Attractiveness of Food Baits and Tea Volatile Components to Mirid Bug Apolygus lucorum in Tea Plantation
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Plants
2.2. Tested Insects
2.3. Y-Tube Test
2.4. Field Experiment of the Tea Volatile Compound Bait
2.5. Food Bait Trials
2.6. Data Analysis
3. Results
3.1. Preference of Apolygus lucorum Adults for Tea Branches
3.2. Preference of Apolygus lucorum Adults for Different Host Plants
3.3. Field Trial of Tea Volatile Components
3.4. Field Trial of Host Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Wang, H.; Hou, J.; Zhang, L.; Zhang, Z.; Cai, X. Occurrence and distribution of Apolygus lucorum on weed hosts and tea plants in tea plantation ecosystems. Insects 2019, 10, 167. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Wyckhuys, K.A.; Guo, Y. Overwintering hosts of Apolygus lucorum (Hemiptera: Miridae) in northern China. Crop Prot. 2010, 29, 1026–1033. [Google Scholar] [CrossRef]
- Lu, Y.; Wyckhuys, K.A.; Wu, K. Pest status, bio-ecology, and area-wide management of mirids in East Asia. Annu. Rev. Entomol. 2024, 69, 393–413. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Guo, Y.; Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Snodgrass, G.L.; Scott, W.P. Seasonal changes in pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations during a three-year period in the delta area of Arkansas, Louisiana, and Mississippi. J. Econ. Entomol. 2000, 93, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Wu, K.M.; Wyckhuys, K.A.G. Potential of mungbean,Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Prot. 2009, 28, 77–81. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Zhang, X.; Song, Y.; Zhang, Z.; Liu, F. Field resistance monitoring of Apolygus lucorum (Hemiptera: Miridae) in Shandong, China to seven commonly used insecticides. Crop Prot. 2015, 76, 127–133. [Google Scholar] [CrossRef]
- Wang, X.; Su, H.; Wang, J.; Li, G.; Feng, H.; Zhang, J. Monitoring of insecticide resistance for Apolygus lucorum populations in the apple orchard in China. Crop Prot. 2023, 170, 106279. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, L.; Wang, Z.; Wang, T. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. J. Integr. Plant Biol. 2013, 55, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cui, L.; Ge, J.; Wang, M.; Liu, L.; Yu, X.; Zhang, Q.; Han, B. Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Insect Sci. 2012, 19, 229–238. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, G.C.; Gao, Y.; Zhang, X.Z.; Jin, Z.J.; Chen, Z.M. Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths. J. Chem. Ecol. 2014, 40, 1080–1089. [Google Scholar] [CrossRef]
- Cai, X.M.; Sun, X.L.; Dong, W.X.; Wang, G.C.; Chen, Z.M. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 2014, 24, 1–14. [Google Scholar] [CrossRef]
- Cai, X.M.; Xu, X.X.; Bian, L.; Luo, Z.X.; Xin, Z.J.; Chen, Z.M. Attractiveness of host volatiles combined with background visual cues to the tea leafhopper, Empoasca vitis. Entomol. Exp. Appl. 2015, 157, 291–299. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Z.; Li, D.; Kang, Z.; Xu, Y.; Chen, Z. Two chemosensory proteins in Aleurocanthus spiniferus are involved in the recognition of host VOCs. Chem. Biol. Technol. Agric. 2024, 11, 183. [Google Scholar] [CrossRef]
- Bian, L.; Cai, X.M.; Luo, Z.X.; Li, Z.Q.; Xin, Z.J.; Chen, Z.M. Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves. J. Econ. Entomol. 2018, 111, 629–636. [Google Scholar] [CrossRef]
- Chen, K.; Huang, M.X.; Shi, Q.C.; Xie, X.; Jin, L.H.; Xu, W.M.; Li, X.Y. Screening of a potential leafhopper attractants and their applications in tea plantations. J. Environ. Sci. Health Part B 2019, 54, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zeng, L.; Liao, Y.; Li, J.; Tang, J.; Yang, Z. Formation of α-farnesene in tea (Camellia sinensis) leaves induced by herbivore-derived wounding and its effect on neighboring tea plants. Int. J. Mol. Sci. 2019, 20, 4151. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Miranda, J.A.; Piovesan, B.; Ueno, B.; Bernardi, D.; Botton, M.; Nava, D.E. Use of preservatives in vegetable protein-based food attractants for monitoring Anastrepha fraterculus (Diptera: Tephritidae) in Peach Orchards. Neotrop. Entomol. 2021, 50, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Sabier, M.; Wang, J.; Zhang, T.; Jin, J.; Wang, Z.; Shen, B.; Deng, J.; Liu, X.; Zhou, G. The attractiveness of a food based lure and its component volatiles to the stored-grain pest Oryzaephilus surinamensis (L.). J. Stored Prod. Res. 2022, 98, 102000. [Google Scholar] [CrossRef]
- Shelly, T.E.; Fezza, T.J. Field studies of synthetic food-based attractants for detecting invasive fruit flies (Diptera: Tephritidae). J. Asia-Pac. Entomol. 2024, 27, 102313. [Google Scholar] [CrossRef]
- Cai, X.; Li, Z.; Pan, H.; Lu, Y. Research and application of food-based attractants of herbivorous insect pests. Chin. J. Biol. Control. 2018, 34, 8. [Google Scholar] [CrossRef]
- Huang, J.; Gut, L.; Grieshop, M. Evaluation of food-based attractants for Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 2017, 46, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Reisenman, C.E.; Scott, K. Food-derived volatiles enhance consumption in Drosophila melanogaster. J. Exp. Biol. 2019, 222, jeb202762. [Google Scholar] [CrossRef]
- Epsky, N.D.; Kendra, P.E.; Schnell, E.Q. History and development of food-based attractants. In Trapping and the Detection Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications; Springer: Dordrecht, The Netherlands, 2014; pp. 75–118. [Google Scholar]
- Han, B.Y.; Chen, Z.M. Behavioral and electrophysiological responses ofnatural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 2002, 28, 2203–2219. [Google Scholar] [CrossRef]
- Huang, Q.; Han, X.; Zhang, G.; Zhu-Salzman, K.; Cheng, W. Plant volatiles mediate host selection of Sitodiplosis mosellana (Diptera: Cecidomyiidae) among wheat varieties. J. Agric. Food Chem. 2022, 70, 10466–10475. [Google Scholar] [CrossRef]
- Smith, L.; Beck, J.J. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds. Biocontrol Sci. Technol. 2013, 23, 880–907. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.N.; Gurr, G.M.; Vasseur, L.; You, M.S. Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles. Insect Sci. 2016, 23, 245–252. [Google Scholar] [CrossRef]
- Xiu, C.L.; Xu, B.; Pan, H.S.; Zhang, W.; Yang, Y.; Lu, Y. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae). J. Integr. Agric. 2019, 18, 873–883. [Google Scholar] [CrossRef]
- Yuan, G.G.; Zhao, L.C.; Du, Y.W.; Yu, H.; Shi, X.B.; Chen, W.C. Repellence or attraction: Secondary metabolites in pepper mediate attraction and defense against Spodoptera litura. Pest Manag. Sci. 2022, 78, 4859–4870. [Google Scholar] [CrossRef]
- Bricchi, I.; Leitner, M.; Foti, M.; Mithöfer, A.; Boland, W.; Maffei, M.E. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: Early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 2010, 232, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Copolovici, L.; Kännaste, A.; Remmel, T.; Vislap, V.; Niinemets, Ü. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J. Chem. Ecol. 2011, 37, 18–28. [Google Scholar] [CrossRef]
- Chen, H.; Su, H.; Zhang, S.; Jing, T.; Liu, Z.; Yang, Y. The Effect of mirid density on volatile-mediated foraging behaviour of Apolygus lucorum and Peristenus spretus. Insects 2021, 12, 870. [Google Scholar] [CrossRef]
- Shiojiri, K.; Ozawa, R.; Kugimiya, S.; Uefune, M.; van Wijk, M.; Sabelis, M.W.; Takabayashi, J.; Hector, A. Herbivore-specific, density-dependent induction of plant volatiles: Honest or “Cry Wolf” signals? PLoS ONE 2010, 5, e12161. [Google Scholar] [CrossRef]
- Ramirez, R.A. and Eubanks, M.D. Herbivore density mediates the indirect effect of herbivores on plants via induced resistance and apparent competition. Ecosphere 2016, 7, e01218. [Google Scholar] [CrossRef]
- Ingegno, B.L.; Pansa, M.G.; Tavella, L. Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biol. Control 2011, 58, 174–181. [Google Scholar] [CrossRef]
- Benelli, G.; Revadi, S.; Carpita, A.; Giunti, G.; Raspi, A.; Anfora, G.; Canale, A. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control 2013, 64, 116–124. [Google Scholar] [CrossRef]
- Turlings, T.C.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, G.; Huang, X.; Guo, H.; Su, X.; Han, L.; Zhang, Y.; Qi, Z.; Xiao, Y.; Cheng, H. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. Pest Manag. Sci. 2020, 76, 1722–1730. [Google Scholar] [CrossRef]
- Dong, F.; Yang, Z.; Baldermann, S.; Sato, Y.; Asai, T.; Watanabe, N. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J. Agric. Food Chem. 2011, 59, 13131–13135. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.T.; Zhang, N.; Gao, T.; Zhao, M.; Jin, J.; Chen, Y.; Xu, M.; Wan, X.; Schwab, W.; Song, C. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. Plant Cell Environ. 2019, 42, 1352–1367. [Google Scholar] [CrossRef]
- Lin, J.; Wang, D.; Chen, X.; Köllner, T.G.; Mazarei, M.; Guo, H.; Pantalone, V.R.; Arelli, P.; Stewart, C.N.; Wang, N.; et al. An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles. Plant Biotechnol. J. 2017, 15, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.H.; Loeb, G.M.; Linn Jr, C.E.; Hesler, S.P.; Landolt, P.J. A multiple-choice bioassay approach for rapid screening of key attractant volatiles. Environ. Entomol. 2018, 47, 946–950. [Google Scholar] [CrossRef]
- Gong, X.; Huang, J.; Xu, Y.; Li, Z.; Li, L.; Li, D.; Belwal, T.; Jeandet, P.; Luo, Z.; Xu, Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci. Technol. 2023, 131, 61–76. [Google Scholar] [CrossRef]
- de Brito-Machado, D.; Ramos, Y.J.; Defaveri, A.C.A.E.; de Queiroz, G.A.; Guimarães, E.F.; de Lima Moreira, D. Volatile chemical variation of essential oils and their correlation with insects, phenology, ontogeny and microclimate: Piper mollicomum Kunth, a case of study. Plants 2022, 11, 3535. [Google Scholar] [CrossRef]
- Vallat, A.; Gu, H.; Dorn, S. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 2005, 66, 1540–1550. [Google Scholar] [CrossRef]
- Cai, X.; Guo, Y.; Bian, L.; Luo, Z.; Li, Z.; Xiu, C.; Fu, N.; Chen, Z. Variation in the ratio of compounds in a plant volatile blend during transmission by wind. Sci. Rep. 2022, 12, 6176. [Google Scholar] [CrossRef]
- Heil, M.; Silva Bueno, J.C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 2007, 104, 5467–5472. [Google Scholar] [CrossRef]
- Douma, J.C.; Ganzeveld, L.N.; Unsicker, S.B.; Boeckler, G.A.; Dicke, M. What makes a volatile organic compound a reliable indicator of insect herbivory? Plant Cell Environ. 2019, 42, 3308–3325. [Google Scholar] [CrossRef]
- Bayoumy, M.H.; El-Metwally, M.M.; El-Adly, R.A.; Majerus, T.M. Improving the lifetime efficiency of trimedlure-dispensing system in trap** the fruit fly Ceratitis capitata using polyethylene matrix. J. Econ. Entomol. 2020, 113, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Shangguan, W.; Li, K.; Jiang, X.; Wang, Z.; Yin, J.; Cao, L. Plant volatiles-loaded core-shell micro-nano fibers to achieve efficient and sustained bisexual attraction to pests. J. Nanobiotechnol. 2025, 23, 259. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Gong, B.; Li, Y.; Xu, Y.; Chen, Z. Attractiveness of Food Baits and Tea Volatile Components to Mirid Bug Apolygus lucorum in Tea Plantation. Agronomy 2025, 15, 2062. https://doi.org/10.3390/agronomy15092062
Jia Z, Gong B, Li Y, Xu Y, Chen Z. Attractiveness of Food Baits and Tea Volatile Components to Mirid Bug Apolygus lucorum in Tea Plantation. Agronomy. 2025; 15(9):2062. https://doi.org/10.3390/agronomy15092062
Chicago/Turabian StyleJia, Zhifei, Binghai Gong, Yusheng Li, Yongyu Xu, and Zhenzhen Chen. 2025. "Attractiveness of Food Baits and Tea Volatile Components to Mirid Bug Apolygus lucorum in Tea Plantation" Agronomy 15, no. 9: 2062. https://doi.org/10.3390/agronomy15092062
APA StyleJia, Z., Gong, B., Li, Y., Xu, Y., & Chen, Z. (2025). Attractiveness of Food Baits and Tea Volatile Components to Mirid Bug Apolygus lucorum in Tea Plantation. Agronomy, 15(9), 2062. https://doi.org/10.3390/agronomy15092062