Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Re-Sequencing and Variant Identification
2.3. Population Analysis and Association Mapping
2.4. Development and Validation of the KASP Marker
2.5. Quantitative Reverse Transcription PCR (qRT-PCR) for Candidate Genes
3. Results
3.1. Re-Sequencing for the 172 Common Vetch Accessions
3.2. Population Structure Analysis for the 172 Accessions
3.3. Phenotype Analysis and GWAS for Six Yield-Related Traits in Common Vetch
3.4. Twelve Candidate Genes for Grain Yield Traits Were Identified in This Study
3.5. Development and Validation of Kompetitive Allele-Specific PCR (KASP) Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GWAS | Genome-wide association study |
MAS | Marker-assisted selection |
SNP | Single nucleotide polymorphism |
NB | Branches per plant |
PL | Pod length |
NP | Number of pods per plant |
NG | Number of grains per pod |
HGW | Hundred-grain weight |
GY | Grain yield |
QTL | Quantitative trait loci |
KASP | Kompetitive allele-specific PCR |
PVE | Phenotypic variance explained |
References
- Jiao, Y.; Zhang, Q.; Miao, F. Forage yield, competition, and economic indices of oat and common vetch intercrops in a semi-arid region. Front. Sustain. Food Syst. 2024, 8, 1385296. [Google Scholar] [CrossRef]
- Huang, Y.F.; Gao, X.L.; Nan, Z.B.; Zhang, Z.X. Potential value of the common vetch (Vicia sativa L.) as an animal feedstuff: A review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 807–823. [Google Scholar] [CrossRef] [PubMed]
- Bet, C.D.; do Prado Cordoba, L.; Ribeiro, L.S.; Schnitzler, E. Common vetch (Vicia sativa) as a new starch source: Its thermal, rheological and structural properties after acid hydrolysis. Food Biophys. 2016, 11, 275–282. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Wu, Y.; Wang, Y.; Liu, W.; Liu, Z. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 2017, 8, 1411. [Google Scholar] [CrossRef]
- Rui, H.; Chen, C.; Zhang, X.; Shen, Z.; Zhang, F. Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances. J. Hazard. Mater. 2016, 301, 304–313. [Google Scholar] [CrossRef]
- Larbi, A.; Abd El-Moneim, A.M.; Nakkoul, H.; Jammal, B.; Hassan, S. Intra-species variations in yield and quality determinants in Vicia species: 3. Common vetch (Vicia sativa ssp. sativa L.). Anim. Feed Sci. Technol. 2011, 164, 241–251. [Google Scholar] [CrossRef]
- Kim, T.-S.; Raveendar, S.; Suresh, S.; Lee, G.-A.; Lee, J.-R.; Cho, J.-H.; Lee, S.-Y.; Ma, K.-H.; Cho, G.-T.; Chung, J.-W. Transcriptome analysis of two Vicia sativa subspecies: Mining molecular markers to enhance genomic resources for vetch improvement. Genes 2015, 6, 1164–1182. [Google Scholar] [CrossRef]
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Liu, J.; He, Z.; Rasheed, A.; Wen, W.; Yan, J.; Zhang, Y.; Xia, X. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, L.; Nan, Z.; Wang, Y. Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae). PLoS ONE 2013, 8, e57338. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Yan, M.; Liu, Z.; Wang, Y.; Liu, W. Genome survey sequencing of common vetch (Vicia sativa L.) and genetic diversity analysis of Chinese germplasm with genomic SSR markers. Mol. Biol. Rep. 2022, 49, 313–320. [Google Scholar] [CrossRef]
- Raveendar, S.; Lee, G.-A.; Jeon, Y.-A.; Lee, Y.J.; Lee, J.-R.; Cho, G.-T.; Cho, J.-H.; Park, J.-H.; Ma, K.-H.; Chung, J.-W. Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules 2015, 20, 1543–1550. [Google Scholar] [PubMed]
- Shirasawa, K.; Kosugi, S.; Sasaki, K.; Nakayama, S.; Isobe, S. Genome features of common vetch (Vicia sativa) in natural habitats. Plant Direct 2021, 5, e352. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Dong, R.; Liu, W.; Wang, Y.; Liu, Z. Optimizing sample size to assess the genetic diversity in common vetch (Vicia sativa L.) populations using start codon targeted (SCoT) markers. Molecules 2017, 22, 567. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Shen, S.H.; Jahufer, M.Z.Z.; Liu, Z.; Wang, Y.; Liu, W. Effect of genotype and environment on agronomical characters of common vetch (Vicia sativa L.). Genet. Resour. Crop Evol. 2019, 66, 1587–1599. [Google Scholar] [CrossRef]
- Chung, J.W.; Kim, T.S.; Suresh, S.; Lee, G.A.; Jeon, Y.A.; Cho, G.T.; Lee, J.R. Development of 65 novel polymorphic cDNA-SSR markers in common vetch (Vicia sativa subsp. sativa) using next generation sequencing. Molecules 2013, 18, 8376–8392. [Google Scholar]
- Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and prospects of association mapping in plants. Plant Genome 2008, 1, 5–20. [Google Scholar] [CrossRef]
- Xi, H.; Nguyen, V.; Ward, C.; Liu, Z.; Searle, I.R. Chromosome-level assembly of the common vetch (Vicia sativa) reference genome. GigaByte 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Mol. Plant 2017, 10, 1047–1064. [Google Scholar] [CrossRef]
- Cao, Y.; Diao, Q.; Chen, Y.; Jin, H.; Zhang, Y.; Zhang, H. Development of KASP markers and identification of a QTL underlying powdery mildew resistance in melon (Cucumis melo L.) by bulked segregant analysis and RNA-Seq. Front. Plant Sci. 2021, 11, 593207. [Google Scholar] [CrossRef]
- Cao, W.D.; Feng, C.H.; Wang, X. Descriptors and Data Standard for Green Manure; China Agriculture Press: Beijing, China, 2007. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Brouard, J.S.; Schenkel, F.; Marete, A.; Bissonnette, N.; Cánovas, A. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 2019, 10, 44. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Buckler, E.S., IV. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- An, R.; Cheng, Y.; Tang, N. Elucidating the impact of calcium supplementation on biomass accumulation, polyphenol composition, and oxidative stress response in common vetch (Vicia sativa L.) sprouts. Food Biosci. 2025, 66, 106315. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Yin, L.; Sun, L.; Liu, W.; Zhang, S.; Xie, X.; Wang, X.; Wang, W.; Zhu, W. Can interseeding leguminous cover crops inhibit silage maize growth and reduce water-nitrogen use efficiency in arid region? Eur. J. Agron. 2025, 164, 127443. [Google Scholar] [CrossRef]
- De la Rosa, L.; González, J.M. The genetic diversity associated with seed proteins in a collection of Spanish underground vetches (Vicia sativa L. subsp. amphicarpa (Dorthes) Asch. et Graebn.). Genet. Resour. Crop Evol. 2010, 57, 565–573. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Mohammadi, B.; Sarvestani, R.; Mirataei, F. Expression analysis of candidate genes in common vetch (Vicia sativa L.) under drought stress. J. Agric. Sci. Technol. 2015, 17, 1291–1302. [Google Scholar]
- Min, X.; Lin, X.; Ndayambaza, B.; Wang, Y.; Liu, W. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC Plant Biol. 2020, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, Q.; Xu, W.; Wang, Y.; Liu, W.; Li, Y. Identification of novel drought-responsive miRNA regulatory network of drought stress response in common vetch (Vicia sativa). Open Life Sci. 2021, 16, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Nelson, G.; Troyer, J.; Lautenberger, J.; Kessing, B.; Winkler, C.; O’Brien, S. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom. 2010, 11, 724. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, N.; Sun, H.; Wang, Y.; Liu, W.; Li, Y. Transcriptome profiling reveals molecular responses to salt stress in common vetch (Vicia sativa L.). Plants 2024, 13, 714. [Google Scholar] [CrossRef]
- Zhou, Q.; Mao, P.; Luo, D.; Chai, X.; Deng, H.; Fang, Q.; Fang, L.; Nan, Z.; Wen, J.; Liu, Z. Comparative transcriptome analyses reveal that the MsNST1 gene affects lignin synthesis in alfalfa (Medicago sativa L.). Crop J. 2022, 10, 1059–1072. [Google Scholar] [CrossRef]
- Burks, D.J.; Azad, R.K. Identifying auxin response factor genes and their co-expression networks in Medicago truncatula. In The Model Legume Medicago truncatula; de Bruijn, F.J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 802–808. [Google Scholar]
- Dharmasiri, N.; Dharmasiri, S.; Weijers, D.; Lechner, E.; Yamada, M.; Hobbie, L.; Estelle, M. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 2005, 9, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gonzalez-Carranza, Z.H.; Zhang, S.; Wang, Y.; Liu, W.; Li, Y. F-Box proteins in plants. Annu. Plant Rev. 2019, 2, 307–328. [Google Scholar]
- Sojka, J.; Šamajová, O.; Šamaj, J. Gene-edited protein kinases and phosphatases in molecular plant breeding. Trends Plant Sci. 2024, 29, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Seung, D.; Soyk, S.; Coiro, M.; Maier, B.A.; Eicke, S.; Zeeman, S.C. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol. 2015, 13, e1002080. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Zhao, J.; Zhang, Y.; Wang, Y.; Liu, W. Granule-Bound Starch Synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. Plant Sci. 2023, 332, 111843. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, S.; Qi, Y. Advances in structure and function of auxin response factor in plants. J. Integr. Plant Biol. 2023, 65, 617–632. [Google Scholar] [CrossRef]
- Li, Q.; Xu, F.; Chen, Z.; Teng, Z.; Sun, K.; Li, X.; Yu, J.; Zhang, G.; Liang, Y.; Huang, X. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants 2021, 7, 1108–1118. [Google Scholar] [CrossRef]
- Gomes, G.L.B.; Scortecci, K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021, 23, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, J.; Yuan, J.; Wang, Y.; Liu, W.; Li, Y. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2021, 44, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. Role of basal ABA in plant growth and development. Genes 2021, 12, 1936. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Zhou, D.; Zhang, Y.; Wang, Y.; Liu, W.; Li, Y. The roles of gibberellins in regulating leaf development. Plants 2023, 12, 1243. [Google Scholar] [CrossRef]
- Gazara, R.K.; Moharana, K.C.; Bellieny-Rabelo, D.; Venancio, T.M. Expansion and diversification of the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) family in land plants. Plant Mol. Biol. 2018, 97, 435–449. [Google Scholar] [CrossRef]
- Chen, L.-G.; Gao, Z.; Zhao, Z.; Liu, X.; Li, Y.; Zhang, Y.; Liu, X.; Sun, Y.; Tang, W. BZR1 family transcription factors function redundantly and indispensably in BR signaling but exhibit BRI1-independent function in regulating anther development in Arabidopsis. Mol. Plant 2019, 12, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
Chromosome | Number of SNPs | Chromosome Length (Mb) | Marker Density (Marker/Mb) | MAF Mean | MAF Range |
---|---|---|---|---|---|
1 | 1,040,667 | 324.8 | 3204.4 | 0.27 | 0.05–0.50 |
2 | 1,011,653 | 324.6 | 3117.0 | 0.28 | 0.05–0.50 |
3 | 679,356 | 290.7 | 2337.1 | 0.20 | 0.05–0.47 |
4 | 923,806 | 290.1 | 3184.4 | 0.27 | 0.05–0.50 |
5 | 712,272 | 272.5 | 2613.9 | 0.28 | 0.05–0.50 |
6 | 428,588 | 148.7 | 2882.7 | 0.30 | 0.05–0.50 |
all | 4,796,342 | 1651.3 | 2904.6 | 0.29 | 0.05–0.50 |
QTL | Trait | Chromosome | Physical Interval (Mb) | p-Value | PVE (%) |
---|---|---|---|---|---|
qGY1.1 | GY | 1 | 48.1–48.5 | 7.4–7.9 | 13.1–14.2 |
qGY1.2 | GY | 1 | 164.7–166.7 | 7.5–8.6 | 13.6–16.5 |
qGY2.1 | GY | 2 | 283.9–284.6 | 7–11.2 | 11.6–20.6 |
qGY3.1 | GY | 3 | 165.7–166.2 | 7.0–7.4 | 11.6–13.2 |
qGY3.2 | GY | 3 | 278.2–278.2 | 7.4–7.5 | 13.1–13.5 |
qGY3.3 | GY | 3 | 234.0–235.2 | 7.0–8.1 | 11.6–14.9 |
qGY4.1 | GY | 4 | 71.6–72.6 | 7.2–10.3 | 12.5–18.5 |
qGY4.2 | GY | 4 | 141.1–142.3 | 7.0–7.2 | 11.7–12.5 |
qGY4.3 | GY | 4 | 178.0–178.5 | 7.1–9.5 | 11.9–17.5 |
qGY6.1 | GY | 6 | 71.8–71.8 | 7.1–7.1 | 11.9–11.9 |
qGY6.2 | GY | 6 | 119.0–120.1 | 7.1–9.1 | 11.9–17.1 |
qHGW1.1 | HGW | 1 | 244.5–245.8 | 7.0–7.7 | 11.6–14 |
qHGW3.1 | HGW | 3 | 189.4–190.9 | 7.0–8.3 | 11.6–15.3 |
qHGW4.1 | HGW | 4 | 71.9–72.3 | 7.1–7.9 | 11.9–14.2 |
qHGW4.2 | HGW | 4 | 132.6–112.8 | 7.0–7.4 | 11.6–13.2 |
qHGW4.3 | HGW | 4 | 180.0–180.0 | 7.7–11.1 | 14.2–20.3 |
qHGW5.1 | HGW | 5 | 266.7–268.7 | 7.3–7.3 | 12.8–13 |
qNB6.1 | NB | 6 | 57.7–58.2 | 7.0–7.5 | 11.7–13.5 |
qNB6.2 | NB | 6 | 142.8–146.8 | 7.1–8.1 | 12–14.9 |
qNG1.1 | NG | 1 | 48.1–48.5 | 7.0–7.3 | 11.6–12.8 |
qNG1.2 | NG | 1 | 285.0–292.8 | 7.3–7.6 | 12.8–13.8 |
qNG2.1 | NG | 2 | 187.5–187.9 | 7.7–7.8 | 14.2–14 |
qNG2.2 | NG | 2 | 245.7–247.7 | 7.9–9.1 | 14.9–17.1 |
qNG3.1 | NG | 3 | 196.0–196.6 | 7.0–8.5 | 11.6–16 |
qNG3.2 | NG | 3 | 276.0–277.2 | 7.0–7.3 | 11.6–13 |
qNG4.1 | NG | 4 | 65.3–72.3 | 7.0–8.4 | 11.6–15.3 |
qNG6.1 | NG | 6 | 102.4–104.5 | 7.0–7.7 | 11.7–14 |
qNP4.1 | NP | 4 | 81.9–82.2 | 7.0–8.6 | 11.7–16.5 |
qNP5.1 | NP | 5 | 146.6–148.5 | 7.1–7.4 | 11.9–13.2 |
qNP5.2 | NP | 5 | 193.2–193.2 | 7.2–7.2 | 12.5–12.5 |
qPL1.1 | PL | 1 | 108.1–108.9 | 7.2–9.5 | 12.5–17.5 |
qPL2.1 | PL | 2 | 245.7–247.7 | 7.1–7.1 | 11.9–11.9 |
qPL3.1 | PL | 3 | 130.5–132.0 | 7–7.1 | 11.6–11.9 |
qPL3.2 | PL | 3 | 261.2–261.2 | 7.5–9.2 | 13.6–17.1 |
qPL4.1 | PL | 4 | 65.8–67.1 | 7.1–8.5 | 11.9–16 |
qPL4.2 | PL | 4 | 85.1–85.8 | 7–7.8 | 11.6–14 |
qPL4.3 | PL | 4 | 101.8–102.6 | 8.0–9.4 | 15.2–17.1 |
qPL6.1 | PL | 6 | 104.6–105.6 | 7.7–8.4 | 14.2–16 |
Candidate Gene | QTL | Annotation |
---|---|---|
jg55197 | qGY3.2 | Auxin response factor 5 |
jg39866 | qGY1.1 | Cellulose synthase Acatalytic subunit4 |
jg51171 | qPL3.1 | Cellulose synthase-like protein |
jg46961 | qHGW1.1 | F-box/FBD/LRR-repeat protein |
jg57145 | qNG3.2 | F-box/kelch repeat protein |
jg32764 | qHGW4.2 | Gibberellin receptor |
jg33049 | qGY4.1 | GTP-binding protein BRASSINAZOLE INSENSITIVEPALEGREEN2 |
jg44419 | qGY1.2 | Chitin-inducible gibberellin-responsive protein |
jg21506 | qHGW5.1 | Probable cellulose synthase Acatalytic subunit 3 |
jg30806 | qPL4.2 | Serine/threonine-protein phosphatase |
jg2488 | qPL6.1 | Granule-bound starch synthase |
jg10056 | qNG2.2 | Serine/threonine-protein kinase-like protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Zhang, J.; Dimtrov, Y.; Yang, X.; Du, R.; Wu, Y.; Chang, D.; Zhang, R.; Zhao, H. Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping. Agronomy 2025, 15, 2128. https://doi.org/10.3390/agronomy15092128
Jin H, Zhang J, Dimtrov Y, Yang X, Du R, Wu Y, Chang D, Zhang R, Zhao H. Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping. Agronomy. 2025; 15(9):2128. https://doi.org/10.3390/agronomy15092128
Chicago/Turabian StyleJin, Hui, Jumei Zhang, Yordan Dimtrov, Xue Yang, Ruonan Du, Yu’e Wu, Danna Chang, Rui Zhang, and Haibin Zhao. 2025. "Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping" Agronomy 15, no. 9: 2128. https://doi.org/10.3390/agronomy15092128
APA StyleJin, H., Zhang, J., Dimtrov, Y., Yang, X., Du, R., Wu, Y., Chang, D., Zhang, R., & Zhao, H. (2025). Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping. Agronomy, 15(9), 2128. https://doi.org/10.3390/agronomy15092128