Use of a Digital Twin for Water Efficient Management in a Processing Tomato Commercial Farm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Characterization of the Spatial Variability of the Plot, Selection of Control and Monitoring Points
2.3. Analysis of Soil Properties and Determination of the Water Content in the Soil at Field Capacity, the Permanent Wilting Point and the Water Available to the Plant
2.4. Automatic Irrigation System and Definition of Irrigation Seasonal Plan
2.4.1. Local Sensors Installed in the Field
2.4.2. Digital Twin (Irri_DesK)
- Description of the plot: This section provides detailed information on the characteristics of the crop and the characteristics of the soil. The selected crop is processing tomato, with a maximum root depth of 0.4 m and a maximum vigor of 0.8 on a scale of 0 to 1, expressed in terms of soil cover or intercepted radiation (Figure 3a). This crop was established without vegetation cover (Figure 3a). The soil on the plot is texturally classified as sandy loam according to the USDA classification, with a slope of 0% and a depth of 1 m. In 2023, the SWC was 0.254 m3 m−3 at FC and 0.055 m3 m−3 at PWP (average of the values obtained at CP-3, CP-4 and CP-5). In 2024, the SWC was 0.245 m3 m−3 at FC and 0.057 m3 m−3 at PWP, calculated as the average of the values obtained at CP-1 and CP-2. A drip irrigation system was used with a drip spacing of 0.30 m, a nominal flow rate of 1.05 L/h per drip and a wet zone diameter of 0.45 m. The distance between crop beds was 1.5 m.
- Sensor configuration: In this section, Irri_DesK must be provided with the list of sensors to be integrated into the automatic irrigation system. In this study, the information from the sensors previously installed in the field was entered (Figure 2). The meteorological data were obtained through the application program interface (API) of the Agroclimatic Information System for Irrigation (SiAR by its initials in Spanish), which provides real-time information. The data correspond to a weather station (Campbell Scientific, Logan, UT, USA) located 6.5 km from the study plot, managed by the Centre for Scientific and Technological Research of Extremadura, part of the Regional Government of Extremadura. Effective precipitation (Pe) was estimated using the proposed method of the FAO, which defines this parameter as the monthly precipitation exceeded in 80% of the analyzed years [45].
- Seasonal schedule configuration: A key feature of Irri_DesK is irrigation scheduling based on a seasonal plan, which facilitates the application of more advanced strategies such as RDI, a solution that is particularly useful for farmers with water restrictions. In this seasonal plan, the amount of accumulated water in millimeters that will be used by the crop during the irrigation season is estimated. In the case of the processing tomato analyzed, the seasonal plan was provided by the farmer with a value of 550 mm. It is also necessary to set an upper limit (maximum cumulative irrigation allowed in an irrigation season) and a lower limit (minimum reasonable cumulative irrigation in an irrigation season). The water thresholds used as upper and lower limits were set at 650 mm and 400 mm, respectively (Figure 3b). When measured irrigation approaches the upper or lower limit of the established range, the irrigation doses are calculated so that cumulative irrigation remains within the allowed values. In addition, water imbalances can be established at specific times during the irrigation campaign, expressed as the ratio between the irrigation that should be applied and that estimated by the SWB model. In the seasonal plan, Irri_DesK was instructed to apply a water imbalance during the crop’s ripening phase [20]. Since the objective was to implement an RDI strategy, water status levels were defined based on a multiplier coefficient applied to irrigation requirements or estimated deviations from the SWB. So, during the ripening period, a reduction factor of 0.5 was set to stress the crop at this phenological stage (Figure 3c). The seasonal irrigation plan was drawn up based on simulations carried out using the SWB model. This involved taking detailed information into account on crop and soil characteristics, the irrigation system used, the plot’s ten-year meteorological history, the range of irrigation applied in previous campaigns and the intended deviation curve of the SWB.
2.5. Irrigation Scheduling in the Different Management Zones
- Zone A: Irrigation management was carried out by technicians from a precision agriculture company (E_AP), using information provided by the Smart4Crops platform. This platform used multispectral satellite imagery (Sentinel-2) to estimate crop vigor (NDVI). A technician adjusted the timing and volumes of irrigation weekly based on vegetation indices, without integrating soil moisture data or in-field sensors.
- Zone B: Irrigation management was carried out following the information provided by Irri_DesK. The system applied full irrigation during sensitive phenological stages (transplant, vegetative growth and fruit development) and introduced a 50% reduction (RDI) during ripening. In Irri_DesK, irrigation doses were determined daily using a soil water balance model adjusted with in-field soil moisture sensors and meteorological inputs (ETo from the SiAR station).
- Zone C: Irrigation was managed conventionally by the farmer. In this zone, irrigation was scheduled to cover crop water needs throughout the crop cycle.
2.6. Agronomic Measurements
2.6.1. Normalized Difference Vegetation Index (NDVI)
2.6.2. Yield and Quality
3. Results and Discussion
3.1. Exploratory Analysis of the ECa Data
3.2. Applied Water in the Different Management Zones
3.3. Soil Water Content
3.4. Agronomic Response and Water Use Efficiency
3.5. Limitations of the Irrigation Management Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RDI | Regulated Deficit Irrigation |
WB | Soil Water Balance |
ETc | Crop Evapotranspiration |
ETo | Reference Evapotranspiration |
Kc | Crop Coefficient |
DT | Digital Twin |
CP | Control Point |
FC | Field Capacity |
WAP | Water Available to the Plant |
PWP | Permanent Wilting Point |
SWC | Soil Water Content |
OM | Organic Matter |
pa | Apparent Bulk Density |
MP | Monitoring Points |
ME | Mean Error |
RMSE | Root Mean Square Error |
MS | Mean Deviation |
NDVI | Normalized Difference Vegetation Index |
References
- Oduor, B.O.; Campo-Bescós, M.Á.; Lana-Renault, N.; Echarri, A.A.; Casalí, J. Evaluation of the impact of changing from rainfed to irrigated agriculture in a mediterranean watershed in Spain. Agriculture 2022, 13, 106. [Google Scholar] [CrossRef]
- Koncagül, E.; Connor, R.; Abete, V. Informe Mundial de Las Naciones Unidas Sobre El Desarrollo de Los Recursos Hídricos 2024: Agua Para la Prosperidad Y la Paz; Datos, Cifras Y Planes de Acción; UNESCO World Water Assessment Programme (WWAP): Paris, France, 2024. [Google Scholar]
- Morales, F.; Ancín, M.; Fakhet, D.; González-Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic Metabolism Under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef]
- Houghton, R.A. Counting terrestrial sources and sinks of carbon. Clim. Change 2001, 48, 525–534. [Google Scholar] [CrossRef]
- Vaddevolu, U.B.P.; Jia, X. Testing a Soil Moisture Sensor Based Irrigation Controller in both Laboratory and Field Conditions for Fargo Silty Clay Soils. Appl. Eng. Agric. 2024, 40, 41–50. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Farg, E.; Arafat, S.; El-Wahed, M.A.; El-Gindy, A. Estimation of Evapotranspiration ETc and Crop Coefficient Kc of Wheat, in South Nile Delta of Egypt using Integrated FAO-56 Approach and Remote Sensing Data. Egypt J. Remote Sens. Space Sci. 2012, 15, 83–89. [Google Scholar] [CrossRef]
- Casadesús, J.; Mata, M.; Marsal, J.; Girona, J. A general algorithm for automated scheduling of drip irrigation in tree crops. Comput. Electron. Agric. 2012, 83, 11–20. [Google Scholar] [CrossRef]
- World Processing Tomato Council. Available online: https://www.wptc.to (accessed on 17 October 2023).
- Valcárcel, M.; Lahoz, I.; Campillo, C.; Martí, R.; Leiva-Brondo, M.; Roselló, S.; Cebolla-Cornejo, J. Controlled Deficit Irrigation as a Water-Saving Strategy for Processing Tomato. Sci. Hortic. 2020, 261, 108972. [Google Scholar] [CrossRef]
- Pérez, F.L. Ley 6/2015, de 24 de marzo, Agraria de Extremadura. Actual. Jurídica Ambient. 2015, 2015, 28–30. [Google Scholar]
- Amayreh, J.; Al-Abed, N. Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch. Agric. Water Manag. 2005, 73, 247–254. [Google Scholar] [CrossRef]
- Fusheng, M.; Shaozhong, K.; Mixia, W. Research advance and prospect of regulated deficit irrigation on fruit trees. Agric. Res. Arid. Areas 2005, 23, 225–228. [Google Scholar]
- Egea, G.; Nortes, P.A.; González-Real, M.M.; Baille, A.; Domingo, R. Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agric. Water Manag. 2010, 97, 171–181. [Google Scholar] [CrossRef]
- Ju, Y.L.; Xu, G.Q.; Yue, X.F.; Zhao, X.F.; Tu, T.Y.; Zhang, J.X.; Fang, Y.L. Effects of regulated deficit irrigation on amino acid profiles and their derived volatile compounds in Cabernet Sauvignon (Vitis vinifera L.) grapes and wines. Molecules 2018, 23, 1983. [Google Scholar] [CrossRef]
- Memmi, H.; Gijón, M.C.; Couceiro, J.F.; Pérez-López, D. Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality. Agric. Water Manag. 2016, 164, 58–72. [Google Scholar] [CrossRef]
- Moñino, M.J.; Blanco-Cipollone, F.; Vivas, A.; Bodelón, O.G.; Prieto, M.H. Evaluation of different deficit irrigation strategies in the late-maturing Japanese plum cultivar ‘Angeleno’. Agric. Water Manag. 2020, 234, 106111. [Google Scholar] [CrossRef]
- Girona, J.; del Campo, J.; Mata, M.; Lopez, G.; Marsal, J. A comparative study of apple and pear tree water consumption measured with two weighing lysimeters. Irrig. Sci. 2011, 29, 55–63. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Brunel, B.; Bertin, N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J. Plant Physiol. 2016, 190, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Campillo, C.; González, J.Á.; Fortes, R.; Millán, S.; González, V.; Chávez, Á.; Daza, C.; Prieto, M.H. Manual Práctico de Riego del Tomate de Industria. Grupo de Riego y Nutrición del Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX). 2015. Available online: https://cicytex.juntaex.es/documents/46972/95615/Manual+pr%C3%A1ctico+de+riego+de+tomate+de+industria/0b2c625a-8eca-4e7d-84ef-8dc80d5568e9 (accessed on 7 August 2025).
- Johnstone, P.R.; Hartz, T.K.; LeStrange, M.; Nunez, J.J.; Miyao, E.M. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production. HortScience 2005, 40, 1857–1861. [Google Scholar] [CrossRef]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Katzin, D.; Marcelis, L.F.; van Henten, E.J.; van Mourik, S. Heating greenhouses by light: A novel concept for intensive greenhouse production. Biosyst. Eng. 2023, 230, 242–276. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2023, 199, 107183. [Google Scholar] [CrossRef]
- Ahmed, Z.; Gui, D.; Murtaza, G.; Yunfei, L.; Ali, S. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy 2023, 13, 2113. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, Y.; Sun, T.; Chai, X.; Zhang, N. Digital twin-driven system for efficient tomato harvesting in greenhouses. Comput. Electron. Agric. 2025, 236, 110451. [Google Scholar] [CrossRef]
- Shrivastava, C.; Schudel, S.; Shoji, K.; Onwude, D.; da Silva, F.P.; Turan, D.; Defraeye, T. Digital twins for selecting the optimal ventilated strawberry packaging based on the unique hygrothermal conditions of a shipment from farm to retailer. Postharvest Biol. Technol. 2023, 199, 112283. [Google Scholar] [CrossRef]
- Ghazvini, A.; Sharef, N.M.; Balasundram, S.K.; Lee, L.S. A concentration prediction-based crop digital twin using nutrient Co-existence and composition in regression algorithms. Appl. Sci. 2024, 14, 3383. [Google Scholar] [CrossRef]
- Chitu, C.; Imbrea, I.; Batrina, S.; Imbrea, F. Developing a digital twin model for corn, wheat and repassed yields computation. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2024, 24, 287–293. [Google Scholar]
- Millán, S.; Casadesús, J.; Campillo, C.; Moñino, M.J.; Prieto, M.H. Using Soil Moisture Sensors for Automated Irrigation Scheduling in a Plum Crop. Water 2019, 11, 2061. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Oliver-Manera, J.; Girona, J.; Casadesús, J. Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agric. Water Manag. 2020, 228, 105880. [Google Scholar] [CrossRef]
- Millán, S.; Campillo, C.; Casadesús, J.; Pérez-Rodríguez, J.M.; Prieto, M.H. Automatic irrigation scheduling on a hedgerow olive orchard using an algorithm of water balance readjusted with soil moisture sensors. Sensors 2020, 20, 2526. [Google Scholar] [CrossRef]
- Bellvert, J.; Pelechá, A.; Pàmies-Sans, M.; Virgili, J.; Torres, M.; Casadesús, J. Assimilation of sentinel-2 biophysical variables into a digital twin for the automated irrigation scheduling of a vineyard. Water 2023, 15, 2506. [Google Scholar] [CrossRef]
- Wang, L. Digital twins in agriculture: A review of recent progress and open issues. Electronics 2024, 13, 2209. [Google Scholar] [CrossRef]
- Martelli, A.; Rapinesi, D.; Verdi, L.; Donati, I.I.M.; Dalla Marta, A.; Altobelli, F. Smart irrigation for management of processing tomato: A machine learning approach. Irrig. Sci. 2024, 1–18. [Google Scholar] [CrossRef]
- Galaverni, M.; Oddi, G.; Preite, L.; Belli, L.; Davoli, L.; Marchioni, R.; Solari, F.; Beghé, D.; Ganino, T.; Vignali, G.; et al. An IoT-based data analysis system: A case study on tomato cultivation under different irrigation regimes. Comput. Electron. Agric. 2025, 229, 109660. [Google Scholar] [CrossRef]
- Moral, F.J.; Terrón, J.; Da Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Directions for Making Mechanical Analyses of Soils by the Hydrometer Method. Soil Sci. 1936, 42, 225–230. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W. Untersuchungen Über Die Chemische Bodenanalyse Als Grundlage Für Die Beurteilung Des Nährstoffzustandes Der Böden. II. Chemische Extraktionsmethoden Zur Phosphor-Und Kaliumbestimmung. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Schindler, U.; Durner, W.; Von Unold, G.; Mueller, L.; Wieland, R. The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. Soil Sci. 2010, 173, 563–572. [Google Scholar] [CrossRef]
- UMS. Manual HYPROP, Version 2015-01; Meter: Pullman, WA, USA, 2015.
- Schindler, U.; Müller, L. Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device. Open Data J. Agric. Res. 2017, 3, 10–16. [Google Scholar] [CrossRef]
- Campbell, G.S.; Smith, D.M.; Teare, B.L. Application of a dew point method to obtain the soil water characteristic. In Experimental Unsaturated Soil Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Las Necesidades de Agua Por Los Cultivos. Estudio Fao: Riego Y Drenaje, Manual 24; FAO: Rome, Italy, 1986; 144p. [Google Scholar]
- Gomez, J.A.; Zarco-Tejada, P.J.; García-Morillo, J.; Gama, J.; Soriano, M.A. Determining Biophysical Parameters for Olive Trees Using CASI-Airborne and Quickbird-Satellite Imagery. Agron. J. 2011, 103, 644–654. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Tancredi, G.P.C.; Preite, L.; Vignali, G. Digital twin enhanced with Machine Learning Algorithms for Irrigation Management Using Sensor Data. Procedia Comput. Sci. 2025, 253, 2419–2427. [Google Scholar] [CrossRef]
- Dec, D.; Dörner, J.; Becker-Fazekas, O.; Horn, R. Effect of bulk density on hydraulic properties of homogenized and structured soils. J. Soil Sci. Plant Nutr. 2008, 8, 1–13. [Google Scholar]
- Durand, S.; Fonteno, W.C.; Michel, J.C. A review and analysis of particle size parameters and their relationships to physical properties of growing media. Soil Sci. Soc. Am. J. 2024, 88, 652–666. [Google Scholar] [CrossRef]
- Evett, S.R.; Agam, N.; Kustas, W.P.; Colaizzi, P.D.; Schwartz, R.C. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Adv. Water Resour. 2012, 50, 41–54. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Oliver-Manera, J.; Arbat, G.; Girona, J.; Casadesús, J. Analysis of the variability in soil moisture measurements by capacitance sensors in a drip-irrigated orchard. Sensors 2020, 20, 5100. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Kang, S.; Van Iersel, M.W.; Kim, J. Plant root growth affects FDR soil moisture sensor calibration. Sci. Hortic. 2019, 252, 208–211. [Google Scholar] [CrossRef]
- Mastrorilli, M.; Campi, P.; Palumbo, A.D.; Modugno, F. Ground-based remote sensing for assessing tomato water-status. Ital. J. Agron. 2010, 5, 177–183. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.; Campbell, G.; Cobos, D.; Teare, B.; Carter, B.; Hopmans, J.W. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
Points | Clay (%) | Silt (%) | Sand (%) | Texture | OM (%) | pH |
---|---|---|---|---|---|---|
CP-1 | 12.02 | 22.49 | 65.49 | Sandy Loam | 1.26 | 7.42 |
CP-2 | 12.02 | 20.49 | 67.49 | Sandy Loam | 1.19 | 7.39 |
CP-3 | 12.01 | 14.77 | 73.21 | Sandy Loam | 0.88 | 7.85 |
CP-4 | 14.03 | 16.34 | 69.63 | Sandy Loam | 1.50 | 7.97 |
CP-5 | 16.02 | 15.20 | 68.78 | Sandy Loam | 1.45 | 7.51 |
CP-6 | 10.04 | 13.99 | 75.97 | Sandy Loam | 0.82 | 6.50 |
CP-7 | 12.04 | 14.56 | 73.40 | Sandy Loam | 1.28 | 7.50 |
MP-a | 14.01 | 20.54 | 65.45 | Sandy Loam | 1.35 | 7.49 |
MP-b | 15.99 | 14.47 | 69.53 | Sandy Loam | 1.14 | 7.24 |
MP-c | 6.02 | 14.63 | 79.34 | Loamy Sand | 1.15 | 7.17 |
MP-d | 12.03 | 16.48 | 71.49 | Sandy Loam | 1.46 | 7.90 |
MP-e | 20.02 | 19.26 | 60.72 | Sandy Clay Loam | 1.41 | 7.30 |
MP-f | 12.02 | 16.77 | 71.21 | Sandy Loam | 1.05 | 7.93 |
MP-g | 10.03 | 20.17 | 69.80 | Sandy Loam | 0.94 | 7.43 |
MP-h | 8.03 | 16.25 | 75.71 | Sandy Loam | 0.71 | 6.89 |
MP-i | 20.01 | 15.83 | 64.16 | Sandy Clay Loam | 0.62 | 7.05 |
Control Points | SWC (FC) (%) | SWC (PWP) (%) | SWC (WAP) (%) | Qa (g cm−3) | Model |
---|---|---|---|---|---|
CP-1 | 23.40 | 5.90 | 17.50 | 1.83 | Van Genuchten |
CP-2 | 25.70 | 5.50 | 20.20 | 1.58 | Fredlund-Xing (Bimodal PDI) |
CP-3 | 24.20 | 4.70 | 19.50 | 1.72 | Kosugi (Bimodal PDI) |
CP-4 | 27.30 | 8.50 | 18.80 | 1.86 | Van Genuchten mnvar (Bimodal PDI) |
CP-5 | 24.70 | 3.20 | 21.50 | 1.71 | Van Genuchten mnvar (Bimodal PDI) |
CP-6 | 21.00 | 5.00 | 16.00 | 1.77 | Van Genuchten (Bimodal) |
CP-7 | 25.10 | 5.20 | 19.90 | 1.73 | Van Genuchten (Bimodal) |
Depth (m) | Variable | Mean | Median | SD | Min | Max | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
0–0.40 m | ECa | 13.98 | 14.00 | 7.45 | 2 | 47 | 2.11 | 0.31 |
Depth (m) | Variable | n | ME | MD | RMSE |
---|---|---|---|---|---|
0–0.40 m | ECa | 2482 | −0.000030 | −0.000013 | 0.097702 |
Year | Irrigation Scheduling | Area (ha) | Production (t/ha) | ºBrix | EUR/t | EUR/ha | Irrigation (mm)/ha | EWE (EUR/mm) |
---|---|---|---|---|---|---|---|---|
E_AP | 5.50 | 106.95 | 5.53 | 168.00 | 17,967.60 | 88.55 | 202.92 | |
2023 | Irri_DesK | 5.12 | 140.00 | 5.42 | 164.10 | 22,974.00 | 80.66 | 284.81 |
Farmer 1 | 4.34 | 148.59 | 5.15 | 159.00 | 23,625.81 | 128.80 | 183.43 | |
E_AP | 5.12 | 135 | 5.93 | 177.00 | 23,923.32 | 85.74 | 279.01 | |
2024 | Irri_DesK | 5.5 | 126 | 5.82 | 173.08 | 21,771.73 | 94.36 | 230.72 |
Farmer 1 | 4.34 | 150 | 5.68 | 170.4 | 25,612.82 | 115.67 | 221.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millán, S.; Montesinos, C.; Casadesús, J.; Vadillo, J.M.; Campillo, C. Use of a Digital Twin for Water Efficient Management in a Processing Tomato Commercial Farm. Agronomy 2025, 15, 2132. https://doi.org/10.3390/agronomy15092132
Millán S, Montesinos C, Casadesús J, Vadillo JM, Campillo C. Use of a Digital Twin for Water Efficient Management in a Processing Tomato Commercial Farm. Agronomy. 2025; 15(9):2132. https://doi.org/10.3390/agronomy15092132
Chicago/Turabian StyleMillán, Sandra, Cristina Montesinos, Jaume Casadesús, Jose María Vadillo, and Carlos Campillo. 2025. "Use of a Digital Twin for Water Efficient Management in a Processing Tomato Commercial Farm" Agronomy 15, no. 9: 2132. https://doi.org/10.3390/agronomy15092132
APA StyleMillán, S., Montesinos, C., Casadesús, J., Vadillo, J. M., & Campillo, C. (2025). Use of a Digital Twin for Water Efficient Management in a Processing Tomato Commercial Farm. Agronomy, 15(9), 2132. https://doi.org/10.3390/agronomy15092132