Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Meteorological Data
2.3. Establishment and Experimental Design
2.4. Defoliation Management
2.5. Herbage Measurements
2.6. Botanical Composition
2.7. Statistical Analysis
3. Results
3.1. Herbage Measurements
3.1.1. Annual and Seasonal Dry Matter Production
3.1.2. Pastures Daily Growth Rates
3.1.3. Botanical Composition
4. Discussion
4.1. Annual and Seasonal Forage Dry Matter Production
4.2. Botanical Composition
4.3. Management Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hidosa, D.; Guyo, M. Climate change effects on livestock feed resources: A review. J. Fish. Livest. Prod. 2017, 5, 259. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014—Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Lee, J.M.; Matthew, C.; Thom, E.R.; Chapman, D.F. Perennial ryegrass breeding in New Zealand: A dairy industry perspective. Crop Pasture Sci. 2012, 63, 107–127. [Google Scholar] [CrossRef]
- Horan, B.; Roche, J. Defining resilience in pasture-based dairy-farm systems in temperate regions. Anim. Prod. Sci. 2020, 60, 55–66. [Google Scholar] [CrossRef]
- Goh, K.M.; Bruce, G.E. Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand. Agric. Ecosyst. Environ. 2005, 110, 230–240. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Ghahramani, A.; Howden, S.M.; del Prado, A.; Thomas, D.T.; Moore, A.D.; Ji, B.; Ates, S. Climate change impact, adaptation, and mitigation in temperate grazing systems: A review. Sustainability 2019, 11, 7224. [Google Scholar] [CrossRef]
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Howden, M.; Smith, P.; Morton, J.F.; Herrero, M. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Rev. Clim. Change 2016, 7, 869–892. [Google Scholar] [CrossRef]
- Jordon, M.W.; Willis, K.J.; Bürkner, P.C.; Petrokofsky, G. Rotational grazing and multispecies herbal leys increase productivity in temperate pastoral systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 337, 108075. [Google Scholar] [CrossRef]
- Jing, J.; Søegaard, K.; Cong, W.F.; Eriksen, J. Species diversity effects on productivity, persistence and quality of multispecies swards in a four-year experiment. PLoS ONE 2017, 12, e0169208. [Google Scholar] [CrossRef] [PubMed]
- Hearn, C.; Egan, M.; Lynch, M.B.; Flynn, D.; O’Donovan, M. Can the Inclusion of Ribwort Plantain or Chicory Increase the Seasonal and Annual Dry Matter Production of Intensive Dairy Grazing Swards? Eur. J. Agron. 2024, 152, 127020. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastiá, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Malisch, C.S.; Finn, J.A.; Eriksen, J.; Loges, R.; Brophy, C.; Huguenin-Elie, O. The importance of multi-species grassland leys to enhance ecosystem services in crop rotations. Grass Forage Sci. 2024, 79, 120–134. [Google Scholar] [CrossRef]
- Baker, S.; Lynch, M.B.; Godwin, F.; Boland, T.M.; Kelly, A.K.; Evans, A.; Murphy, P.; Sheridan, H. Multispecies swards outperform perennial ryegrass monoculture and perennial ryegrass-white clover swards—A beef system grazing experiment. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Jaramillo, D.M.; Sheridan, H.; Soder, K.; Dubeux, J.C.B. Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy 2021, 11, 1912. [Google Scholar] [CrossRef]
- Ordoñez, I.P.; López, I.F.; Kemp, P.D.; Donaghy, D.J.; Dörner, J.; García-Favre, J.; Zhang, Y. A short-term effect of multi-species pastures and the plant’s physiological response on pasture growth. Eur. J. Agron. 2024, 159, 127232. [Google Scholar] [CrossRef]
- Teixeira, A.; Toorop, P.E.; Iannetta, P.P.M. Differential Interspecific Adaptation to Abiotic Stress by Plantago Species. Front. Plant Sci. 2020, 11, 573039. [Google Scholar] [CrossRef]
- Hoekstra, N.J.; Suter, M.; Finn, J.A.; Husse, S.; Lüscher, A. Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant Soil 2015, 394, 21–34. [Google Scholar] [CrossRef]
- Chesney, L.E.; Carnovale, F.; Huson, K.M.; Rutherford, N.; Patterson, D. Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review. Sustainability 2025, 17, 3131. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Forage plantain (Plantago lanceolata L.): Meta-analysis quantifying the decrease in nitrogen excretion, the increase in milk production, and the changes in milk composition of dairy cows grazing pastures containing plantain. Anim. Feed. Sci. Technol. 2022, 285, 115244. [Google Scholar] [CrossRef]
- Della Rosa, M.M.; Sandoval, E.; Luos, D.; Pacheco, D.; Jonker, A. Effect of feeding fresh forage plantain (Plantago lanceolata) or ryegrass-based pasture on methane emissions, total-tract digestibility, and rumen fermentation of nonlactating dairy cows. J. Dairy Sci. 2022, 105, 6628–6638. [Google Scholar] [CrossRef] [PubMed]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing diverse agricultural pastures for improving ruminant production systems. Front. Sustain. Food Syst. 2020, 4, 215. [Google Scholar] [CrossRef]
- Darch, T.; Mcgrath, S.P.; Lee MR, F.; Beaumont, D.A.; Blackwell MS, A.; Horrocks, C.A.; Storkey, J. The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy 2020, 10, 1463. [Google Scholar] [CrossRef]
- Grace, C.; Lynch, M.B.; Sheridan, H.; Lott, S.; Fritch, R.; Boland, T.M. Grazing multispecies swards improves ewe and lamb performance. Animal 2019, 13, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Merino, V.M.; Aguilar, R.; Piña, L.F.; Garriga, M.; Ostria-Gallardo, E.; López, M.D.; Noriega, F.; Campos, J.; Navarrete, S.; Rivero, M.J. Regrowth dynamics and morpho-physiological characteristics of Plantago lanceolata under different defoliation frequencies and intensities. PLoS ONE 2024, 19, e0310009. [Google Scholar] [CrossRef]
- Lee, J.M.; Hemmingson, N.R.; Minnee, E.M.; Clark, C.E. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics and plant density. Crop Pasture Sci. 2015, 66, 168–183. [Google Scholar] [CrossRef]
- Baker, S.; Lynch, M.; Godwin, F.; Brennan, E.; Boland, T.; Evans, A.; Kelly, A.; Sheridan, H. Dry-matter production and botanical composition of multispecies and perennial ryegrass swards under varying defoliation management. Grass Forage Sci. 2023, 78, 390–401. [Google Scholar] [CrossRef]
- Nobilly, F.; Bryant, R.H.; McKenzie, B.A.; Edwards, G.R. Productivity of rotationally grazed simple and diverse pasture mixtures under irrigation in Canterbury. Proc. N. Z. Grassl. Assoc. 2013, 75, 165–172. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Soder, K.J.; Muller, L.D.; Klement, K.D.; Skinner, R.H.; Goslee, S.C. Forage Mixture Productivity and Botanical Composition in Pastures Grazed by Dairy Cattle. Agronomy 2005, 97, 1465–1471. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico X Región; Publicación CIREN N° 123; Centro de Información de Recursos Naturales, Gobierno de Chile: Santiago, Chile, 2003; p. 136. [Google Scholar]
- Merino, V.M.; Aguilar, R.I.; Rivero, M.J.; Ordóñez, I.P.; Piña, L.F.; López-Belchí, M.D.; Schoebitz, M.I.; Noriega, F.A.; Pérez, C.I.; Cooke, A.S.; et al. Distribution of Non-Structural Carbohydrates and Root Structure of Plantago lanceolata L. under Different Defoliation Frequencies and Intensities. Plants 2024, 13, 2773. [Google Scholar] [CrossRef]
- Tozer, K.N.; Cameron, C.A.; Thom, E.R. Pasture persistence: Farmer observations and field measurements. NZGA Res. Pract. Ser. 2011, 15, 25–30. [Google Scholar] [CrossRef]
- Merino, V.M.; Balocchi, O.A.; Pulido, R. Effect of daily herbage allowance restriction on pasture characteristics and milk production by grazing dairy cows in spring. Cienc. Investig. Agrar. 2018, 45, 21–24. [Google Scholar] [CrossRef]
- Phelan, P.; Casey, I.A.; Humphreys, J. The effect of target postgrazing height on sward clover content, herbage yield, and dairy production from grass-white clover pasture. J. Dairy Sci. 2013, 96, 1598–1611. [Google Scholar] [CrossRef]
- Kaufononga, S.; Donaghy, D.J.; Hendriks, S.J.; Matthew, C.; Kemp, P.D.; Cranston, L.M. Comparative response of tall fescue and perennial ryegrass swards to variation in defoliation interval and height. N. Z. J. Agric. Res. 2017, 60, 363–375. [Google Scholar] [CrossRef]
- Wims, C.M.; McEvoy, M.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of perennial ryegrass (Lolium perenne L.) cultivars on the milk yield of grazing dairy cows. Animal 2013, 7, 410–421. [Google Scholar] [CrossRef]
- Franzluebbers, A.; Seman, D.; Stuedemann, J. Forage dynamics in mixed tall fescue–bermudagrass pastures of the Southern Piedmont USA. Agric. Ecosyst. Environ. 2013, 168, 37–45. [Google Scholar] [CrossRef]
- Donaghy, D.J.; Fulkerson, W.J. The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci. 1997, 52, 401–407. [Google Scholar] [CrossRef]
- Hernandez, P.; Picon-Cochard, C. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures. Front. Plant Sci. 2016, 6, 538. [Google Scholar] [CrossRef] [PubMed]
- Cranston, L.; Kenyon, P.; Morris, S.; Lopez-Villalobos, N.; Kemp, P. Ewe lamb diet selection on plantain (Plantago lanceolata) and on a herb and legume mix, including plantain, chicory (Cichorium intybus), red clover (Trifolium pratense) and white clover (Trifolium repens). Anim. Prod. Sci. 2015, 55, 515. [Google Scholar] [CrossRef]
- Nie, Z.; Miller, S.; Moore, G.; Hackney, B.; Boschma, S.; Reed, K.; Mitchell, M.; Albertsen, T.; Clark, S.; Craig, A. Field evaluation of perennial grasses and herbs in southern Australia. 2. Persistence, root characteristics and summer activity. Aust. J. Exp. Agric. 2008, 48, 424–435. [Google Scholar] [CrossRef]
Month | Jan | Feb | March | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall (mm) | ||||||||||||
2023 | 7.1 | 7.9 | 5.4 | 1.2 | 83.9 | 83.4 | 139.8 | 167.3 | 124.4 | 34.5 | 18.7 | 23.8 |
2024 | 14.7 | 19.6 | 82.3 | 26.9 | 74.5 | 87.8 | 86.3 | 93.2 | 146.9 | 24.7 | 100.5 | 13.9 |
2025 | 25.3 | 44.4 | 46.6 | 68.8 | 89.4 | 29.9 | --- | --- | --- | --- | --- | --- |
10-year average | 28.1 | 27.5 | 58.1 | 95.0 | 113.8 | 164.0 | 154.6 | 157.6 | 84.9 | 63.4 | 53.4 | 33.9 |
Average air temperature (°C) | ||||||||||||
2023 | 15.4 | 15.2 | 12.4 | 11.1 | 8.7 | 7.1 | 6.7 | 6.6 | 7.6 | 9.3 | 10.4 | 13.5 |
2024 | 16.2 | 16.1 | 12.9 | 10.1 | 5.7 | 7.8 | 4.9 | 6.4 | 7.4 | 10.5 | 11.4 | 13.8 |
2025 | 15.9 | 15.0 | 13.2 | 10.7 | 7.8 | 6.1 | --- | --- | --- | --- | --- | --- |
10-year average | 15.4 | 15.9 | 13.5 | 10.8 | 8.7 | 6.7 | 6.2 | 7.1 | 8.2 | 10.2 | 11.4 | 13.4 |
Average soil temperature (°C, 20 cm) | ||||||||||||
2023 | 17.8 | 18.2 | 15.2 | 12.4 | 10.9 | 8.4 | 7.6 | 7.8 | 8.2 | 10.2 | 11.4 | 13.4 |
2024 | 15.3 | 15.5 | 13.8 | 11.2 | 7.2 | 7.5 | 6.0 | 6.4 | 7.5 | 9.9 | 11.8 | 13.1 |
2025 | 14.7 | 14.6 | 13.7 | 11.9 | 10.2 | 8.1 | --- | --- | --- | --- | --- | --- |
10-year average | 16.3 | 16.6 | 14.8 | 12.2 | 9.8 | 7.6 | 6.8 | 7.7 | 8.9 | 10.7 | 13.0 | 14.9 |
Species Pasture Type | Perennial ryegrass 1 | Cocksfoot | Tall Fescue | Festulolium | White Clover | Plantain | Chicory |
---|---|---|---|---|---|---|---|
LP-TR | |||||||
Proportion | 0.90 | 0 | 0 | 0 | 0.10 | 0 | 0 |
Seeding rate (g m−2) | 1.79 | 0 | 0 | 0 | 0.73 | 0 | 0 |
Number of seeds m−2 | 700 | 0 | 0 | 0 | 450 | 0 | 0 |
MSS1 | |||||||
Proportion | 0.10 | 0.10 | 0.10 | 0.15 | 0.15 | 0.20 | 0.20 |
Seeding rate (g m−2) | 0.40 | 0.25 | 0.67 | 1.04 | 0.20 | 0.61 | 0.61 |
Number of seeds m−2 | 156 | 156 | 156 | 234 | 128 | 37 | 37 |
MSS2 | |||||||
Proportion | 0.15 | 0.05 | 0.20 | 0.10 | 0.10 | 0.30 | 0.10 |
Seeding rate (g m−2) | 0.54 | 0.11 | 1.21 | 0.63 | 0.15 | 1.01 | 0.34 |
Number of seeds m−2 | 210 | 70 | 280 | 140 | 90 | 270 | 90 |
MSS3 | |||||||
Proportion | 0.25 | 0.05 | 0.15 | 0.10 | 0.15 | 0.15 | 0.15 |
Seeding rate (g m−2) | 0.82 | 0.10 | 0.83 | 0.57 | 0.24 | 0.56 | 0.56 |
Number of seeds m−2 | 319 | 64 | 191 | 128 | 150 | 150 | 150 |
Defoliation Treatments | Summer | Autumn | Winter | Spring |
---|---|---|---|---|
5 cm/short RL | 5 cm/24 days | 5 cm/28 days | 5 cm/35 days | 5 cm/21 days |
5 cm/long RL | 5 cm/35 days | 5 cm/40 days | 5 cm/45 days | 5 cm/28 days |
8 cm/short RL | 8 cm/24 days | 8 cm/28 days | 8 cm/35 days | 8 cm/21 days |
8 cm/long RL | 8 cm/35 days | 8 cm/40 days | 8 cm/45 days | 8 cm/28 days |
Total Herbage Production (kg DM ha−1) | Summer Herbage Production (kg DM ha−1) | Autumn Herbage Production (kg DM ha−1) | Winter Herbage Production (kg DM ha−1) | Spring Herbage Production (kg DM ha−1) | |
---|---|---|---|---|---|
Pasture type (PT) | |||||
LP-TR | 11,035 c 1 | 1494 c | 1302 b | 1352 c | 4746 ab |
MSS1 | 11,732 b | 1589 bc | 1828 a | 1552 b | 4526 b |
MSS2 | 12,557 a | 1648 ab | 1794 a | 1771 a | 5075 a |
MSS3 | 11,508 b | 1731 a | 1264 b | 1488 b | 4553 b |
SEM | 166.3378 | 52.1935 | 37.8099 | 33.9924 | 105.5081 |
p-value | <0.0001 | 0.0135 | <0.0001 | <0.0001 | 0.0012 |
Rotation length (RL) | |||||
Short | 12,545 a | 1689 a | 1827 a | 1520 | 5132 a |
Long | 10,871 b | 1542 b | 1267 b | 1561 | 4318 b |
SEM | 117.6186 | 36.9064 | 26.7356 | 24.0362 | 74.6054 |
p-value | <0.0001 | 0.0056 | <0.0001 | 0.2263 | <0.0001 |
Defoliation intensity (DI) | |||||
5 cm | 11,425 b | 1618 | 1651 a | 1558 | 4264 b |
8 cm | 11,991 a | 1613 | 1443 b | 1523 | 5186 a |
SEM | 117.6186 | 36.9064 | 26.7356 | 24.0362 | 74.6054 |
p-value | 0.0010 | 0.9228 | <0.0001 | 0.3078 | <0.0001 |
Significance of interactions | |||||
PT × RL | 0.1119 | 0.9606 | 0.0026 | 0.1128 | 0.0536 |
PT × DI | 0.2783 | 0.5978 | 0.2960 | 0.0298 | 0.1244 |
RL × DI | 0.0137 | 0.3532 | 0.0147 | 0.0060 | 0.0005 |
PT × RL × DI | 0.7271 | 0.6896 | 0.2291 | 0.1936 | 0.0573 |
Defoliation Intensity (DI) | Rotation Length (RL) | SEM | p-Value | |||
---|---|---|---|---|---|---|
Short | Long | |||||
5 cm | 8 cm | 5 cm | 8 cm | |||
Season | ||||||
Summer (kg DM ha−1) | 1667 | 1710 | 1569 | 1516 | 52.1935 | 0.3532 |
Autumn (kg DM ha−1) | 1978 a 1 | 1676 b | 1324 c | 1210 c | 37.8099 | 0.0147 |
Winter (kg DM ha−1) | 1489 b | 1551 ab | 1627 a | 1496 b | 33.9924 | 0.0060 |
Spring (kg DM ha−1) | 4482 b | 5782 a | 4046 c | 4590 b | 105.8081 | 0.0005 |
Total herbage production (kg DM ha−1) | 12,053 b | 13,038 a | 10,798 c | 10,944 c | 166.3378 | 0.0137 |
Season | Rotation Length | Defoliation Intensity | p-Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | SEM | Short | Long | SEM | 5 cm | 8 cm | SEM | SEA | RL | DI | SEA × RL | RL × DI | |
LP-TR | ||||||||||||||||
Lolium perenne | 0.95 a 1 | 0.63 b | 0.68 b | 0.94 a | 0.0232 | 0.77 | 0.82 | 0.0165 | 0.79 | 0.80 | 0.0156 | <0.001 | 0.0260 | 0.6642 | 0.4718 | 0.0865 |
Trifolium repens | 0.02 b | 0.15 a | 0.12 a | 0.01 b | 0.0129 | 0.07 | 0.07 | 0.0086 | 0.07 | 0.08 | 0.0089 | <0.001 | 0.9315 | 0.8744 | 0.8068 | <0.001 |
Unsown species | 0.03 b | 0.22 a | 0.21 a | 0.05 b | 0.0153 | 0.15 | 0.09 | 0.0102 | 0.13 | 0.12 | 0.0106 | <0.001 | <0.001 | 0.2705 | 0.0687 | 0.3401 |
MSS1 | ||||||||||||||||
Lolium perenne | 0.07 ab | 0.09 a | 0.06 b | 0.07 ab | 0.0040 | 0.07 | 0.08 | 0.0027 | 0.06 | 0.08 | 0.0027 | 0.0198 | 0.1426 | <0.001 | 0.3419 | 0.2566 |
Festuca arundinacea | 0.11 ab | 0.13 a | 0.10 b | 0.11 ab | 0.0053 | 0.11 | 0.11 | 0.0039 | 0.09 | 0.12 | 0.0040 | 0.0166 | 0.1636 | <0.001 | 0.3435 | 0.2221 |
Dactylis glomerata | 0.05 ab | 0.06 a | 0.04 b | 0.05 ab | 0.0026 | 0.05 | 0.06 | 0.0019 | 0.04 | 0.06 | 0.0020 | 0.0099 | 0.1626 | <0.001 | 0.3672 | 0.2725 |
×Festulolium | 0.11 ab | 0.13 a | 0.10 b | 0.11 ab | 0.0059 | 0.11 | 0.11 | 0.0039 | 0.09 | 0.12 | 0.0040 | 0.0166 | 0.1636 | <0.001 | 0.3435 | 0.2221 |
Trifolium repens | 0.01 b | 0.06 a | 0.06 a | 0.00 b | 0.0069 | 0.04 | 0.03 | 0.0046 | 0.03 | 0.04 | 0.0048 | <0.001 | 0.4547 | 0.0518 | 0.7629 | 0.1253 |
Plantago lanceolata | 0.52 a | 0.30 b | 0.37 b | 0.55 a | 0.0225 | 0.43 | 0.44 | 0.0151 | 0.50 | 0.37 | 0.0154 | <0.001 | 0.8734 | <0.001 | 0.0651 | 0.1323 |
Cichorium intybus | 0.07 a | 0.07 a | 0.06 a | 0.04 b | 0.0080 | 0.06 | 0.06 | 0.0063 | 0.06 | 0.05 | 0.0061 | 0.0244 | 0.7916 | 0.5226 | 0.4171 | <0.001 |
Unsown species | 0.06 b | 0.17 a | 0.19 a | 0.06 b | 0.0125 | 0.13 | 0.11 | 0.0093 | 0.10 | 0.14 | 0.0096 | <0.001 | 0.1112 | 0.0054 | 0.0664 | 0.0209 |
MSS2 | ||||||||||||||||
Lolium perenne | 0.13 ab | 0.14 a | 0.11 b | 0.12 ab | 0.0063 | 0.12 | 0.13 | 0.0042 | 0.10 | 0.15 | 0.0044 | 0.0024 | 0.1466 | <0.001 | 0.5741 | 0.0064 |
Festuca arundinacea | 0.10 ab | 0.11 a | 0.08 b | 0.10 ab | 0.0049 | 0.09 | 0.10 | 0.0033 | 0.08 | 0.11 | 0.0034 | 0.0022 | 0.1568 | <0.001 | 0.7218 | 0.0063 |
Dactylis glomerata | 0.05 ab | 0.06 a | 0.04 b | 0.05 ab | 0.0026 | 0.05 | 0.05 | 0.0018 | 0.04 | 0.06 | 0.0018 | 0.0045 | 0.1879 | <0.001 | 0.7026 | 0.0066 |
×Festulolium | 0.08 ab | 0.09 a | 0.07 b | 0.08 ab | 0.0041 | 0.08 | 0.08 | 0.0028 | 0.07 | 0.10 | 0.0028 | 0.0034 | 0.2197 | <0.001 | 0.6878 | 0.0057 |
Trifolium repens | 0.01 b | 0.07 a | 0.07 a | 0.00 b | 0.0070 | 0.04 | 0.03 | 0.0047 | 0.03 | 0.04 | 0.0048 | <0.001 | 0.8387 | 0.6567 | 0.5470 | 0.0041 |
Plantago lanceolata | 0.58 a | 0.37 b | 0.44 b | 0.61 b | 0.0241 | 0.49 | 0.51 | 0.0162 | 0.58 | 0.42 | 0.0165 | <0.001 | 0.5553 | <0.001 | 0.3778 | 0.0211 |
Cichorium intybus | 0.03 ab | 0.04 b | 0.04 b | 0.01 a | 0.0065 | 0.03 | 0.03 | 0.0043 | 0.03 | 0.03 | 0.0044 | 0.0186 | 0.4058 | 0.3532 | 0.4236 | 0.0124 |
Unsown species | 0.02 b | 0.13 a | 0.15 a | 0.03 b | 0.0135 | 0.10 | 0.06 | 0.0091 | 0.07 | 0.09 | 0.0093 | <0.001 | 0.0126 | 0.3839 | 0.0017 | 0.8985 |
MSS3 | ||||||||||||||||
Lolium perenne | 0.26 a | 0.28 a | 0.22 b | 0.25 ab | 0.0115 | 0.26 | 0.25 | 0.0077 | 0.22 | 0.29 | 0.0079 | 0.0011 | 0.2790 | <0.001 | 0.4620 | <0.001 |
Festuca arundinacea | 0.06 a | 0.06 a | 0.04 b | 0.05 ab | 0.0023 | 0.06 | 0.05 | 0.0017 | 0.04 | 0.06 | 0.0017 | 0.0003 | 0.1318 | <0.001 | 0.6290 | <0.001 |
Dactylis glomerata | 0.02 a | 0.02 a | 0.01 b | 0.02 a | 0.0009 | 0.02 | 0.02 | 0.0006 | 0.01 | 0.02 | 0.0006 | 0.0235 | 0.3560 | <0.001 | 0.0999 | <0.001 |
×Festulolium | 0.11 a | 0.11 a | 0.09 b | 0.10 a | 0.0045 | 0.10 | 0.10 | 0.0030 | 0.09 | 0.12 | 0.0031 | 0.0008 | 0.2902 | <0.001 | 0.5471 | <0.001 |
Trifolium repens | 0.01 b | 0.05 a | 0.05 a | 0.00 b | 0.0065 | 0.03 | 0.03 | 0.0043 | 0.03 | 0.03 | 0.0044 | <0.001 | 0.6982 | 0.9244 | 0.2013 | 0.0068 |
Plantago lanceolata | 0.46 a | 0.24 c | 0.35 b | 0.50 a | 0.0212 | 0.37 | 0.40 | 0.0142 | 0.44 | 0.34 | 0.0146 | <0.001 | 0.1968 | <0.001 | 0.1452 | <0.001 |
Cichorium intybus | 0.06 ab | 0.06 ab | 0.08 a | 0.04 b | 0.0087 | 0.06 | 0.06 | 0.0058 | 0.07 | 0.05 | 0.0059 | 0.0056 | 0.3185 | 0.0214 | 0.2275 | 0.3592 |
Unsown species | 0.03 b | 0.18 a | 0.14 a | 0.03 b | 0.0134 | 0.10 | 0.09 | 0.0094 | 0.10 | 0.09 | 0.0092 | <0.001 | 0.3709 | 0.5877 | 0.0053 | 0.6547 |
Defoliation Intensity (DI) | Rotation Length (RL) | SEM | p-Value | |||
---|---|---|---|---|---|---|
Short | Long | |||||
5 cm | 8 cm | 5 cm | 8 cm | |||
LP-TR | ||||||
Lolium perenne | 0.75 | 0.80 | 0.84 | 0.81 | 0.0221 | 0.0865 |
Trifolium repens | 0.10 a 1 | 0.05 b | 0.05 b | 0.10 a | 0.0182 | <0.0001 |
Unsown species | 0.15 | 0.15 | 0.11 | 0.08 | 0.0154 | 0.3401 |
MSS1 | ||||||
Lolium perenne | 0.07 | 0.08 | 0.07 | 0.09 | 0.0040 | 0.2566 |
Festuca arundinacea | 0.10 | 0.12 | 0.10 | 0.13 | 0.0059 | 0.2221 |
Dactylis glomerata | 0.05 | 0.06 | 0.05 | 0.06 | 0.0029 | 0.2725 |
×Festulolium | 0.10 | 0.12 | 0.10 | 0.13 | 0.0059 | 0.2221 |
Trifolium repens | 0.03 | 0.04 | 0.02 | 0.04 | 0.0069 | 0.1253 |
Plantago lanceolata | 0.48 | 0.39 | 0.51 | 0.36 | 0.0225 | 0.1323 |
Cichorium intybus | 0.08 a | 0.04 b | 0.04 b | 0.07 ab | 0.0090 | 0.0002 |
Unsown species | 0.10 b | 0.17 a | 0.11 b | 0.11 b | 0.0139 | 0.0209 |
MSS2 | ||||||
Lolium perenne | 0.10 c | 0.13 b | 0.10 c | 0.16 a | 0.0063 | 0.0064 |
Festuca arundinacea | 0.08 c | 0.10 b | 0.07 c | 0.12 a | 0.0049 | 0.0063 |
Dactylis glomerata | 0.04 c | 0.05 b | 0.04 c | 0.07 a | 0.0026 | 0.0066 |
×Festulolium | 0.07 c | 0.09 b | 0.06 c | 0.10 a | 0.0041 | 0.0057 |
Trifolium repens | 0.04 a | 0.03 ab | 0.02 b | 0.05 a | 0.0070 | 0.0041 |
Plantago lanceolata | 0.54 a | 0.44 b | 0.61 a | 0.40 b | 0.0241 | 0.0211 |
Cichorium intybus | 0.02 b | 0.04 a | 0.03 ab | 0.02 b | 0.0065 | 0.0124 |
Unsown species | 0.09 | 0.10 | 0.06 | 0.07 | 0.0135 | 0.8985 |
MSS3 | ||||||
Lolium perenne | 0.25 b | 0.27 ab | 0.19 c | 0.31 ab | 0.0115 | <0.0001 |
Festuca arundinacea | 0.06 b | 0.06 ab | 0.04 c | 0.07 a | 0.0025 | <0.0001 |
Dactylis glomerata | 0.02 a | 0.02 a | 0.01 b | 0.02 b | 0.0009 | 0.0004 |
×Festulolium | 0.10 b | 0.11 ab | 0.07 c | 0.12 a | 0.0045 | <0.0001 |
Trifolium repens | 0.04 a | 0.02 b | 0.02 b | 0.03 ab | 0.0061 | 0.0068 |
Plantago lanceolata | 0.38 b | 0.37 b | 0.50 a | 0.30 b | 0.0212 | <0.0001 |
Cichorium intybus | 0.06 | 0.05 | 0.07 | 0.05 | 0.0087 | 0.3592 |
Unsown species | 0.11 | 0.10 | 0.09 | 0.09 | 0.0134 | 0.6547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piña, L.F.; Merino, V.M.; Navarro, M.J.; Mella F., C.; Lucero, C.; Seguel, G.; Acuña, A.; Schwenke, T. Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures. Agronomy 2025, 15, 2097. https://doi.org/10.3390/agronomy15092097
Piña LF, Merino VM, Navarro MJ, Mella F. C, Lucero C, Seguel G, Acuña A, Schwenke T. Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures. Agronomy. 2025; 15(9):2097. https://doi.org/10.3390/agronomy15092097
Chicago/Turabian StylePiña, Luis F., Verónica M. Merino, María Jesús Navarro, Claudia Mella F., Cristian Lucero, Gabriel Seguel, Alejandro Acuña, and Tomás Schwenke. 2025. "Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures" Agronomy 15, no. 9: 2097. https://doi.org/10.3390/agronomy15092097
APA StylePiña, L. F., Merino, V. M., Navarro, M. J., Mella F., C., Lucero, C., Seguel, G., Acuña, A., & Schwenke, T. (2025). Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures. Agronomy, 15(9), 2097. https://doi.org/10.3390/agronomy15092097