Physiological Variation in Jarillo Peach Across Altitudinal Gradients
Abstract
1. Introduction
1.1. Importance and Development of Prunus persica L. Batsch Cultivation
1.2. Ecophysiology of Plants Under Contrasting Conditions
1.3. Light-Dependent Functions and Integration in Metabolism
1.4. Gaseous Exchange, Water Relations, and Photosynthesis Efficiency Under Contrasting Conditions
1.5. Molecular Processes Integrated into Stomatal Physiology
1.6. The Importance of Research in Altitudinal Gradients
2. Materials and Methods
2.1. Location
2.2. Plant Material
2.3. Phenology
2.4. Variables Evaluated
2.5. Plant Sampling
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Effect of Altitude and Time of Day on Physiological Variables
3.2. Effect of Phenological Stage and Time of Day on Physiological Variables
3.3. Effect of Altitude and Phenological Stage on Physiological Variables
3.4. Covariance Estimates for Conductance and Stomatal Resistance, and Transpiration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://faostat.fao.org (accessed on 31 July 2025).
- Manganaris, G.A.; Sansavini, S.; Gradziel, T.M.; Bassi, D.; Crisosto, C.H. Peach: A Introduction. In Peach; Manganaris, G., Costa, G., Crisosto, C.H., Eds.; CABI: Wallingford, UK, 2023; pp. 1–16. [Google Scholar]
- Micheloud, N.G.; Giovannelli, C.; Flaviani, M.I.; Buyatti, M.A.; Gariglio, N.F. Evaluation of low-chill peach and nectarine cultivars in a temperate-subtropical climate transition zone of central-eastern Argentina. Acta Physiol. Plant 2021, 43, 94. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhang, C.; Xiao, X.; Chen, C.; Song, F. Aroma of peach fruit: A review on aroma volatile compounds and underlying regulatory mechanisms. Int. J. Food Sci. Technol. 2023, 58, 4965–4979. [Google Scholar] [CrossRef]
- Cancino, S.E.; Cancino-Escalante, G.O.; Quevedo-García, E. Factores determinantes de la rentabilidad económica del cultivo de durazno en la Provincia de Pamplona, Norte de Santander, Colombia. Rev. Espacios. 2019, 40, 18. Available online: https://www.revistaespacios.com/a19v40n13/19401318.html (accessed on 7 June 2025).
- Red de Información y Comunicación del Sector Agropecuario Colombiano. Resultado de la Evaluación Agrícola Municipal del año 2022; AGRONET: Bogotá, Colombia, 2022. Available online: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=3 (accessed on 8 July 2025).
- Quevedo-García, E.; Murcia, M.A.; Escalante, G.O.C. Growth of peaches at three altitudes in the Santander mountains of northeastern Colombia. Bioagro 2024, 36, 299–310. [Google Scholar] [CrossRef]
- Scorza, R.L.; Okie, W.R. Peaches (Prunus). Acta Hortic. 1991, 290, 177–231. [Google Scholar] [CrossRef]
- Anzanello, R.; Lampugnani, C.S. Requerimento de frio de cultivares de pessegueiro e recomendação de cultivo no Rio Grande do Sul. Pesqui. Agropec. Gaúch. 2020, 26, 18–28. [Google Scholar] [CrossRef]
- Jana, B.R. Scientific cultivation of low chill peach [Prunus persica (L) Batsch.] in North Eastern Plateau and Hill Regions. Biot. Res. Today 2021, 3, 687–690. [Google Scholar]
- Darghan, A.E.; Quevedo García, E.; Gamboa Muñoz, S.E.; Rivera Moreno, C.A. Growth rates of morphometric variables in approximately linear sections using lines in R3. Int. J. Agron. 2022, 2022, 8249268. [Google Scholar] [CrossRef]
- Sangronis, J.; Hernández, A.; Aular, J.; Torres, J.; Cásares, M. Variabilidad genética en durazneros cultivados en el peñón de Gabante, estado Aragua, Venezuela. Bioagro 2017, 29, 219–224. Available online: https://www.redalyc.org/pdf/857/85752807007.pdf (accessed on 8 June 2025).
- Parejo-Farnés, C.; Aparicio, A.; Albaladejo, R.G. Una aproximación a la ecología epigenética en plantas. Ecosistemas 2019, 28, 69–74. [Google Scholar] [CrossRef]
- Quevedo-García, E. Modelación de los Factores Biológicos y Edafoclimáticos en la Producción de Durazno Jarillo (Prunus persica L. Batsch.) en un Gradiente Altitudinal en la Provincia de Pamplona, Colombia. Doctoral Thesis, Universidad Nacional, Heredia, Costa Rica, 2020. [Google Scholar]
- Pinzón, E.H.; Cruz Morillo, A.; Fischer, G. Aspectos fisiológicos del duraznero Prunus persica L. Batsch en el trópico alto. Una revisión. Rev. UDCA Act. Div. Cient. 2014, 17, 401–411. Available online: https://repository.udca.edu.co/server/api/core/bitstreams/d2088db5-1faa-49fb-b82a-84b170315804/content (accessed on 8 June 2025).
- Quevedo-García, E.; Murcia-Rodríguez, M.A.; Ochoa-Reyes, M.P. Modelos de regresión para predecir la cosecha con variables asociadas a la calidad del fruto, el tiempo de defoliación y la altitud del durazno Jarillo. Rev. UDCA Act. Div. Cient. 2023, 26, e2235. [Google Scholar] [CrossRef]
- Elsadr, H.; Sherif, S.; Banks, T.; Somers, D.; Jayasankar, S. Refining the genomic region containing a major locus controlling fruit maturity in peach. Sci. Rep. 2019, 9, 7522. [Google Scholar] [CrossRef]
- Aular, J.; Cásares, M. Características de frutos de durazneros provenientes de ‘El Peñom de Gabante’, estado Aragua, Venezuela. Bioagro 2020, 31, 113–122. Available online: https://revistas.uclave.org/index.php/bioagro/article/view/2632 (accessed on 8 June 2025).
- Fischer, G.; Orduz-Rodríguez, J.O. Ecofisiología en frutales. In Manual Para el Cultivo de Frutales en el Trópico; Fischer, G., Ed.; Produmedios: Bogotá, Colombia, 2012; pp. 54–72. [Google Scholar]
- Benavides, H.O.; Simbaqueva, O.; Zapata, H.J. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; IDEAM y UPME: Bogotá, Colombia, 2017. Available online: https://www.andi.com.co//Uploads/RADIACION.compressed.pdf (accessed on 7 June 2025).
- Fischer, G.; Orduz-Rodríguez, J.O.; Amarante, C.V.T. Sunburn disorder in tropical and subtropical fruits. A review. Rev. Colomb. Cienc. Hortíc. 2022, 16, e15703. [Google Scholar] [CrossRef]
- Fischer, G.; Parra-Coronado, A.; Balaguera-López, H.E. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 2022, 40, 212–227. [Google Scholar] [CrossRef]
- Körner, C. The use of altitude in ecological research. Trends. Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.S.A.; Vialet-Chabrand, S.; Lawson, T. Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 2020, 71, 2253–2269. [Google Scholar] [CrossRef]
- Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 2020, 10, 1975. [Google Scholar] [CrossRef]
- Fischer, G.; Melgarejo, L. The ecophysiology of cape gooseberry (Physalis peruviana L.)—An Andean fruit crop. A review. Rev. Colomb. Cienc. Hortíc. 2020, 14, 76–89. [Google Scholar] [CrossRef]
- Flórez-Velasco, N.; Fischer, G.; Balaguera-López, H.E. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agron. Colomb. 2024, 42, 1–18. [Google Scholar] [CrossRef]
- Rajsnerová, P.; Klem, K.; Holub, P.; Novotná, K.; Večeřová, K.; Kozáčiková, M.; Rivas-Ubach, A.; Sardans, J.; Marek, M.V.; Peñuelas, J.; et al. Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiol. 2015, 35, 47–60. [Google Scholar] [CrossRef]
- Mehta, N.; Chawla, A. Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. Photosynth. Res. 2024, 159, 29–59. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Atlas Climatológico de Colombia; IDEAM: Bogotá, Colombia, 2018. Available online: https://www.ideam.gov.co (accessed on 7 June 2025).
- Corporación Autónoma Regional de la Frontera (Corponor). Plan Estratégico Ambiental Regional, 2016–2035. Available online: https://corponor.gov.co/es/index.php/politicas-planes-y-lineas-estrategicas (accessed on 27 July 2025).
- Restrepo-Diaz, H.; Sánchez-Reinoso, A.D. Ecophysiology of fruit crops: A glance at its impact on fruit crop productivity. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–66. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Kong, D.; Guo, F.; Wei, H. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Front. Plant Sci. 2020, 11, 601478. [Google Scholar] [CrossRef]
- Daloso, D.M.; Medeiros, D.B.; dos Anjos, L.; Yoshida, T.; Araújo, W.L.; Fernie, A.R. Metabolism within the specialized guard cells of plants. New Phytol. 2017, 216, 1018–1033. [Google Scholar] [CrossRef]
- Khan, I.; Zaman, S.; Li, G.; Fu, M. Adaptive responses of plants to light stress: Mechanisms of photoprotection and acclimation. A review. Front. Plant Sci. 2025, 16, 1550125. [Google Scholar] [CrossRef]
- Didaran, F.; Kordrostami, M.; Ghasemi-soloklui, A.A.; Pashkovskiy, P.; Kreslavski, V.; Kuznetsov, V.; Allakhverdiev, S.I. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. J. Photochem. Photobiol. B Biol. 2024, 259, 113004. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, J.; Shi, X.; Qian, W.; Mehmood, J.; Yin, Y.; Jia, H. Identification of the light–harvesting chlorophyll a/b binding protein gene family in peach (Prunus persica L.) and their expression under drought stress. Genes 2023, 14, 1475. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Yin, H.; Zhao, F.; Li, Y.; et al. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol. 2021, 31, 3848–3860. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Prentice, I.C.; Davis, T.W.; Keenan, T.F.; Wright, I.J.; Peng, C. Photosynthetic responses to altitude: An explanation based on optimality principles. New Phytol. 2017, 213, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Casson, S. Connecting stomatal development and physiology. New Phytol. 2014, 201, 1079–1082. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Cochard, H.; Delzon, S.; Boivin, T.; Burlett, R.; Cailleret, M.; Corso, D.; Delmas, C.E.L.; De Caceres, M.; Diaz-Espejo, A.; et al. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. New Phytol. 2024, 241, 984–999. [Google Scholar] [CrossRef]
- Andrés, Z.; Pérez-Hormaeche, J.; Leidi, E.O.; Schlücking, K.; Steinhorst, L.; McLachlan, D.H.; Schumacher, K.; Hetherington, A.M.; Kudla, J.; Cubero, B.; et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc. Nati. Acad. Sci. USA 2014, 111, E1806–E1814. [Google Scholar] [CrossRef]
- Rovira, A.; Veciana, N.; Basté-Miquel, A.; Quevedo, M.; Locascio, A.; Yenush, L.; Toledo-Ortiz, G.; Leivar, P.; Monte, E. PIF transcriptional regulators are required for rhythmic stomatal movements. Nat. Commun. 2024, 15, 4540. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Davarynejad, G.H.; Génard, M.; Bannayan, M.; Azizi, M.; Vercambre, G. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions. PLoS ONE 2015, 10, e0120246. [Google Scholar] [CrossRef]
- Zhang, B.; Du, H.; Yang, S.; Wu, X.; Liu, W.; Guo, J.; Xiao, Y.; Peng, F. Physiological and transcriptomic analyses of the effects of exogenous lauric acid on drought resistance in peach (Prunus persica (L.) Batsch). Plants 2023, 12, 1492. [Google Scholar] [CrossRef] [PubMed]
- Mininni, A.N.; Tuzio, A.C.; Brugnoli, E.; Dichio, B.; Sofo, A. Carbon isotope discrimination and water use efficiency in interspecific Prunus hybrids subjected to drought stress. Plant Physiol. Biochem. 2022, 175, 33–43. [Google Scholar] [CrossRef]
- Gale, J. Plants and altitude-revisited. Ann. Bot. 2004, 94, 199–420. [Google Scholar] [CrossRef] [PubMed]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Effects of postharvest water deficits on the physiological behavior of early-maturing nectarine trees. Plants 2020, 9, 1104. [Google Scholar] [CrossRef]
- Inoue, S.I.; Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 2017, 174, 531–538. [Google Scholar] [CrossRef]
- Santelia, D.; Lawson, T. Rethinking guard cell metabolism. Plant Physiol. 2016, 172, 1371–1392. [Google Scholar] [CrossRef]
- Jiang, S.; Lan, Z.; Zhang, Y.; Kang, X.; Zhao, L.; Wu, X.; Gao, H. Mechanisms by which exogenous substances enhance plant salt tolerance through the modulation of ion membrane transport and reactive oxygen species metabolism. Antioxidants 2024, 13, 1050. [Google Scholar] [CrossRef]
- Pech, R.; Volná, A.; Hunt, L.; Bartas, M.; Červeň, J.; Pečinka, P.; Špunda, V.; Nezval, J. Regulation of phenolic compound production by light varying in spectral quality and total irradiance. Int. J. Mol. Sci. 2022, 23, 6533. [Google Scholar] [CrossRef] [PubMed]
- Kakuszi, A.; Sárvári, É.; Solti, Á.; Czégény, G.; Hideg, É.; Hunyadi-Gulyás, É.; Bóka, K.; Böddi, B. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris). J. Photochem. Photobiol. B Biol. 2016, 161, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Badger, M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011, 16, 53–60. [Google Scholar] [CrossRef]
- Swanson, S.; Gilroy, S. ROS in plant development. Physiol. Plant. 2010, 138, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yu, S.; Zhang, W.; Zhang, S.; Fu, J.; Ying, H.; Pingcuo, G.; Liu, S.; Zhao, F.; Wu, Q.; et al. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem. 2023, 398, 133909. [Google Scholar] [CrossRef]
- Karagiannis, E.; Tanou, G.; Samiotaki, M.; Michailidis, M.; Diamantidis, G.; Minas, I.S.; Molassiotis, A. Comparative physiological and proteomic analysis reveal distinct regulation of peach skin quality traits by altitude. Front. Plant Sci. 2016, 7, 1689. [Google Scholar] [CrossRef]
- Ramírez, F.; Kallarackal, J. Tree Pollination Under Global Climate Change; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Instituto Geográfico Agustín Codazzi IGAC. Estudio General de Suelos y Zonificación de Tierras: Del Departamento de Norte de Santander, 2nd ed.; IGAC: Bogotá, Colombia, 2011; 359p.
- Poirier-Pocovi, M.M.; Lothier, J.; Buck-Sorlin, G. Modelling temporal variation of parameters used in two photosynthesis models: Influence of fruit load and girdling on leaf photosynthesis in fruit-bearing branches of apple. Ann. Bot. 2018, 121, 821–832. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Hes, M.; Lancashire, P.D.; Schnock, U.; Staus, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants–history and publications. J. für. Kult. 2009, 61, 41–52. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20093092784 (accessed on 8 June 2025).
- Lisandru, T.; Füstös, A.; Miter, V.; Dumitras, A. Sweet cherry (Prunus avium L.) and peach (Prunus persica L.) phenological growth stages according to BBCH scale. Bull. UASVM Hortic. 2017, 74, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Campos, T.J. Especies y variedades de hoja caduca en Colombia. In Los Frutales Caducifolios en Colombia—Situación Actual, Sistemas de Cultivo y Plan de Desarrollo; Miranda, D., Fischer, G., Carranza, C., Eds.; Sociedad Colombiana de Ciencias Hortícolas: Bogotá, Colombia, 2013; pp. 47–64. [Google Scholar]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2023, 237, 1508–1524. [Google Scholar] [CrossRef]
- Aniorte, E.R. Protocolo de Uso del Porómetro AP4 (Delta-T); Universidad de Alicante: Alicante, Spain, 2005; 15p. [Google Scholar]
- Minasny, B.; Malone, B.P.; Mcbratney, A.B. Digital Soil Assessment and Beyond; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hernández-Sampieri, R.; Fernández-Collado, C.; Baptista-Lucio, M.D.P. Metodología de la Investigación-Sampieri; McGraw-Hill: México City, Mexico, 2014. [Google Scholar]
- SPSS Statistics [Software], version 25.0; IBM Corporation: Armonk, NY, USA, 2017.
- Gómez-Degraves, A.; Gómez-Marquina, K. Diseño y Análisis de Experimentos Agrícolas con SPSS; Amazon: Madrid, Spain, 2018. [Google Scholar]
- Lawson, L.; Leakey, A.D.B. Stomata: Custodians of leaf gaseous exchange. J. Exp. Bot. 2024, 75, 6677–6682. [Google Scholar] [CrossRef]
- Morales, L.O.; Shapiguzov, A.; Rai, N.; Aphalo, P.J.; Brosché, M. Protection of Photosynthesis by UVR8 and Cryptochromes in Arabidopsis Under Blue and UV Radiation. Plant Cell Environ. 2025, 48, 6321–6335. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Fan, P.; Liang, Z.; Wang, Y.; Niu, N.; Li, W.; Li, S. Accumulation of end products in source leaves affects photosynthetic rate in peach via alteration of stomatal conductance and photosynthetic efficiency. J. Am. Soc. Hortic. Sci. 2009, 134, 667–676. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Barreto, V.E.; Fonseca, O.L. Crecimiento de frutos y ramas de duraznero (Prunus persica L. Batsch, cv. ’Conservero’) en los altiplanos colombianos. Agron. Colomb. 2004, 22, 40–45. [Google Scholar]
- Millan, M.; Simonneau, T.; Coupe-Ledru, A.; Boulord, R.; Christophe, A.; Pallas, B. Relationships between leaf temperature, stomatal conductance and architecture: Potential impact on leaf burning among a range of genotypes in grapevine. OENO One 2023, 57, 345–359. [Google Scholar] [CrossRef]
- Márquez, D.; Gardner, A.; Busch, F. Navigating challenges in interpreting plant physiology responses through gas exchange results in stressed plants. Plant Ecophysiol. 2025, 1, 2. [Google Scholar] [CrossRef]
- Quevedo-García, E.; Casierra-Posada, F.; Darghan, C.A.E. Quality of peach fruits Jarillo cv. (Prunus persica L.) in Pamplona, Colombia. Rev. Bras. Frutic. 2018, 40, e-040. [Google Scholar] [CrossRef]
- Matthews, J.S.A.; Vialet-Chabrand, S.R.M.; Lawson, T. Diurnal variation in gas exchange: The balance between carbon fixation and water loss. Plant Physiol. 2017, 174, 614–623. [Google Scholar] [CrossRef]
- Matthews, J.S.A.; Vialet-Chabrand, S.R.M.; Lawson, T. Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiol. 2018, 176, 1939–1951. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.; McGuire, M.A.; Teskey, R.O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 2017, 12, e1356534. [Google Scholar] [CrossRef] [PubMed]
- Aasamaa, K.; Sõber, A. Responses of stomatal conductance to simultaneous changes in two environmental factors. Tree Physiol. 2011, 31, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Cowan, I.; Farquhar, G. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424–426. [Google Scholar] [CrossRef]
Source of Variation | gl | Stomatal Conductance (gs) (cm.s−1) | Stomatal Resistance (SR) (s.cm−1) | Transpiration (E) (mmol.m−2.s−1) | gl | Stomatal Conductance (gs) (cm.s−1) | Stomatal Resistance (SR) (s.cm−1) | Transpiration (E) (mmol.m−2.s−1) |
---|---|---|---|---|---|---|---|---|
Cycle 1 (March to December) | Cycle 2 (January to September) | |||||||
F-Value Significance | F-Value Significance | |||||||
Intersection | 1 | 56.748.79 ** | 14.085.61 ** | 2.001.43 ** | 1 | 93.59 ** | 258.13 ** | 1.890.04 ** |
Altitude | 4 | 2.82 * | 7.19 ** | 6.99 ** | 4 | 8.49 ** | 3.82 * | 4.53 * |
Phenological state | 2 | 2.49 ns | 30.98 ** | 20.08 ** | 2 | 5.44 * | 8.05 * | 11.35 ** |
Hour of the day | 4 | 17.05 ** | 57.40 ** | 70.08 ** | 4 | 7.06 ** | 17.14 ** | 19.24 ** |
Altitude hour of the day | 16 | 3.92 ** | 7.47 ** | 3.38 ** | 16 | 2.07 ns | 2.08 * | 1.62 ns |
Phenological state hour of the day | 8 | 2.74 * | 3.22 ** | 3.03 ** | 8 | 3.36 * | 3.71 ** | 1.84 ns |
Altitude phonological state | 8 | 14.46 ** | 10.09 ** | 10.38 ** | 6 | 2.05 ns | 1.538 ns | 1.50 ns |
Light-shadow | 1 | 1.49 ns | 2.37 ns | 5.13 * | 1 | 9.52 * | 4.41 * | 10.61 * |
Altitude (m a.s.l.) | Phonelogical State | Stomatal Conductance (gs) (cm.s−1) | Stomatal Resistance (SR) (s.cm−1) | Transpiration (E) (mmol.m−2.s−1) | Stomatal Conductance (gs) (cm.s−1) | Stomatal Résistance (SR) (s.cm−1) | Transpiration (E) (mmol.m−2.s−1) |
---|---|---|---|---|---|---|---|
Cycle 1: March to December | Cycle 2: January to September | ||||||
1810 | 6 | 1.10 | 1.38 | 271.07 | 0.83 | 1.95 | 188.21 |
7 | 0.58 | 3.36 | 166.22 | 0.52 | 2.65 | 151.78 | |
8 | 0.24 | 8.75 | 90.85 | . | . | . | |
1860 | 6 | 0.64 | 1.54 | 248.03 | 0.81 | 1.94 | 190.63 |
7 | 0.41 | 4.07 | 160.78 | 0.95 | 1.91 | 216.67 | |
8 | 0.56 | 2.26 | 198.13 | 0.97 | 1.30 | 281.77 | |
1950 | 6 | 0.55 | 2.62 | 137.35 | 0.48 | 2.64 | 130.84 |
7 | 0.58 | 6.75 | 390.82 | 0.49 | 2.99 | 134.00 | |
8 | 0.32 | 7.22 | 77.02 | . | . | . | |
2150 | 6 | 0.86 | 1.88 | 219.99 | 0.63 | 2.38 | 200.60 |
7 | 0.57 | 2.95 | 166.70 | 0.51 | 3.53 | 154.26 | |
8 | 0.29 | 6.90 | 88.89 | 0.66 | 1.75 | 211.03 | |
2170 | 6 | 0.35 | 3.50 | 131.58 | 0.97 | 1.53 | 272.86 |
7 | 0.34 | 5.42 | 86.18 | 0.66 | 2.09 | 167.46 | |
8 | 0.57 | 2.28 | 294.83 | 0.90 | 1.60 | 231.85 |
Variables | Cycles | |||
---|---|---|---|---|
1 | 2 | 1 | 2 | |
Stomatal Resistance | Transpiration | |||
Stomatal Conductance | −0.813 ** | −0.712 ** | 0.730 ** | 0.697 ** |
Stomatal Resistance | −0.781 ** | −0.735 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quevedo-García, E.; de León, J.; Cleves-Leguízamo, J.A. Physiological Variation in Jarillo Peach Across Altitudinal Gradients. Agronomy 2025, 15, 2145. https://doi.org/10.3390/agronomy15092145
Quevedo-García E, de León J, Cleves-Leguízamo JA. Physiological Variation in Jarillo Peach Across Altitudinal Gradients. Agronomy. 2025; 15(9):2145. https://doi.org/10.3390/agronomy15092145
Chicago/Turabian StyleQuevedo-García, Enrique, Javier de León, and José Alejandro Cleves-Leguízamo. 2025. "Physiological Variation in Jarillo Peach Across Altitudinal Gradients" Agronomy 15, no. 9: 2145. https://doi.org/10.3390/agronomy15092145
APA StyleQuevedo-García, E., de León, J., & Cleves-Leguízamo, J. A. (2025). Physiological Variation in Jarillo Peach Across Altitudinal Gradients. Agronomy, 15(9), 2145. https://doi.org/10.3390/agronomy15092145