Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Experiment Design
2.3. Hydraulic–Mechanical Characteristics
2.4. Soil Microstructure and Surface Area Analysis
2.5. Simulated Scouring Experiment
2.6. Integrated Soil Function Index (SFI) Construction
3. Results
3.1. Effects of PAM on Soil Erosion Resistance Function Indicators
3.2. Effects of PAM on Soil Water Regulation Function Indicators
3.3. Effects of PAM on Soil Ecological Function Indicators
3.4. Effects of PAM on the Integrated Soil Multifunctionality Index
4. Discussion
4.1. Effects of PAM on Soil Anti-Erosion, Water Retention, and Ecological Functions: Microstructural Mechanisms and Threshold Responses
4.2. PAM-Induced Soil Multifunctionality: Optimal Concentration and Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BD | Soil Bulk density |
SOM | Soil Organic Matter content |
TP | Total Porosity |
LL | Liquid Limit |
PL | Plastic Limit |
Ks | Saturated hydraulic conductivity |
Fed | Amorphous Iron oxide |
Ald | Amorphous Aluminum oxide |
Feo | Free Iron oxide |
Alo | Free Aluminum oxide |
w | Natural Water Content |
MSAi | Micropore Surface Area |
MSAe | Mesopore Surface Area |
APD | Average Pore Diameter |
SSA | Specific Surface Area |
MSSai | Micropore-Specific Surface Area |
MSSae | Mesopore-Specific Surface Area |
AAPw | Average Adsorption Pore width |
TPV | Total Pore Volume |
AWD | Adsorbed Water Density |
WFT | Water Film Thickness |
Kr | Soil Erodibility |
C | Cohesive Strength |
τ | Critical Shear Stress |
φ | Internal Friction Angle |
θa | Available water content |
θv | Volumetric water content |
Ma | Macropores |
Me | Mesopores |
NAPs | Non-active pores |
θr | Residual water content |
α | Reciprocal of soil air intake value in Van Genuchten model |
n | Fitting parameter related to pore distribution in Van Genuchten model |
Gr | Germination rate |
Er | Emergence rate |
B | Biomass |
Rl | Root length |
ARD | Average root diameter |
FDrs | Fractal dimension of root system, |
PRA | Projected root area |
PRAb | Pixel-based root area |
RSA | Root surface area |
Vr | Root volume |
Rcn | Root connectivity number |
Rnn | Root node number |
Ran | Root apices number |
Rbp | Root branching points number |
Rc | Root crossing number |
MPD | Mean Pore Diameter |
APA | Average Pore Area |
P | Porosity |
PND | Pore Number Density |
FDps | Fractal Dimension of pore structure |
References
- Lang, Y.; Yang, X.; Cai, H. Depicting, spatializing, and decoupling the impact of human activities on soil erosion in the hilly red soil region of southern China from the perspective of soil erosion influence factors. J. Environ. Manag. 2025, 376, 124371. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Wei, Y.; Zhang, S.; Cai, C.; Guo, Z.; Wang, J. Assessment of soil quality in a heavily fragmented micro-landscape induced by gully erosion. Geoderma 2023, 431, 116369. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Zhang, Y.; Cui, T.; Guo, Z.; Cai, C.; Li, Z. Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma 2022, 420, 115869. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Wu, X.; Zhang, Y.; Cui, T.; Cai, C.; Guo, Z.; Wang, J.; Cheng, D. Can Benggang be regarded as gully erosion? Catena 2021, 207, 105648. [Google Scholar] [CrossRef]
- Bu, F.; Liu, J.; Song, Z.; Sun, M.; Wang, Z.; Jing, M.; Qian, W. Enhancement of water-retaining property and cracking resistance of soil under wetting-drying cycles: Synergistic effect of sisal fiber and polyacrylamide. Constr. Build. Mater. 2024, 435, 136841. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Xia, J.; Miller, G.A.; Cai, C.; Guo, Z.; Hassanikhah, A. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Tillage Res. 2019, 187, 50–59. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Chen, R.; Wang, H.; Xia, J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. J. Environ. Manag. 2022, 301, 113883. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cui, Y.; Ouyang, G.; Lyu, Z. An experimental study on influence of grain-size composition on collapsing erosion of granite residual soil. Catena 2023, 223, 106949. [Google Scholar] [CrossRef]
- Kim, Y.; Tran, T.Q.; Kang, G.; Do, T.M. Stabilization of a residual granitic soil using various new green binders. Constr. Build. Mater. 2019, 223, 724–735. [Google Scholar] [CrossRef]
- Oda, M.; Takemura, T.; Suzuki, K. Depth-dependent hydraulic conductivity tensor for jointed granite. Int. J. Rock. Mech. Min. 2023, 168, 105405. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, Z.; Nan, H. Real-time seepage and instability of fractured granite subjected to hydro-shearing under different critical slip states. J. Rock Mech. Geotech. Eng. 2025, 17, 2396–2415. [Google Scholar] [CrossRef]
- Alejano, L.R.; Walton, G.; Gaines, S. Residual strength of granitic rocks. Tunn. Undergr. Space Technol. 2021, 118, 104189. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, X.; Liu, H.; Wünnemann, B.; Luo, G.; Yang, Z. Toppling stability of partially buried blocks in granite residual soil slope under extremely heavy rainfall condition. Eng. Geol. 2024, 333, 107492. [Google Scholar] [CrossRef]
- Zhuo, Z.; Cai, W.; Zhu, C.; Tang, C.; Rolsana, K. Morphology characterization of unsaturated soils under drying-wetting cycles: Crack opening and closure. Acta Geotech. 2024, 19, 7287–7306. [Google Scholar] [CrossRef]
- Dong, Y.; Cao, W.; Nie, Y.; Xiong, D.; Cheng, S.; Duan, X. Influence of soil geography on the occurrence and intensity of gully erosion in the Hengduan Mountain region. Catena 2023, 222, 106841. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Roux, J.J.L. An interrogation of research on the influence of rainfall on gully erosion. Catena 2021, 206, 105482. [Google Scholar] [CrossRef]
- Qiu, M.; Pei, X.; Zhang, R.; Zhang, X.; Xi, H.; Zhao, X.; Du, J.; Zhang, J.; Han, B. Vegetation restoration affects soil erosion processes by altering the soil net force. Catena 2025, 251, 108823. [Google Scholar] [CrossRef]
- To, V.H.P.; Nguyen, T.V.; Bustamante, H.; Vigneswaran, S. Effects of extracellular polymeric substance fractions on polyacrylamide demand and dewatering performance of digested sludges. Sep. Purif. Technol. 2020, 239, 116557. [Google Scholar] [CrossRef]
- Li, Q.; Kang, Y.; Pei, X.; Zhang, X.; Li, X.; Lei, N.; He, X.; Wei, R.; Wang, B.; Yin, D.; et al. Effects of modified organic material addition on soil and microbial communities in ecologically restored engineering slopes of the Qinghai-Tibetan plateau: A mesocosm study. Environ. Technol. Innov. 2024, 34, 103612. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Zhao, Z.; Telyatnikova, N.; Maxim, M. Model test study on the rainfall erosion mechanisms and reclamation potential of open-pit coal mine dump soil improved by fly ash and polyacrylamide. Eng. Geol. 2025, 344, 107837. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Hazbavi, Z.; Younesi, H.; Bahramifar, N. Trade-off between runoff and sediments from treated erosion plots and polyacrylamide and acrylamide residues. Catena 2016, 142, 213–220. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Du, J.; Pei, X.; Du, P.; Zhou, L. Effects of several polymeric materials on the improvement of the sandy soil under rainfall simulation. J. Environ. Manag. 2023, 345, 118847. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Li, Z.; Garg, A. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator. Acta Geotech. 2023, 18, 3273–3285. [Google Scholar] [CrossRef]
- Ao, C.; Yang, P.; Zeng, W.; Chen, W.; Xu, Y.; Xu, H.; Zha, Y.; Wu, J.; Huang, J. Impact of raindrop diameter and polyacrylamide application on runoff, soil and nitrogen loss via raindrop splashing. Geoderma 2019, 353, 372–381. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.; Liu, K.; Pan, S. Towards sustainable management of polyacrylamide in soil-water environment: Occurrence, degradation, and risk. Sci. Total Environ. 2024, 926, 171587. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fu, Q.; Liu, Z.; Zeng, T.; Du, M.; He, D.; Lu, Q.; Ni, B.; Wang, D. Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge: Simultaneously enhancing methane production and polyacrylamide degradation. Chem. Eng. J. 2021, 425, 131407. [Google Scholar] [CrossRef]
- Fu, R.; Baudet, B.A.; Madhusudhan, B.N.; Coop, M.R. A comparison of the performances of polypropylene and rubber fibers in completely decomposed granite. Geotext. Geomembr. 2018, 46, 22–28. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, Y.; Feng, Z.; Liu, F.; Zhang, Z. Molecular dynamics simulation of adsorption and diffusion of partially hydrolyzed polyacrylamide on kaolinite surface. J. Mol. Liq. 2022, 367, 120377. [Google Scholar] [CrossRef]
- Yan, X.; Jiao, J.; Jiang, X.; Xu, Q.; Li, M.; Zhang, Z.; Qi, H.; Yang, L. Rainfall characteristics of sediment connectivity activation from plot to watershed scales on the Loess Plateau. Catena 2024, 235, 107654. [Google Scholar] [CrossRef]
- Chinese Academy of Science Flora of China Editorial Board. Flora of China; Science Press: Beijing, China, 2004; pp. 38–51. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Chen, X.; Wang, J.; Wei, Y.; Zhou, X.; Chen, F.; Tian, Z.; Cai, C. Geospatial variation of granitic soil erodibility along a hydrothermal gradient in the gully region. Catena 2024, 245, 108343. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.; Wei, J.; Liang, W.; Liu, H.; Wang, F.; Yan, G.; Liu, S.; Duan, X.; Deng, Y. Influence of initial headcut height on rill headcut erosion mechanisms via runoff hydrodynamics modulation in granite residual soil. J. Hydrol. 2025, 661, 133606. [Google Scholar] [CrossRef]
- Hughes, P.; McBratney, A.B.; Huang, J.; Minasny, B.; Micheli, E.; Hempel, J. A nomenclature algorithm for a potentially global soil taxonomy. Geoderma. 2018, 322, 56–70. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Fijałkowska, G.; Szewczuk-Karpisz, K. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions. Chemosphere 2018, 211, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Sun, B.; Jin, J.; Jiang, W. Mechanical and slow-released property of poly(acrylamide) hydrogel reinforced by diatomite. Mater. Sci. Eng. C 2019, 99, 315–321. [Google Scholar] [CrossRef]
- Pettinelli, N.; Sabando, C.; Rodríguez-Llamazares, S.; Bouza, R.; Castaño, J.; Valverde, J.C.; Rubilar, R.; Frizzo, M.; Recio-Sánchez, G. Sodium alginate-g-polyacrylamide hydrogel for water retention and plant growth promotion in water-deficient soils. Ind. Crops Prod. 2024, 222, 119759. [Google Scholar] [CrossRef]
- Van, G.M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar]
- Khaboushan, E.A.; Emami, H.; Mosaddeghi, M.R.; Astaraei, A.R. Estimation of unsaturated shear strength parameters using easily-available soil properties. Soil Tillage Res. 2018, 184, 118–127. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Gu, J.; Shi, H.; Li, H.; Han, Y.; Liu, D.; Xia, X.; Guo, Z. Soil erodibility and hillslope erosion processes affected by vegetation restoration duration. Soil Tillage Res. 2025, 245, 106305. [Google Scholar] [CrossRef]
- Rogasik, H.; Crawford, J.W.; Wendroth, O.; Young, I.M.; Joschko, M.; Ritz, K. Discrimination of Soil Phases by Dual Energy X-ray Tomography. Soil Sci. Soc. Am. J. 1999, 63, 741–751. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, Y.; Zhang, Z.; Wu, Y.; Bai, M. Nanocarbon regulation microstructure and physicochemical properties of polyacrylamide gels. Appl. Mater. Today 2023, 35, 101950. [Google Scholar] [CrossRef]
- Qiu, T.Q.; Tien, C.L. Femtosecond laser heating of multi-layer metals—I. Analysis. Int. J. Heat Mass Transf. 1994, 37, 2789–2797. [Google Scholar] [CrossRef]
- Sadeghi, P.; Myers, M.B.; Pareek, V.; Arami-Niya, A. Temperature-regulated gas adsorption on LTA zeolites: Observation of sorption isotherms for methane, hydrogen, nitrogen and carbon dioxide. Appl. Surf. Sci. 2024, 678, 161037. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Cheng, K.; Heidari, Z. Combined interpretation of NMR and TGA measurements to quantify the impact of relative humidity on hydration of clay minerals. Appl. Clay Sci. 2017, 143, 362–371. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Lehman, O.R. The Extent and Nature of Rainfall-soil Interaction in the Release of Soluble Chemicals to Runoff1. J. Environ. Qual. 1983, 12, 34–40. [Google Scholar] [CrossRef]
- Elliot, W.J. A Compendium of Soil Erodibility Data from WEPP Cropland Soil Field Erodibility Experiments 1987 & 88; Agricultural Research Service: West Lafayette, IN, US, 1990. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Zhou, Y.; Anastopoulos, I.; Shaaban, M. Editorial: New Research on Soil Degradation and Restoration. J. Environ. Manag. 2020, 269, 110851. [Google Scholar] [CrossRef]
- Li, Z.; Jing, Y.; Zhu, R.; Yu, Q.; Qiu, X. Sustainable soil rehabilitation with multiple network structures of layered double hydroxide beads: Immobilization of heavy metals, fertilizer release, and water retention. J. Hazard. Mater. 2024, 478, 135385. [Google Scholar] [CrossRef]
- Fu, Y.; Li, G.; Zheng, T.; Zhao, Y.; Yang, M. Fragmentation of soil aggregates induced by secondary raindrop splash erosion. Catena 2020, 185, 104342. [Google Scholar] [CrossRef]
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
- Fu, T.; Liu, J.; Gao, H.; Qi, F.; Wang, F.; Zhang, M. Surface and subsurface runoff generation processes and their influencing factors on a hillslope in northern China. Sci. Total Environ. 2024, 906, 167372. [Google Scholar] [CrossRef]
- Daraei, E.; Bayat, H.; Gregory, A.S. Impact of natural biochar on soil water retention capacity and quinoa plant growth in different soil textures. Soil Tillage Res. 2024, 244, 106281. [Google Scholar] [CrossRef]
- Naito, H.; Ishikawa, K.; Sasabe, T.; Hirai, S.; Tanuma, T. Investigation of effects of hydrophilic micro-porous layer on liquid water behavior by X-ray imaging. J. Power Sources 2021, 507, 230285. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Zhou, Z.; Yang, L. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing. Catena 2019, 176, 112–124. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Tsubo, M.; Levy, G.J. Structure stability of acidic Luvisols: Effects of tillage type and exogenous additives. Soil Tillage Res. 2021, 206, 104832. [Google Scholar] [CrossRef]
- Tanure, M.M.C.; Costa, L.M.D.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Junior, J.D.P.; Luz, J.M.R.D. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Ohnuki, Y.; Shimizu, A.; Chann, S.; Toriyama, J.; Kimhean, C.; Araki, M. Seasonal change in thick regolith hardness and water content in a dry evergreen forest in Kampong Thom Province, Cambodia. Geoderma 2008, 146, 94–101. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, Z.; Ji, H.; Qiu, F.; Zhao, D.; Bredar, A.R.C.; Farnum, B.H. Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. Sci. Total Environ. 2020, 702, 134997. [Google Scholar] [CrossRef]
- Amiri, E.; Emami, H.; Mosaddeghi, M.R.; Astaraei, A.R. Shear strength of an unsaturated loam soil as affected by vetiver and polyacrylamide. Soil Tillage Res. 2019, 194, 104331. [Google Scholar] [CrossRef]
- Chen, N.; Liu, W.; Huang, J.; Qiu, X. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int. J. Biol. Macromol. 2020, 146, 9–17. [Google Scholar] [CrossRef]
Soil texture | Sand (%) | Clay (%) | Silt (%) | BD (g cm−3) | SOM (g kg−1) | TP (%) | LL (%) |
Alumic Acrisols | 74.31 ± 1.440 | 9.00 ± 0.270 | 16.69 ± 0.910 | 1.391 ± 0.122 | 3.631 ± 0.284 | 49.581 ± 2.877 | 38.730 ± 2.423 |
Soil texture | PL (%) | Ks (cm min−1) | Fed (g kg−1) | Ald (g kg−1) | Feo (g kg−1) | Alo (g kg−1) | w (%) |
Alumic Acrisols | 24.722 ± 1.747 | 0.307 ± 0.001 | 3.786 ± 0.424 | 1.498 ± 0.181 | 0.156 ± 0.031 | 0.491 ± 0.080 | 17.864 ± 1.072 |
PAM (‰) | MSAi (m2 g−1) | MSAe (m2 g−1) | APD (nm) | SSA (m2 g−1) | MSSai (m2 g−1) |
0 | 2.114 ± 0.001 | 7.857 ± 0.001 | 5.919 ± 0.002 | 9.980 ± 0.008 | 2.130 ± 0.015 |
1 | 0.514 ± 0.001 | 6.329 ± 0.001 | 6.824 ± 0.002 | 6.864 ± 0.030 | 0.517 ± 0.003 |
3 | 0.678 ± 0.001 | 6.146 ± 0.001 | 6.738 ± 0.001 | 6.826 ± 0.004 | 0.446 ± 0.003 |
5 | 0.387 ± 0.001 | 5.455 ± 0.002 | 7.123 ± 0.002 | 5.844 ± 0.004 | 0.390 ± 0.005 |
7 | 0.213 ± 0.002 | 5.341 ± 0.001 | 7.427 ± 0.001 | 5.569 ± 0.026 | 0.213 ± 0.001 |
PAM (‰) | MSSae (m2 g−1) | AAPw (nm) | TPV (cm3 g−1) | AWD (g cm−3) | WFT (nm) |
0 | 7.873 ± 0.018 | 5.949 ± 0.030 | 0.013 ± 0.001 | 0.744 ± 0.042 | 0.710 ± 0.009 |
1 | 6.330 ± 0.003 | 6.842 ± 0.019 | 0.012 ± 0.001 | 0.893 ± 0.002 | 1.834 ± 0.004 |
3 | 6.170 ± 0.022 | 6.772 ± 0.031 | 0.011 ± 0.001 | 1.030 ± 0.009 | 2.154 ± 0.004 |
5 | 5.472 ± 0.019 | 7.150 ± 0.034 | 0.010 ± 0.001 | 1.119 ± 0.015 | 3.234 ± 0.004 |
7 | 5.343 ± 0.002 | 7.462 ± 0.030 | 0.011 ± 0.001 | 3.560 ± 0.015 | 6.515 ± 0.004 |
Score | Scoring Curve | Standard Scoring Functions |
---|---|---|
SFI | More is better | |
Less is better |
PAM (‰) | MPD (μm) | APA (μm2) | P (%) | PND | FDps |
---|---|---|---|---|---|
0 | 33.780 ± 0.589 | 1376.616 ± 2.847 | 9.581 ± 1.539 | 765.573 ± 110.382 | 1.389 ± 0.036 |
1 | 31.784 ± 0.014 | 1283.664 ± 0.635 | 11.545 ± 0.242 | 997.581 ± 6.423 | 1.446 ± 0.006 |
3 | 33.247 ± 0.520 | 1337.445 ± 25.627 | 11.675 ± 0.137 | 1005.088 ± 26.968 | 1.430 ± 0.009 |
5 | 33.724 ± 0.098 | 1383.286 ± 2.520 | 11.136 ± 0.313 | 950.193 ± 1.565 | 1.452 ± 0.003 |
7 | 32.698 ± 0.755 | 1272.991 ± 4.001 | 11.694 ± 0.003 | 948.164 ± 1.067 | 1.459 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Chen, X.; Zhang, G.; Yu, W.; Cai, C.; Wei, Y. Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material. Agronomy 2025, 15, 2087. https://doi.org/10.3390/agronomy15092087
Xu J, Chen X, Zhang G, Yu W, Cai C, Wei Y. Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material. Agronomy. 2025; 15(9):2087. https://doi.org/10.3390/agronomy15092087
Chicago/Turabian StyleXu, Junkang, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai, and Yujie Wei. 2025. "Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material" Agronomy 15, no. 9: 2087. https://doi.org/10.3390/agronomy15092087
APA StyleXu, J., Chen, X., Zhang, G., Yu, W., Cai, C., & Wei, Y. (2025). Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material. Agronomy, 15(9), 2087. https://doi.org/10.3390/agronomy15092087