Efficacy of Biological Products in Managing Root Pathogens in Melons
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Overview
2.2. Biological Products
2.3. Methodology
3. Results
3.1. Incidence of Root Diseases
3.2. Severity of Root Diseases
3.3. Effects of Biological Products on Root and Shoot Growth
3.4. Fungal Pathogens and Nematode Egg Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCAs | Biological control agents |
CEC | Cation exchange capacity |
DAS | Days after sowing |
DAT | Days after transplanting |
DRW | Dry root weight |
DSW | Dry shoot weight |
EC | Electrical conductivity |
FRW | Fresh root weight |
FSW | Fresh shoot weight |
IAA | Indole-3-acetic acid |
IDM | Integrated disease management |
PDA | Potato dextrose agar |
PES | Percentage of exchangeable sodium |
RL | Root length |
SB | Sum of bases |
SL | Shoot length |
References
- ABRAFRUTAS—Associação Brasileira dos Produtores Exportadores de Frutas e Derivados. Brasília. 2025. Available online: https://abrafrutas.org/dados-estatisticos/# (accessed on 24 February 2025).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Brasília. 2023. Available online: https://sidra.ibge.gov.br (accessed on 24 February 2025).
- FAO—Food and Agriculture Organization of the United Nations. Rome. 2023. Available online: http://www.fao.org/faostat/en/#home (accessed on 24 February 2025).
- Figueirêdo, M.C.B.; Gondim, R.S.; Aragão, F.A.S. Produção de Melão e Mudanças Climáticas: Sistemas Conservacionistas de Cultivo para Redução das Pegadas de Carbono e Hídrica; Embrapa: Brasília, Brazil, 2017; 302p. [Google Scholar]
- Cavalcante, A.L.A.; Negreiros, A.M.P.; Tavares, M.B.; Barreto, E.S.; Armengol, J.; Sales Júnior, R. Characterization of five new Monosporascus species: Adaptation to environmental factors, pathogenicity to cucurbits and sensitivity to fungicides. J. Fungi 2020, 6, e169. [Google Scholar] [CrossRef]
- Sales Júnior, R.; Rodrigues, A.P.M.S.; Negreiros, A.M.P.; Ambrósio, M.M.Q.; Barboza, H.S.; Beltrán, R. Weeds as potential hosts for fungal root pathogens of watermelon. Rev. Caatinga 2019, 32, 1–6. [Google Scholar] [CrossRef]
- Medeiros, A.C.; Melo, D.R.M.; Ambrósio, M.M.Q.; Nunes, G.H.S.; Costa, J.M. Métodos de inoculação de Rhizoctonia solani e Macrophomina phaseolina em meloeiro (Cucumis melo). Summa Phytopathol. 2015, 41, 281–286. [Google Scholar] [CrossRef]
- Costa, N.D. A Cultura do Melão, 3rd ed.; Embrapa: Brasília, Brazil, 2017; 202p. [Google Scholar]
- Slebi, E.A.; Al-Juboory, H.H. Biological and chemical control of melon root rot disease: A review. Arab J. Plant Prot. 2024, 42, 465–473. [Google Scholar] [CrossRef]
- Cohen, R.; Pivonia, S.; Burguer, Y.; Edelstein, M.; Gamliel, A.; Katan, J. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 2000, 84, 496–505. [Google Scholar] [CrossRef]
- Khirallah, W.; Mouden, N.; Selmaoui, K.; Achbani, E.H.; Benkirane, R.; Touhami, A.O.; Douira, A. Compatibility of Trichoderma spp. with some fungicides under in vitro conditions. Int. J. Recent Sci. Res. 2016, 7, 9060–9067. [Google Scholar]
- Oliveira, L.L.B.; Moraes, J.G.L.; Silva, C.F.B.; Sousa, A.B.O.; Beleza, N.M.V.; Jacinto Júnior, S.G. Influência da temperatura e radiação ultravioleta no desenvolvimento de isolados de Trichoderma spp. Rev. Bras. Meteorol. 2019, 34, 423–430. [Google Scholar] [CrossRef]
- Bettiol, W.; Morandi, M.A.B. Biocontrole de Doenças de Plantas: Usos e Perspectivas; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2009; 341p. [Google Scholar]
- Hashem, M.Z.; Samir, S.H.; Hassan, A.K. Detect activity of some biological factors to induce resistance in cantaloupe plant through peroxidase enzyme, phenols and chlorophyll contents. Iraqi J. Agric. Sci. 2017, 48, 1239–1246. [Google Scholar] [CrossRef]
- Matloob, A.A.A.H.; Al-Amiri, E.Q.A. Molecular diagnosis of Rhizoctonia solani Kühn caused of melon root Cucumis melo L. and its biological control. Al Furat J. Agric. Sci. 2017, 9, 1121–1139. [Google Scholar]
- Bakhshi, E.; Safaie, N.; Shams-Bakhsh, M. Bacillus amyloliquefaciens as a biocontrol agent improves the management of charcoal root rot in melon. J. Agric. Sci. Technol. 2018, 20, 597–607. [Google Scholar]
- Zhang, S.; Gan, Y.; Ji, W.; Xu, B.; Hou, B.; Liu, J. Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front. Plant Sci. 2017, 8, e1491. [Google Scholar] [CrossRef] [PubMed]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 2020, 11, e313. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef] [PubMed]
- AGROFIT. Available online: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 25 February 2025).
- Pertot, I.; Puopolo, G.; Giovannini, O.; Angeli, D.; Sicher, C.; Perazzolli, M. Advantages and limitations involved in the use of microbial biofungicides for the control of root and foliar phytopathogens of fruit crops. Italus Hortus 2016, 23, 3–12. [Google Scholar]
- Muhammad, M.; Wahab, R.A.; Huyop, F.; Rusli, M.H.; Yaacob, S.N.S.; Teo, H.L. An overview of the potential role of microbial metabolites as greener fungicides for future sustainable plant diseases management. J. Crop Prot. 2022, 11, 1–27. [Google Scholar]
- Branco, J.S.; Cardoso, M.M.; Venturoso, L.R.; Venturoso, L.A.C. Compatibilidade de Trichoderma com fungicidas utilizados no tratamento de sementes de soja. Rev. Observ. Econ. Lat.-Am. 2025, 23, e8643. [Google Scholar] [CrossRef]
- Ambrósio, M.M.Q.; Dantas, A.C.A.; Martínez-Perez, E.; Medeiros, A.C.; Nunes, G.H.S.; Picó, M.B. Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica 2015, 206, 287–300. [Google Scholar] [CrossRef]
- Silva, F.A.Z.; Azevedo, C.A.V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef]
- Jenkins, W.R. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 1964, 48, 692. [Google Scholar]
- Corrêa, E.B.; Bettiol, W.; Sutton, J.C. Controle biológico da podridão radicular (Pythium aphanidermatum) e promoção de crescimento por Pseudomonas chlororaphis 63-28 e Bacillus subtilis GB03 em alface hidropônica. Summa Phytopathol. 2010, 36, 275–281. [Google Scholar] [CrossRef]
- Almeida, B.H.; Negreiros, A.M.P.; Melo, N.J.A.; Ambrósio, M.M.Q.; Armengol, J.; da Silva, W.; Sales Junior, R. Evaluation of fungicides and Trichoderma spp. for controlling soil-borne fungal pathogens in melon crops. Rev. Caatinga 2024, 37, e12462. [Google Scholar] [CrossRef]
- Han, S.E.; Cho, J.-Y.; Kim, K.Y.; Maung, C.E.H. Role of an antagonistic bacterium, Bacillus subtilis PE7, in growth promotion of netted melon (Cucumis melo L. var. reticulatus Naud.). Can. J. Microbiol. 2023, 70, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prakash, A.; Johri, B.N. Bacillus as PGPR in crop ecosystem. In Bacteria in Agrobiology: Crop Ecosystems; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 37–59. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.A.; del Cerro, P.; Espuny, M.R.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Chagas, L.F.B.; Martins, A.L.L.; de Carvalho Filho, M.R.; de Oliveira Miller, L.; de Oliveira, J.C.; Chagas Junior, A.F. Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Agri-Environ. Sci. 2018, 3, 10–18. [Google Scholar] [CrossRef]
- Stummer, B.E.; Zhang, Q.; Zhang, X.; Warren, R.A.; Harvey, P.R. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum. J. Appl. Microbiol. 2020, 129, 971–990. [Google Scholar] [CrossRef]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant Sci. 2021, 11, e610065. [Google Scholar] [CrossRef]
- Gava, C.A.T.; Menezes, M.E.L. Eficiência de isolados de Trichoderma spp. no controle de patógenos de solo em meloeiro amarelo. Rev. Ciênc. Agron. 2012, 43, 633–640. [Google Scholar] [CrossRef]
- Frederic, J.B.; da Costa, C.A.; da Silva Rocha, F.; de Fátima Gomes Fernandes, M. Application forms and mode of action of biocontroller in the management of Meloidogyne incognita in tomato. Hortic. Bras. 2020, 38, 254–260. [Google Scholar] [CrossRef]
- Mokbel, A.A.; Abd El-Hameed, H.K.A.; Massoud, H.M.; Elsayed, T.S.M.; Sherif, N.A.M.; Helal, N.H.S.; El-Saedy, M.A.M. Impact of Bacillus subtilis, Trichoderma spp. and the bioproduct Top Perfect on Meloidogyne incognita infecting pepper plants. Alex. J. Agric. Sci. 2022, 67, 175–181. [Google Scholar] [CrossRef]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 2020, 11, e992. [Google Scholar] [CrossRef] [PubMed]
Product | Composition | Formulation | Dose | Company |
---|---|---|---|---|
Bombardeiro/Lastro | Bacillus subtilis, B. velezensis, B. pumilus | Concentrated suspension | 1.0 L.ha−1 | Total Biotecnologia Indústria e Comércio S.A., Curitiba, Brazil |
Quality® WG | Trichoderma asperellum | Water-dispersible granules | 150.0 g.ha−1 | Lallemand Soluções Biológicas Ltd.a, Patos de Minas, Brazil |
TrichobiolMax | Trichoderma asperellum | Concentrated suspension | 1.5 L.ha−1 | Biofungi Controle Biológico, Eunápolis, Brazil |
TrichonemateMax | Trichoderma longibrachiatum | Concentrated suspension | 1.5 L.ha−1 | Biofungi Controle Biológico, Eunápolis, Brazil |
Soil A | ||||||
---|---|---|---|---|---|---|
Experiment 1 | ||||||
Product | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Bombardeiro/Lastro | 25.60 a | 2.30 a | 0.36 a | 167.50 a | 81.10 a | 8.21 a |
Quality® | 22.55 a | 2.17 ab | 0.33 ab | 172.55 a | 80.15 a | 8.20 a |
TrichobiolMax | 18.20 b | 2.04 ab | 0.33 ab | 175.20 a | 77.12 a | 8.17 a |
TrichonemateMax | 21.80 ab | 1.87 b | 0.29 b | 175.20 a | 75.61 a | 7.99 a |
LSD | 3.98 | 0.38 | 0.06 | 20.72 | 10.47 | 0.93 |
CV (%) | 21.78 | 21.25 | 20.96 | 14.04 | 15.34 | 13.49 |
Experiment 2 | ||||||
Bombardeiro/Lastro | 25.70 a | 2.11 a | 0.32 a | 176.45 a | 86.83 a | 8.46 a |
Quality® | 25.80 a | 1.71 b | 0.30 a | 175.15 a | 78.58 ab | 7.98 a |
TrichobiolMax | 26.80 a | 1.71 b | 0.30 a | 180.85 a | 80.94 ab | 8.29 a |
TrichonemateMax | 25.15 a | 1.51 b | 0.27 a | 179.65 a | 75.83 b | 7.86 a |
LSD | 4.47 | 0.39 | 0.08 | 23.29 | 9.71 | 0.89 |
CV (%) | 20.73 | 26.55 | 31.43 | 15.48 | 14.47 | 13.20 |
Soil B | ||||||
Experiment 1 | ||||||
Product | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Bombardeiro/Lastro | 27.00 ab | 2.30 a | 0.33 a | 175.60 a | 80.00 a | 6.52 a |
Quality® | 32.80 a | 1.99 a | 0.22 b | 177.50 a | 71.69 a | 5.40 b |
TrichobiolMax | 25.85 b | 1.96 a | 0.27 b | 183.60 a | 76.86 a | 6.39 a |
TrichonemateMax | 27.15 ab | 1.51 b | 0.21 b | 177.35 a | 71.60 a | 6.37 a |
LSD | 6.28 | 0.35 | 0.06 | 13.96 | 10.13 | 0.92 |
CV (%) | 27.16 | 20.65 | 28.91 | 8.98 | 15.22 | 17.25 |
Experiment 2 | ||||||
Bombardeiro/Lastro | 22.60 ab | 1.61 a | 0.29 a | 176.45 a | 77.90 a | 7.18 a |
Quality® | 21.25 b | 1.67 a | 0.27 a | 184.10 a | 76.18 a | 6.92 a |
TrichobiolMax | 21.10 b | 1.42 a | 0.26 a | 181.30 a | 73.57 a | 6.91 a |
TrichonemateMax | 25.95 a | 1.63 a | 0.29 a | 176.75 a | 73.66 a | 6.72 a |
LSD | 3.40 | 0.32 | 0.09 | 17.79 | 10.76 | 0.87 |
CV (%) | 18.36 | 24.95 | 37.95 | 11.59 | 17.07 | 15.03 |
Soil A | ||||||
---|---|---|---|---|---|---|
Experiment 1 | ||||||
Application Strategy | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Tray +7 + 7 + 7 + 7 (5A) | 22.30 a | 2.08 a | 0.34 a | 174.37 a | 80.13 a | 8.46 a |
Tray +14 + 14 (3A) | 21.77 a | 2.11 a | 0.32 a | 170.85 a | 76.86 a | 7.84 b |
LSD | 2.13 | 0.21 | 0.03 | 11.11 | 5.61 | 0.50 |
CV (%) | 21.78 | 21.25 | 20.96 | 14.04 | 15.34 | 13.49 |
Experiment 2 | ||||||
Tray +7 + 7 + 7 + 7 (5A) | 26.40 a | 1.68 a | 0.29 a | 176.17 a | 80.78 a | 8.10 a |
Tray +14 + 14 (3A) | 25.32 a | 1.83 a | 0.31 a | 179.87 a | 80.31 a | 8.20 a |
LSD | 2.39 | 0.21 | 0.04 | 12.49 | 5.21 | 0.48 |
CV (%) | 20.73 | 26.55 | 31.43 | 15.48 | 14.47 | 13.20 |
Soil B | ||||||
Experiment 1 | ||||||
Application Strategy | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Tray +7 + 7 + 7 + 7 (5A) | 28.62 a | 1.96 a | 0.27 a | 186.90 a | 77.18 a | 6.31 a |
Tray +14 + 14 (3A) | 27.77 a | 1.92 a | 0.25 a | 170.12 b | 72.89 a | 6.03 a |
LSD | 3.37 | 0.19 | 0.03 | 7.48 | 5.43 | 0.49 |
CV (%) | 27.16 | 20.65 | 28.91 | 8.98 | 15.22 | 17.25 |
Experiment 2 | ||||||
Tray +7 + 7 + 7 + 7 (5A) | 21.30 b | 1.49 b | 0.25 b | 173.25 b | 72.82 a | 6.73 a |
Tray +14 + 14 (3A) | 24.15 a | 1.68 a | 0.30 a | 186.05 a | 77.83 a | 7.14 a |
LSD | 1.82 | 0.17 | 0.05 | 9.54 | 5.77 | 0.47 |
CV (%) | 18.36 | 24.95 | 37.95 | 11.59 | 17.07 | 15.03 |
Soil A | ||||||
---|---|---|---|---|---|---|
Experiment 1 | ||||||
Treatment | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Bombardeiro/Lastro—5 A | 26.00 a | 2.37 b | 0.39 a | 167.60 b | 84.29 b | 8.48 b |
Bombardeiro/Lastro—3 A | 25.20 a | 2.23 b | 0.33 a | 167.40 b | 77.91 b | 7.97 b |
Quality®—5 A | 24.40 a | 2.01 b | 0.33 a | 175.50 a | 81.27 b | 8.56 b |
Quality®—3 A | 20.70 a | 2.33 b | 0.34 a | 169.60 b | 79.02 b | 7.85 b |
TrichobiolMax—5 A | 16.40 b | 1.95 b | 0.34 a | 178.70 a | 77.37 b | 8.50 b |
TrichobiolMax—3 A | 20.00 a | 2.13 b | 0.32 a | 171.70 b | 76.86 b | 7.83 b |
TrichonemateMax—5 A | 22.40 a | 1.98 b | 0.31 a | 175.70 a | 77.59 b | 8.28 b |
TrichonemateMax—3 A | 21.20 a | 1.76 b | 0.27 b | 174.70 b | 73.63 b | 7.70 b |
Positive control | 21.10 a | 1.89 b | 0.28 b | 194.40 a | 68.09 b | 7.07 b |
Control | 22.80 a | 3.18 a | 0.37 a | 205.50 a | 127.74 a | 10.65 a |
LSD | 5.88 | 0.57 | 0.08 | 30.67 | 15.50 | 1.37 |
CV (%) | 21.78 | 21.25 | 20.96 | 14.04 | 15.34 | 13.49 |
Experiment 2 | ||||||
Bombardeiro/Lastro—5 A | 25.60 a | 2.09 a | 0.35 a | 179.80 a | 87.36 a | 8.63 a |
Bombardeiro/Lastro—3 A | 25.80 a | 2.12 a | 0.30 a | 173.10 b | 86.31 a | 8.30 a |
Quality®—5 A | 25.50 a | 1.66 a | 0.29 a | 173.10 b | 76.37 b | 7.66 a |
Quality®—3 A | 26.10 a | 1.76 a | 0.30 a | 177.20 b | 80.79 a | 8.29 a |
TrichobiolMax—5 A | 29.40 a | 1.46 b | 0.24 b | 174.40 b | 80.33 a | 8.08 a |
TrichobiolMax—3 A | 24.20 a | 1.95 a | 0.37 a | 187.30 a | 81.55 a | 8.49 a |
TrichonemateMax—5 A | 25.10 a | 1.51 b | 0.28 a | 177.40 b | 79.07 b | 8.02 a |
TrichonemateMax—3 A | 25.20 a | 1.50 b | 0.27 a | 181.90 a | 72.58 b | 7.70 a |
Positive control | 27.10 a | 1.37 b | 0.25 b | 177.60 b | 72.32 b | 7.33 b |
Control | 25.90 a | 2.22 a | 0.38 a | 213.20 a | 93.45 a | 8.65 a |
LSD | 6.61 | 0.57 | 0.12 | 34.48 | 14.38 | 1.31 |
CV (%) | 20.73 | 26.55 | 31.43 | 15.48 | 14.47 | 13.20 |
Soil B | ||||||
Experiment 1 | ||||||
Treatment | RL (cm) | FRW (g) | DRW (g) | SL (cm) | FSW (g) | DSW (g) |
Bombardeiro/Lastro—5 A | 24.80 a | 2.42 b | 0.36 a | 178.20 b | 80.52 b | 6.62 a |
Bombardeiro/Lastro—3 A | 29.20 a | 2.19 b | 0.31 a | 173.00 b | 79.48 b | 6.41 b |
Quality®—5 A | 33.10 a | 1.91 b | 0.22 b | 181.50 b | 70.44 b | 5.41 b |
Quality®—3 A | 32.50 a | 2.06 b | 0.21 b | 173.50 b | 72.94 b | 5.40 b |
TrichobiolMax—5 A | 26.70 a | 2.03 b | 0.28 a | 199.60 a | 84.23 b | 6.67 a |
TrichobiolMax—3 A | 25.00 a | 1.89 b | 0.26 a | 167.60 b | 69.50 b | 6.11 b |
TrichonemateMax—5 A | 29.90 a | 1.49 b | 0.22 b | 188.30 b | 73.54 b | 6.55 a |
TrichonemateMax—3 A | 24.40 a | 1.52 b | 0.21 b | 166.40 b | 69.66 b | 6.20 b |
Positive control | 28.40 a | 1.87 b | 0.27 a | 231.30 a | 91.02 b | 7.27 a |
Control | 25.10 a | 2.99 a | 0.35 a | 216.60 a | 111.61 a | 7.86 a |
LSD | 9.30 | 0.52 | 0.09 | 20.66 | 14.99 | 1.36 |
CV (%) | 27.16 | 20.65 | 28.91 | 8.98 | 15.22 | 17.25 |
Experiment 2 | ||||||
Bombardeiro/Lastro—5 A | 23.10 b | 1.61 a | 0.28 a | 169.30 b | 73.66 b | 7.00 b |
Bombardeiro/Lastro—3 A | 22.10 b | 1.61 a | 0.30 a | 183.60 b | 82.14 a | 7.35 b |
Quality®—5 A | 20.40 b | 1.52 a | 0.26 b | 178.10 b | 72.95 b | 6.82 b |
Quality®—3 A | 22.10 b | 1.83 a | 0.27 b | 190.10 b | 79.40 b | 7.03 b |
TrichobiolMax—5 A | 18.40 b | 1.18 b | 0.23 b | 170.50 b | 70.98 b | 6.54 b |
TrichobiolMax—3 A | 23.80 b | 1.67 a | 0.30 a | 192.10 b | 76.15 b | 7.29 b |
TrichonemateMax—5 A | 23.30 b | 1.64 a | 0.23 b | 175.10 b | 73.68 b | 6.56 b |
TrichonemateMax—3 A | 28.60 a | 1.61 a | 0.34 a | 178.40 b | 73.64 b | 6.88 b |
Positive control | 20.30 b | 1.17 b | 0.20 b | 193.50 b | 62.07 b | 5.32 b |
Control | 21.40 b | 1.86 a | 0.41 a | 221.40 a | 95.62 a | 9.26 a |
LSD | 5.03 | 0.48 | 0.13 | 26.33 | 15.92 | 1.29 |
CV (%) | 18.36 | 24.95 | 37.95 | 11.59 | 17.07 | 15.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante, A.L.A.; Negreiros, A.M.P.; Viana, D.M.; de Freitas, S.Q.; Souza, M.T.d.Q.; Tavares, M.B.; Khan, S.; Sales, I.M.M.; Sales Júnior, R. Efficacy of Biological Products in Managing Root Pathogens in Melons. Agronomy 2025, 15, 2105. https://doi.org/10.3390/agronomy15092105
Cavalcante ALA, Negreiros AMP, Viana DM, de Freitas SQ, Souza MTdQ, Tavares MB, Khan S, Sales IMM, Sales Júnior R. Efficacy of Biological Products in Managing Root Pathogens in Melons. Agronomy. 2025; 15(9):2105. https://doi.org/10.3390/agronomy15092105
Chicago/Turabian StyleCavalcante, Allinny Luzia Alves, Andréia Mitsa Paiva Negreiros, Dariane Monteiro Viana, Sabrina Queiroz de Freitas, Márcio Thalison de Queiroz Souza, Moisés Bento Tavares, Sabir Khan, Inês Maria Mendes Sales, and Rui Sales Júnior. 2025. "Efficacy of Biological Products in Managing Root Pathogens in Melons" Agronomy 15, no. 9: 2105. https://doi.org/10.3390/agronomy15092105
APA StyleCavalcante, A. L. A., Negreiros, A. M. P., Viana, D. M., de Freitas, S. Q., Souza, M. T. d. Q., Tavares, M. B., Khan, S., Sales, I. M. M., & Sales Júnior, R. (2025). Efficacy of Biological Products in Managing Root Pathogens in Melons. Agronomy, 15(9), 2105. https://doi.org/10.3390/agronomy15092105