Saffron—Red Gold: Enhancing Its Profitability Through the Sustainable Cultivation and Valorization of Its By-Products †
Abstract
1. Introduction
2. Materials and Methods
2.1. Agronomic Analysis
2.2. Economic Analysis
- The value of the total output provided by the saffron included all the revenues from the crop. The quantity of produced saffron and its by-product (edible tepals) and their prices referred to the year 2024, (the year 2025 for the hourly wage cost of labor).
- The total production cost was considered as the sum of the direct costs related to saffron, the indirect costs (overheads, taxes, depreciation, insurance, and machine repairs), referring to the entire farm that had to be shared among the various production processes, and the implicit costs, referring to the farmer-owned inputs, e.g., family labor and/or machinery. The implicit costs were calculated (estimated) as opportunity costs, that is, “the income that would have been received if the input had been for its most profitable alternative use” [24].
3. Results
3.1. Agronomic Results
3.2. Economic Results
4. Discussion
4.1. Agronomic Aspects
4.1.1. Corm Size
4.1.2. Water Availability
4.1.3. Planting Density
4.1.4. Mineral Nutrition
4.1.5. Biotic Adversities
- The use of high-quality starting corms and avoiding self-production in areas where this issue already exists;
- Careful handling of the corms during harvest and storage to avoid wounds and damage;
- Adequate aeration during storage and transport, and avoiding piles to limit humidity;
- Crop rotation;
- The use of diagnostic tests based on DNA.
4.2. Economic Aspects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Arbuscular Mychorrizal fungi |
ET | Evapotranspiration |
GM | Gross margin |
MAPs | Medicinal and Aromatic Plants |
PGPR | Plant Growth Promoting Rhizobacteria |
RQ | Research question |
TGO | Total gross output |
VCs | Variable costs |
Appendix A
Costs | Input | Total | Labor | Total | Total Cost | Total Cost | % | ||
---|---|---|---|---|---|---|---|---|---|
kg, L, n. | EUR/kg, L, n. | EUR | h | €/h | EUR | EUR/m2 | EUR/ha | ||
Preparation of the land | |||||||||
Plowing | 3 | 8.9 | 27 | 27 | 270 | 1.3 | |||
Manuring | 200 | 2 | 400 | 2 | 8.9 | 18 | 418 | 4,180 | 20.0 |
Milling | 1 | 8.9 | 9 | 9 | 90 | 0.4 | |||
Gasoline | 5 | 6.2 | 30 | 30 | 300 | 1.4 | |||
Corms and planting | 5,000 | 0.3 | 1,500 | 12 | 8.9 | 107 | 1,607 | 16,070 | 76.9 |
Total planting costs | 1,930 | 160 | 2,091 | 20,910 | 100.0 |
Costs | Input | Total | Labor | Total | Total Cost | Total Cost | % | ||
---|---|---|---|---|---|---|---|---|---|
kg, L, n. | EUR/kg, L, n. | EUR | h | €/h | EUR | EUR/m2 | EUR/ha | ||
Preparation of the land | |||||||||
Plowing | 3 | 8.9 | 27 | 27 | 270 | 0.8 | |||
Manuring | 200 | 2 | 400 | 2 | 8.9 | 18 | 418 | 4,180 | 11.9 |
Milling | 1 | 8.9 | 9 | 9 | 90 | 0.3 | |||
Gasoline | 5 | 6.2 | 30 | 30 | 300 | 0.9 | |||
Corms and planting | 5,000 | 0.3 | 1,500 | 12 | 8.9 | 107 | 1,607 | 16,070 | 45.7 |
Inoculum AMF | 50 | 26 | 1,300 | 14 | 8.9 | 125 | 1,425 | 14,250 | 40.5 |
Total planting costs | 3,231 | 285 | 3,516 | 35,160 | 100.0 |
Appendix B
References
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Karbasi, A.; Gharibi, B.Z.D. Economic aspects of saffron in the world. In The Saffron Genome; Koul, S., Ed.; Springer: Cham, Switzerland, 2022; pp. 275–287. [Google Scholar] [CrossRef]
- ISO/TS 3632-1; Spices-Saffron (Crocus sativus L.)-Part 1: Specification. ISO: Geneva, Switzerland, 2011.
- Caser, M.; Demasi, S.; Lumini, E.; Bianciotto, V.; Scariot, V. Crocus sativus L. cultivation in Alpine environments: Stigmas and tepals as source of bioactive compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Caser, M.; Victorino, Í.M.M.; Demasi, S.; Berruti, A.; Donno, D.; Lumini, E.; Bianciotto, V.; Scariot, V. Saffron cultivation in marginal Alpine environments: How AMF inoculation modulates yield and bioactive compounds. Agronomy 2019, 9, 12. [Google Scholar] [CrossRef]
- Giupponi, L.; Leoni, V.; Sala, S.; Giorgi, A.; Bertoni, D. Saffron growing in Italy: A sustainable secondary activity for farms in hilly and sub-mountain areas. Int. J. Agric. Sustain. 2023, 21, 2270263. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/search/?q=saffron&p=1 (accessed on 25 May 2025).
- International Trade Centre. Trade Map: Trade Statistics for International Business Development. Available online: https://www.trademap.org (accessed on 25 May 2025).
- Osservatorio Economico Zafferano Italiano. Available online: https://www.zafferanoitaliano.it/lo-zafferano-in-italia/osservatorio-economico.html (accessed on 26 May 2025).
- Gresta, F.; Lombardo, M.; Siracusa, L.; Ruberto, G. Saffron, an alternative crop for sustainable agricultural systems: A review. Agron. Sustain. Dev. 2008, 28, 95–112. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, V.; Devi, K.; Sharma, M.; Singh, M.K.; Ahuja, P.S. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 2008, 25, 44–85. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Lumini, E.; Bianciotto, V.; Scariot, V. Beneficial microorganisms: A sustainable horticultural solution to improve the quality of saffron in hydroponics. Sci. Hortic. 2023, 319, 112155. [Google Scholar] [CrossRef]
- Macaluso, D.; Licciardo, F.; Carbone, K. Farming of medicinal and aromatic plants in Italy: Structural features and economic results. Agriculture 2024, 14, 151. [Google Scholar] [CrossRef]
- Manzo, A.; Las Casas, G.; Violi, S.; Colaprico, G.; Veronesi, F. Economic and qualitative traits of Italian Alps saffron. J. Mt. Sci. 2015, 12, 1234–1245. [Google Scholar] [CrossRef]
- Mehmeti, A.; Candido, V.; Canaj, K.; Castronuovo, D.; Perniola, M.; D’Antonio, P.; Cardone, L. Energy, environmental, and economic sustainability of saffron cultivation: Insights from the first European (Italian) case study. Sustainability 2024, 16, 1179. [Google Scholar] [CrossRef]
- Marrone, G.; Urciuoli, S.; di Lauro, M.; Cornali, K.; Montalto, G.; Masci, C.; Vanni, G.; Tesauro, M.; Vignolini, P.; Noce, A. Saffron (Crocus sativus L.) and its by-products: Healthy effects in internal medicine. Nutrients 2024, 16, 2319. [Google Scholar] [CrossRef] [PubMed]
- Bagur, M.J.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An old medicinal plant and a potential novel functional food. Molecules 2018, 23, 30. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable processing of floral bio-residues of saffron (Crocus sativus L.) for valuable biorefinery products. Plants 2021, 10, 523. [Google Scholar] [CrossRef] [PubMed]
- Orlando, M.; Trivellini, A.; Puccinelli, M.; Ferrante, A.; Incrocci, L.; Mensuali Sodi, A. Increasing the functional quality of Crocus sativus L. by-product (tepals) by controlling spectral composition. Hortic. Environ. Biotechnol. 2022, 63, 363–373. [Google Scholar] [CrossRef]
- Barbieri, C.; Scariot, V. Saffron—“The red gold spice”: How to improve its profitability. In Proceedings of the International Conference Innovations for Sustainable Crop Production in the Mediterranean Region ISPAMed 2024 International Conference, Palermo, Italy, 11–12 July 2024. [Google Scholar]
- Mottaghipisheh, J.; Mahmoodi Sourestani, M.; Kiss, T.; Horváth, A.; Tóth, B.; Ayanmanesh, M.; Khamushi, A.; Csupor, D. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples as raw materials with potential antidepressant activity. J. Pharm. Biomed. Anal. 2020, 184, 113183. [Google Scholar] [CrossRef]
- Lahmass, I.; Lamkami, T.; Delporte, C.; Sikdar, S.; Van Antwerpen, P.; Saalaoui, E.; Megalizzi, V. The waste of saffron crop, a cheap source of bioactive compounds. J. Funct. Foods 2017, 35, 341–351. [Google Scholar] [CrossRef]
- Barbieri, C.; Ferrazzi, P. Perilla frutescens L. Britton: Interesting new medicinal and aromatic plant in Italy. Nat. Prod. Commun. 2011, 6, 1461–1463. [Google Scholar]
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management; McGraw Hill: New York, NY, USA, 2004; pp. 1–445. ISBN 978-1-260-00219-5. [Google Scholar]
- Kour, K.; Gupta, D.; Gupta, K.; Juneja, S.; Kaur, M.; Alharbi, A.H.; Lee, H.-N. Controlling agronomic variables of saffron crop using IoT for sustainable agriculture. Sustainability 2022, 14, 5607. [Google Scholar] [CrossRef]
- Rezvani-Moghaddam, P. Ecophysiology of saffron. In Saffron; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–137. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170, 1–114. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 3 September 2025).
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Jami, N.; Rahimi, A.; Naghizadeh, M.; Sedaghati, E. Investigating the use of different levels of mycorrhiza and vermicompost on quantitative and qualitative yield of saffron (Crocus sativus L.). Sci. Hortic. 2020, 262, 109027. [Google Scholar] [CrossRef]
- Lone, R.; Shuab, R.; Koul, K.K. AMF association and their effect on metabolite mobilization, mineral nutrition and nitrogen assimilating enzymes in saffron (Crocus sativus) plant. J. Plant Nutr. 2016, 39, 1852–1862. [Google Scholar] [CrossRef]
- Treccarichi, S.; Infurna, G.M.; Ciulla, A.; Rossitto, A.; Argento, S.; Fallahi, H.R.; Branca, F. Evaluation of innovative growing techniques for organic saffron production in the Mediterranean countries. Acta Hortic. 2022, 1354, 57–62. [Google Scholar] [CrossRef]
- Iqbal, A.M.; Khan, M.A.; Mushtaq, M.; Mir, J.I.; Jabeen, N. Impact of corm weight on saffron yield under temperate conditions of Kashmir. Vegetos 2012, 25, 303–305. [Google Scholar]
- Koocheki, A.; Seyyedi, S.M. Relationship between nitrogen and phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization. Ind. Crops Prod. 2015, 71, 128–137. [Google Scholar] [CrossRef]
- Caser, M.; Victorino, I.M.M.; Demasi, S.; Berruti, A.; Lumini, E.; Bianciotto, V.; Scariot, V. Arbuscular mycorrhizal fungi association promotes corm multiplication in potted saffron (Crocus sativus L.) plants. Acta Hortic. 2020, 1287, 441–446. [Google Scholar] [CrossRef]
- Aghhavani Shajari, M.; Rezvani-Moghaddam, P.; Ghorbani, R.; Koocheki, A.; Fallahi, H.R. The possibility of improving saffron (Crocus sativus L.) flower and corm yield through irrigation and soil texture management. Sci. Hortic. 2020, 271, 109485. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Dehbozorgi, F.; Kamgar Haghighi, A.A. Optimal irrigation water and saffron corm planting intensity under two cultivation practices in a semi-arid region. Biosyst. Eng. 2008, 101, 452–462. [Google Scholar] [CrossRef]
- Gresta, F.; Lombardo, G.M.; Siracusa, L.; Ruberto, G. Effect of mother corm dimension and sowing time on stigma yield, daughter corms, and qualitative aspects of saffron (Crocus sativus L.) in a Mediterranean environment. J. Sci. Food Agric. 2008, 88, 1144–1150. [Google Scholar] [CrossRef]
- Balestrini, R.; Chitarra, W.; Antoniou, C.; Ruocco, M.; Fotopoulos, V. Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. J. Agric. Sci. 2018, 156, 680–688. [Google Scholar] [CrossRef]
- Mansotra, R.; Vakhlu, J. Crocus sativus saffron: A 360 degree overview. In Compendium of Plant Genomes: The Saffron Genome; Springer Nature: Cham, Switzerland, 2022; pp. 3–25. [Google Scholar] [CrossRef]
- Temperini, O.; Rea, R.; Temperini, A.; Colla, G.; Rouphael, Y. Evaluation of saffron (Crocus sativus L.) production in Italy: Effects of the age of saffron fields and plant density. J. Food Agric. Environ. 2009, 7, 19–23. Available online: https://www.wflpublisher.com/Abstract/1386 (accessed on 3 September 2025).
- El Hajj, A.K.; Chamandy, A.; Sayour, F.; Jaber, S.; Oueidat, N. Optimizing saffron (Crocus sativus) yield and quality through nutrient inputs and timing. Ital. J. Agron. 2024, 19, 100009. [Google Scholar] [CrossRef]
- Abbasi, M.R.; Sepaskhah, A.R. Evaluation of saffron yield affected by intercropping with winter wheat, soil fertilizers, and irrigation regimes in a semi-arid region. Int. J. Plant Prod. 2022, 16, 511–529. [Google Scholar] [CrossRef]
- Naseer, S.; Nehvi, F.A.; Nagoo, S.A.; Samad, S.S.; Iqbal, A.M.; Dar, N.A. Effect of organic and inorganic sources of fertilizers on growth and yield of saffron (Crocus sativus L.). Acta Hortic. 2018, 1200, 16. [Google Scholar] [CrossRef]
- Hourani, W. Effect of fertilizers on growth and productivity of saffron: A review. Agron. Res. 2023, 21, 87–105. [Google Scholar] [CrossRef]
- Stelluti, S.; Grasso, G.; Nebauer, S.G.; Alonso, G.L.; Renau-Morata, B.; Caser, M.; Demasi, S.; Lumini, E.; Gómez-Gómez, M.L.; Molina, R.V.; et al. Arbuscular mycorrhizal symbiosis modulates the apocarotenoid biosynthetic pathway in saffron. Sci. Hortic. 2024, 323, 112441. [Google Scholar] [CrossRef]
- Abdoshah, S.; Bakhshi, D.; Farhangi, M.B. Effects of biological fertilizers on physiological traits and bioactive compounds in saffron (Crocus sativus L.). J. Sci. Food Agric. 2025, 105, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Sharma, A.; Rai, P.K.; Gupta, S.K.; Singh, B.; Sharma, S.K.; Sharma, R. Corm rot of saffron: Epidemiology and management. Agronomy 2021, 11, 339. [Google Scholar] [CrossRef]
- Ahrazem, O.; Rubio-Moraga, A.; Castillo-López, R.; Trapero Mozos, A.; Gómez-Gómez, L. Crocus sativus pathogens and defence responses. In Saffron; Functional Plant Science and Biotechnology, Special Issue 2; Husaini, A.M., Ed.; Global Science Books: East Sussex, UK, 2010; pp. 81–90. ISBN 978-4-903313-67-2. [Google Scholar]
- EU Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 4 April 2025).
- Sharma, N.; Tripathi, A. Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C, and Hyptis suaveolens (L.) Poit. essential oil. Postharvest Biol. Technol. 2008, 47, 246–254. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, K.; Fatima, K.; Razdan, V.K.; Sharma, B.C.; Mahajan, V.; Rai, P.K.; Sharma, A.; Gupta, V.; Hassan, M.G.; et al. Role of biocontrol agents in management of corm rot of saffron caused by Fusarium oxysporum. Agronomy 2020, 10, 1398. [Google Scholar] [CrossRef]
- Dowarah, B.; Gill, S.S.; Agarwala, N. Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants. J. Plant Growth Regul. 2022, 41, 1429–1444. [Google Scholar] [CrossRef]
- Kitech. Available online: https://www.kitech.it/Retribuzione-stipendio-ccnl.aspx?CodiceCateg=263 (accessed on 4 May 2025).
- Banca Popolare Fondi. Available online: https://www.bpfondi.it/fogli-informativi/PF%20-%20Credito%20Agrario%20di%20Esercizio%20e%20di%20Dotazione%20N.12%20(01.2025).pdf (accessed on 5 May 2025).
Output | Quantity gr | Price EUR/gr | Total EUR/m2 | Total EUR/ha | % |
---|---|---|---|---|---|
Dried stigmas | 50 | 20 | 1,000 | 10,000 | 30.0 |
Dried stigmas for tisane | 50 | 35 | 1,750 | 17,500 | 52.5 |
Dried tepals * | 975 | 0.6 | 585 | 5,850 | 17.5 |
Total Output | 3,335 | 33,350 | 100.0 |
Output | Quantity gr | Price EUR/gr | Total EUR/m2 | Total €/ha | % |
---|---|---|---|---|---|
Dried stigmas | 65.5 | 20 | 1,310 | 16,200 | 30.0 |
Dried stigmas for tisane | 65.5 | 35 | 2,292 | 17,500 | 52.5 |
Dried tepals * | 1275 | 0.6 | 765 | 7,650 | 17.5 |
Total Output | 4,367 | 43,670 | 100.00 |
Total Output/Costs/Economic Profit | EUR/m2 | EUR/ha | % | % | % |
---|---|---|---|---|---|
Total output | 3,335 | 33,350 | 100.0 | ||
Direct costs | |||||
Annual planting cost | 418 | 4,180 | 12.5 | 82.9 | 11.6 |
Land rent | 13 | 130 | 0.4 | 2.6 | 0.4 |
Packaging for tisane | 49 | 490 | 1.5 | 9.7 | 1.4 |
Packaging for tepals * | 24 | 240 | 0.7 | 4.8 | 0.7 |
Total direct costs | 504 | 5,040 | 15.1 | 100.0 | 14.0 |
Implicit costs | |||||
Intra-row weeding (family labor) | 134 | 1,340 | 4.0 | 7.4 | 3.7 |
Inter-row weeding (family labor) | 107 | 1,070 | 3.2 | 5.9 | 3.0 |
Harvesting (family labor) | 422 | 4,220 | 12.7 | 23.4 | 11.7 |
Hilling (family labor) | 845 | 8,450 | 25.3 | 46.9 | 23.5 |
Drying the stigmas (family labor) | 45 | 450 | 1.3 | 2.5 | 1.3 |
Drying the tepals (family labor) * | 45 | 450 | 1.3 | 2.5 | 1.3 |
Packaging the tisane (family labor) | 178 | 1,780 | 5.3 | 9.9 | 4.9 |
Packaging the tepals (family labor) * | 27 | 270 | 0.8 | 1.5 | 0.8 |
Total implicit costs | 1,803 | 18,030 | 54.1 | 100.0 | 50.1 |
Indirect costs | |||||
Overheads | 140 | 1,400 | 4.2 | 10.8 | 3.9 |
Depreciation, insurance, and repairs ** | 252 | 2,520 | 6.8 | 19.5 | 7.0 |
Machinery shelter rent | 480 | 4,800 | 14.4 | 37.2 | 13.3 |
Taxes | 10 | 100 | 0.3 | 0.8 | 0.3 |
Machinery interest | 306 | 3,060 | 9.2 | 23.7 | 8.5 |
Operating costs | 103 | 1.0 | 3.1 | 8.0 | 2.9 |
Total indirect costs | 1,291 | 12,910 | 38.7 | 100.0 | 35.9 |
Total production costs | 3,598 | 35,980 | 107.8 | 100.0 | |
Economic profit | −263 | −2,630 | −7.8 |
Total Output/Costs/Economic Profit | EUR/m2 | EUR/ha | % | % | % |
---|---|---|---|---|---|
Total output | 4,367 | 43,670 | 100.0 | ||
Direct costs | |||||
Annual planting cost | 703 | 7,030 | 16.1 | 83.2 | 15.5 |
Land rent | 13 | 130 | 0.3 | 1.5 | 0.3 |
Packaging for tisane | 65 | 650 | 1.5 | 7.7 | 1.4 |
Packaging for tepals * | 64 | 640 | 1.5 | 7.6 | 1.4 |
Total direct costs | 845 | 8,450 | 19.3 | 100.0 | 18.7 |
Implicit costs | |||||
Intra-row weeding (family labor) | 134 | 1,340 | 3.1 | 5.6 | 3.0 |
Inter-row weeding (family labor) | 107 | 1,070 | 2.5 | 4.5 | 2.4 |
Harvesting (family labor) | 591 | 5,910 | 13.5 | 24.7 | 13.1 |
Hilling (family labor) | 1,181 | 11,810 | 27.0 | 49.4 | 26.1 |
Drying the stigmas (family labor) | 58 | 580 | 1.3 | 2.4 | 1.3 |
Drying the tepals (family labor) * | 58 | 580 | 1.3 | 2.4 | 1.3 |
Packaging the tisane (family labor) | 233 | 2,330 | 5.3 | 9.8 | 5.1 |
Packaging the tepals (family labor) * | 27 | 270 | 0.6 | 1.1 | 0.6 |
Total implicit costs | 2,389 | 23,890 | 54.7 | 100.0 | 52.8 |
Indirect costs | |||||
Overheads | 140 | 1,400 | 3.2 | 10.8 | 3.1 |
Depreciation, insurance, and repairs ** | 252 | 2,520 | 5.8 | 19.5 | 5.6 |
Machinery shelter rent | 480 | 4,800 | 11.0 | 37.2 | 10.6 |
Taxes | 10 | 100 | 0.2 | 0.8 | 0.2 |
Machinery interest | 306 | 3,060 | 7.0 | 23.7 | 6.8 |
Operating costs | 103 | 1,030 | 2.4 | 8.0 | 2.3 |
Total indirect costs | 1,291 | 12,910 | 29.6 | 100.0 | 28.5 |
Total production costs | 4,525 | 45,250 | 103.6 | 100.0 | |
Economic profit | −158 | −1,580 | −3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, C.; Stelluti, S.; Scariot, V. Saffron—Red Gold: Enhancing Its Profitability Through the Sustainable Cultivation and Valorization of Its By-Products. Agronomy 2025, 15, 2183. https://doi.org/10.3390/agronomy15092183
Barbieri C, Stelluti S, Scariot V. Saffron—Red Gold: Enhancing Its Profitability Through the Sustainable Cultivation and Valorization of Its By-Products. Agronomy. 2025; 15(9):2183. https://doi.org/10.3390/agronomy15092183
Chicago/Turabian StyleBarbieri, Cinzia, Stefania Stelluti, and Valentina Scariot. 2025. "Saffron—Red Gold: Enhancing Its Profitability Through the Sustainable Cultivation and Valorization of Its By-Products" Agronomy 15, no. 9: 2183. https://doi.org/10.3390/agronomy15092183
APA StyleBarbieri, C., Stelluti, S., & Scariot, V. (2025). Saffron—Red Gold: Enhancing Its Profitability Through the Sustainable Cultivation and Valorization of Its By-Products. Agronomy, 15(9), 2183. https://doi.org/10.3390/agronomy15092183