performance of Red and Far-Red SIF for Monitoring GPP of Alpine Meadow Ecosystems. Remote Sens. 2022, 14, 2740. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Liu, L.; Lu, X.; Chen, J.; Du, S.; Zou, C. Modelling the Influence of Incident Radiation on the SIF-Based GPP Estimation for Maize. Agric. For. Meteorol. 2021, 307, 108522. [Google Scholar] [CrossRef]
- Fayaz, S.; Shah, S.Z.A.; Din, N.M.u.; Gul, N.; Assad, A. Advancements in Data Augmentation and Transfer Learning: A Comprehensive Survey to Address Data Scarcity Challenges. Recent Adv. Comput. Sci. Commun. 2024, 17, 14–35. [Google Scholar] [CrossRef]
Machine Learning Models | Parameters |
---|---|
RF | N_estimators: [50, 100] |
max_depth: [10, 20] | |
SVR | C: [1, 10] |
Gamma: [‘scale’, ‘auto’] | |
GB | n_estimators: [50, 100] |
learning_rate: [0.05, 0.1] |
Factor | Calculation Formula | Parameter Description | Value |
---|---|---|---|
: minimum photosynthetic temperature; : optimum temperature; : maximum photosynthetic temperature | = 0, = 20, = 40 | ||
: Critical water content for no water stress | = 0.18 cm3·cm−3 | ||
: Threshold for no stomatal restriction; : Threshold for complete stomatal closure | |||
The product of these two represents the combined effect of soil and meteorological water stress. | / |
Model | R2 | RMSE (μmol·m−2·s−1) |
---|---|---|
Ridge | 0.57 | 1.37 |
SVR | 0.59 | 1.32 |
GB | 0.63 | 1.28 |
RF | 0.65 | 1.26 |
LSM | 0.72 | 1.22 |
Growing Period | Ridge | RF | SVR | GB | LSM | LUE |
Seedling stage | 0.81 | 0.88 | 0.88 | 0.87 | 0.91 | 0.88 |
Overwintering stage | 0.78 | 0.86 | 0.85 | 0.85 | 0.90 | 0.86 |
Jointing stage | 0.76 | 0.84 | 0.83 | 0.83 | 0.87 | 0.84 |
Grain-filling stage | 0.68 | 0.81 | 0.78 | 0.79 | 0.84 | 0.79 |
Maturity stage | 0.71 | 0.83 | 0.81 | 0.81 | 0.86 | 0.82 |
Growing Period | Ridge | RF | SVR | GB | LSM | LUE |
Seedling stage | 0.86 | 0.92 | 0.88 | 0.90 | 0.95 | 0.88 |
Overwintering stage | 0.85 | 0.90 | 0.88 | 0.88 | 0.93 | 0.86 |
Jointing stage | 0.81 | 0.89 | 0.85 | 0.86 | 0.90 | 0.84 |
Grain-filling stage | 0.79 | 0.83 | 0.82 | 0.82 | 0.87 | 0.79 |
Maturity stage | 0.76 | 0.87 | 0.84 | 0.85 | 0.89 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Wang, X.; Xu, J.; Cai, H. Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence. Agronomy 2025, 15, 2187. https://doi.org/10.3390/agronomy15092187
Zhang X, Li Y, Wang X, Xu J, Cai H. Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence. Agronomy. 2025; 15(9):2187. https://doi.org/10.3390/agronomy15092187
Chicago/Turabian StyleZhang, Xuegui, Yao Li, Xiaoya Wang, Jiatun Xu, and Huanjie Cai. 2025. "Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence" Agronomy 15, no. 9: 2187. https://doi.org/10.3390/agronomy15092187
APA StyleZhang, X., Li, Y., Wang, X., Xu, J., & Cai, H. (2025). Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence. Agronomy, 15(9), 2187. https://doi.org/10.3390/agronomy15092187