Identification of Candidate Genes Related to SPAD Value Using Multi-Year Phenotypic Data in Rice Germplasms by Genome-Wide Association Study (GWAS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Experimental Conditions and Fertilization Practices
2.3. Phenotypic Evaluation
2.4. High-Throughput SNP Genotyping
2.5. Population Structure and Phylogenetic Analysis
2.6. GWAS Analysis and SNP Annotation
2.7. Candidate Gene Identification
2.8. Marker Development
2.9. Statistical Analysis
3. Results
3.1. Annual Variation in SPAD Values
3.2. Genetic Structure Revealed by Phylogenetic and PCA Analyses
3.3. SPAD Variation by Ecotype and Genotypic Grouping
3.4. SNP Dataset Utilized for GWAS Analysis
3.5. Identification of SPAD-Associated SNPs Through GWAS
3.6. SNPs Related to SPAD Value by GWAS Analysis
3.7. Selection of QTLs Based on PVE
3.8. Analysis of QTL Additive Effects
3.9. Candidate Gene Identification Associated with the SPAD Value
3.10. Determination of Allele Type of qSV3-2
4. Discussion
4.1. Estimation of SPAD Value Variation
4.2. Insights into Population Structure
4.3. Allelic Influence of Lead SNPs on SPAD Value
4.4. Implications of Additive QTL Effects on SPAD Variation and Marker Development
4.5. Identification of Candidate Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koumeleh, A.S.; Sharmila, P.; Upretyl, D.; Saradhi, P.P. Impact of elevated CO2 on nutrient uptake of rice cultivars (Oryza sativa L.). Indian J. Crop Sci. 2007, 2, 87–90. [Google Scholar]
- Li, Y.; Xiao, J.; Chen, L.; Huang, X.; Cheng, Z.; Han, B.; Zhang, Q.; Wu, C. Rice functional genomics research: Past decade and future. Mol. Plant 2018, 11, 359–380. [Google Scholar] [CrossRef]
- Giri, D.; Dhital, M.; Chaudhary, B.; Pandey, R.; Bastakoti, B.; Shrestha, S. Effect of different nitrogen levels on yield and yield attributes of different rice varieties in DDSR condition at Kanchanpur, Nepal. Arch. Agric. Environ. Sci. 2022, 7, 310–317. [Google Scholar] [CrossRef]
- Haque, M.A.; Haque, M.M. Growth, yield and nitrogen use efficiency of new rice variety under variable nitrogen rates. Am. J. Plant Sci. 2016, 7, 612–622. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Growth and Mineral Nutrition of Field Crops; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Sci. Rep. 2021, 11, 7485. [Google Scholar] [CrossRef]
- Patra, B.; Jena, S.; Satapathy, M.; Panda, R.; Behera, S.; Sahu, S. Chlorophyll content and spad value of rice (Oryza sativa L.) under different sowing windows and nutrient management practices. Ann. Plant Soil Res. 2021, 23, 324–328. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Borůvka, L.; Wayayok, A.; Soom, M.A.M. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Inf. Process. Agric. 2017, 4, 259–268. [Google Scholar] [CrossRef]
- Liang, T.; Duan, B.; Luo, X.; Ma, Y.; Yuan, Z.; Zhu, R.; Peng, Y.; Gong, Y.; Fang, S.; Wu, X. Identification of high nitrogen use efficiency phenotype in rice (Oryza sativa L.) through entire growth duration by unmanned aerial vehicle multispectral imagery. Front. Plant Sci. 2021, 12, 740414. [Google Scholar] [CrossRef]
- Srikanth, B.; Subrahmanyam, D.; Sanjeeva Rao, D.; Narender Reddy, S.; Supriya, K.; Raghuveer Rao, P.; Surekha, K.; Sundaram, R.M.; Neeraja, C.N. Promising physiological traits associated with nitrogen use efficiency in rice under reduced N application. Front. Plant Sci. 2023, 14, 1268739. [Google Scholar] [CrossRef]
- Monje, O.A.; Bugbee, B. Inherent limitations of nondestructive chlorophyll meters: A comparison of two types of meters. HortScience 1992, 27, 69–71. [Google Scholar] [CrossRef]
- Reeves, D.; Mask, P.; Wood, C.; Delaney, D. Determination of wheat nitrogen status with a hand-held chlorophyll meter: Influence of management practices. J. Plant Nutr. 1993, 16, 781–796. [Google Scholar] [CrossRef]
- Turner, F.T.; Jund, M.F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron. J. 1991, 83, 926–928. [Google Scholar] [CrossRef]
- Wakiyama, Y. The relationship between SPAD values and leaf blade chlorophyll content throughout the rice development cycle. Jpn. Agric. Res. Q. JARQ 2016, 50, 329–334. [Google Scholar] [CrossRef]
- Zotarelli, L.; Cardoso, E.G.; Piccinin, J.L.; Urquiaga, S.; Boddey, R.M.; Torres, E.; Alves, B.J.R. Calibration of a Minolta SPAD-502 chlorophyll meter for evaluation of the nitrogen nutrition of maize. Pesqui. Agropecuária Bras. 2003, 38, 1117–1122. [Google Scholar] [CrossRef]
- He, H.; Liu, C.; Wu, Z.; Chen, M.; Qu, K.; Zhao, J.; Wang, Y.; Hu, Z.; Li, Q. Responses of Rice Photosynthesis and Yield to Elevated CO2 Concentrations: A Quantitative Analysis via Chlorophyll Fluorescence Technology. J. Soil Sci. Plant Nutr. 2024, 24, 102. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, S.M. Effects of SPAD value variations according to nitrogen application levels on rice yield and its components. Front. Plant Sci. 2024, 15, 1437371. [Google Scholar] [CrossRef]
- Hoel, B.O.; Solhaug, K.A. Effect of irradiance on chlorophyll estimation with the Minolta SPAD-502 leaf chlorophyll meter. Ann. Bot. 1998, 82, 389–392. [Google Scholar] [CrossRef]
- Huang, J.; He, F.; Cui, K.; Buresh, R.J.; Xu, B.; Gong, W.; Peng, S. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Li, J.W.; Yang, J.P.; Li, D.S.; Fei, P.P.; Guo, T.T.; Ge, C.S.; Chen, W.Y. Chlorophyll meter’s estimate of weight-based nitrogen concentration in rice leaf is influenced by leaf thickness. Plant Prod. Sci. 2011, 14, 177–183. [Google Scholar]
- Peng, S.; Buresh, R.J.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Thiyagarajan, T.; Geetha, S.; Balasubramanian, V. Assessing genotypic variation in N requirements of rice with a chlorophyll meter. Int. Rice Res. Notes 2000, 25, 23–24. [Google Scholar]
- Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Prod. Sci. 2014, 17, 81–92. [Google Scholar] [CrossRef]
- Kim, M.; Shin, J.; Lee, B. Applicability of vegetation index and SPAD reading to nondestructive diagnosis of rice growth and nitrogen nutrition status. Korean J. Crop Sci. 2005, 50, 369–377. [Google Scholar]
- Kalaji, H.M.; Carpentier, R.; Allakhverdiev, S.I.; Bosa, K. Fluorescence parameters as early indicators of light stress in barley. J. Photochem. Photobiol. B Biol. 2012, 112, 1–6. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 1–11. [Google Scholar] [CrossRef]
- Rural Development Administration. Manual for Standard Evaluation Method in Agricultural Experiment and Research; Rural Development Administration (RDA): Suwon, Republic of Korea, 2003. [Google Scholar]
- Kim, D.S.; Yoon, Y.H.; Shin, J.C.; Kim, J.K.; Kim, S.D. Varietal Difference in Relationship between SPAD Value and Chlorophyll and Nitrogen Concentration in Rice Leaf. Korean J. Crop Sci. 2002, 47, 263–267. [Google Scholar]
- Kim, K.-W.; Nawade, B.; Nam, J.; Chu, S.-H.; Ha, J.; Park, Y.-J. Development of an inclusive 580K SNP array and its application for genomic selection and genome-wide association studies in rice. Front. Plant Sci. 2022, 13, 1036177. [Google Scholar] [CrossRef]
- Saputra, D.M.; Saputra, D.; Oswari, L.D. Effect of distance metrics in determining k-value in k-means clustering using elbow and silhouette method. In Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), Palembang, Indonesia, 16 November 2019; pp. 341–346. [Google Scholar]
- Yu, J.; Zao, W.; He, Q.; Kim, T.-S.; Park, Y.-J. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Mol. Genet. Genom. 2017, 292, 1391–1403. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Akinwale, M.; Gregorio, G.; Nwilene, F.; Akinyele, B.; Ogunbayo, S.; Odiyi, A. Heritability and correlation coefficient analysis for yield and its components in rice (Oryza sativa L.). Afr. J. Plant Sci. 2011, 5, 207–212. [Google Scholar]
- Piekielek, W.P.; Fox, R.H.; Toth, J.D.; Macneal, K.E. Use of a chlorophyll meter at the early dent stage of corn to evaluate nitrogen sufficiency. Agron. J. 1995, 87, 403–408. [Google Scholar] [CrossRef]
- Guo, D.; Li, Y.; Lu, H.; Zhao, Y.; Kurata, N.; Wei, X.; Wang, A.; Wang, Y.; Zhan, Q.; Fan, D.; et al. A pangenome reference of wild and cultivated rice. Nature 2025, 642, 662–671. [Google Scholar] [CrossRef]
- Badapanda, K.; Mishra, D.P.; Salkuti, S.R. Agriculture data visualization and analysis using data mining techniques: Application of unsupervised machine learning. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2022, 20, 98–108. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, 3rd ed.; McGraw-hill: New York, NY, USA, 1997. [Google Scholar]
- Pimentel-Gomes, F. Curso de Estatística Experimental; FEALQ: Piracicaba, Brazil, 2009; Volume 15, ISBN 9788571330559. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Maji, A.; Shaibu, A. Application of principal component analysis for rice germplasm characterization and evaluation. J. Plant Breed. Crop Sci. 2012, 4, 87–93. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Chen, H.; Wang, F.; Li, Z.; Zuo, J.; Fan, M.; Luo, B.; Feng, P.; Wang, J. Mapping combined with principal component analysis identifies excellent lines with increased rice quality. Sci. Rep. 2022, 12, 5969. [Google Scholar] [CrossRef]
- Nachimuthu, V.V.; Robin, S.; Sudhakar, D.; Raveendran, M.; Rajeswari, S.; Manonmani, S. Evaluation of rice genetic diversity and variability in a population panel by principal component analysis. Indian. J. Sci. Technol. 2014, 7, 1555–1562. [Google Scholar] [CrossRef]
- Takai, T.; Kondo, M.; Yano, M.; Yamamoto, T. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 2010, 3, 172–180. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, W.; Xing, H.; Yan, J.; Meng, X.; Li, X.; Fu, X.; Xu, J.; Lian, X.; Yu, S. Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol. Plant 2015, 8, 946–957. [Google Scholar] [CrossRef]
- Matsubara, K.; Yamamoto, E.; Kobayashi, N.; Ishii, T.; Tanaka, J.; Tsunematsu, H.; Yoshinaga, S.; Matsumura, O.; Yonemaru, J.-i.; Mizobuchi, R. Improvement of rice biomass yield through QTL-based selection. PLoS ONE 2016, 11, e0151830. [Google Scholar] [CrossRef]
- Liu, S.; Xiong, Z.; Zhang, Z.; Wei, Y.; Xiong, D.; Wang, F.; Huang, J. Exploration of chlorophyll fluorescence characteristics gene regulatory in rice (Oryza sativa L.): A genome-wide association study. Front. Plant Sci. 2023, 14, 1234866. [Google Scholar] [CrossRef]
- Honda, S.; Imamura, A.; Seki, Y.; Chigira, K.; Iwasa, M.; Hayami, K.; Nomura, T.; Ohkubo, S.; Ookawa, T.; Nagano, A.J. Genome-wide association study of leaf photosynthesis using a high-throughput gas exchange system in rice. Photosynth. Res. 2024, 159, 17–28. [Google Scholar] [CrossRef]
- Meng, B.; Wang, T.; Luo, Y.; Xu, D.; Li, L.; Diao, Y.; Gao, Z.; Hu, Z.; Zheng, X. Genome-wide association study identified novel candidate loci/genes affecting lodging resistance in rice. Genes 2021, 12, 718. [Google Scholar] [CrossRef]
- Ishimaru, K.; Yano, M.; Aoki, N.; Ono, K.; Hirose, T.; Lin, S.; Monna, L.; Sasaki, T.; Ohsugi, R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet. 2001, 102, 793–800. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Pilon, M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008, 283, 15932–15945. [Google Scholar] [CrossRef]
- Shao, M.; Feng, Y.; Yang, S.; Feng, T.; Zeng, F.; Lu, S.; Ma, Z.; Chen, B.; Mao, J. Molecular evolution of Phytocyanin gene and analysis of expression at different coloring periods in apple (Malus domestica). BMC Plant Biol. 2024, 24, 374. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
Year | SPAD Value | Heritability (h2) | Coefficient of Variation (%) | ||||
---|---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | ||||
2022 | 30.5~55.6 | (32.2~55.3) | 40.0 ± 5.3 | (40.9 ± 4.4) | 0.941 | 0.2~12.8 | 5.6 ± 2.4 |
2023 | 34.4~58.5 | 42.8 ± 4.6 | |||||
2024 | 28.0~54.0 | 40.0 ± 4.0 |
SNP | Chromosome | Allele | Frequency | Position (IRGSP-1.0) | −log10(p) | PVE (%) | MAF | Effect Size | Adjusted R2 | Model |
---|---|---|---|---|---|---|---|---|---|---|
AX-154370692 | 2 | C/T | 0.92/0.08 | 34,663,760 | 5.48 | 0.00 | 0.091 | 1.267 | 0.029 | FarmCPU |
AX-154973481 | 3 | G/A | 0.62/0.38 | 23,418,686 | 6.11 | 51.24 | 0.383 | 10.443 | 0.077 | MLMM |
AX-115742672 | 3 | T/C | 0.38/0.62 | 28,316,154 | 9.44 | 8.19 | 0.377 | 1.350 | 0.056 | BLINK |
AX-115745837 | 3 | G/A | 0.95/0.05 | 28,612,703 | 7.36 | 35.51 | 0.054 | −1.635 | 0.267 | BLINK |
AX-95955756 | 6 | G/A | 0.85/0.15 | 8,131,280 | 5.71 | 0.00 | 0.154 | −2.188 ± 0.444 | 0.169 | CMLM |
5.71 | 0.00 | −2.188 ± 0.444 | MLM | |||||||
AX-153965806 | 6 | A/T | 0.40/0.60 | 8,317,402 | 18.19 | 9.77 | 0.400 | 2.093 | 0.067 | FarmCPU |
AX-115805532 | 6 | T/C | 0.58/0.42 | 10,023,953 | 8.87 | 20.48 | 0.417 | −2.702 ± 0.421 | 0.241 | CMLM |
8.87 | 20.48 | −2.702 ± 0.421 | MLM | |||||||
11.12 | 6.58 | −2.686 | MLMM | |||||||
AX-115813927 | 6 | T/C | 0.91/0.09 | 21,892,577 | 5.89 | 0.00 | 0.089 | 3.504 | 0.033 | MLMM |
AX-154723043 | 7 | T/G | 0.87/0.13 | 1,120,808 | 5.74 | 2.20 | 0.137 | −1.478 | 0.005 | BLINK |
AX-275762332 | 7 | A/G | 0.64/0.36 | 10,746,136 | 8.70 | 31.77 | 0.354 | 2.936 | 0.068 | BLINK |
13.14 | 31.86 | 3.242 | FarmCPU | |||||||
AX-115758690 | 7 | A/G | 0.61/0.39 | 26,384,222 | 6.12 | 2.86 | 0.397 | 6.478 | 0.102 | MLMM |
AX-281778407 | 8 | C/T | 0.91/0.09 | 1,936,327 | 5.84 | 0.79 | 0.100 | 1.290 | 0.039 | FarmCPU |
AX-154062089 | 10 | T/C | 0.51/0.19 | 4,279,597 | 5.65 | 0.00 | 0.486 | −3.508 ± 0.833 | 0.018 | MLMM |
QTL | SNP | Allele | Chromosome | Position (IRGSP-1.0) | −log10(p) | Range of PVE (%) |
---|---|---|---|---|---|---|
qSV3-1 | AX-154973481 | G/A | 3 | 23,418,686 | 6.11 | 51.24 |
qSV3-2 | AX-115745837 | G/A | 3 | 28,612,703 | 7.36 | 35.51 |
qSV6 | AX-115805532 | T/C | 6 | 10,023,953 | 8.87~11.12 | 6.58~20.48 |
qSV7 | AX-275762332 | A/G | 7 | 10,746,136 | 8.70~13.14 | 31.77~31.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, D.-H.; Kim, T.-H.; Lee, C.-J.; Gao, J.; Park, W.-G.; Kim, S.-M. Identification of Candidate Genes Related to SPAD Value Using Multi-Year Phenotypic Data in Rice Germplasms by Genome-Wide Association Study (GWAS). Agronomy 2025, 15, 2050. https://doi.org/10.3390/agronomy15092050
Baek D-H, Kim T-H, Lee C-J, Gao J, Park W-G, Kim S-M. Identification of Candidate Genes Related to SPAD Value Using Multi-Year Phenotypic Data in Rice Germplasms by Genome-Wide Association Study (GWAS). Agronomy. 2025; 15(9):2050. https://doi.org/10.3390/agronomy15092050
Chicago/Turabian StyleBaek, Dong-Hyun, Tae-Heon Kim, Chang-Ju Lee, Jingli Gao, Woo-Geun Park, and Suk-Man Kim. 2025. "Identification of Candidate Genes Related to SPAD Value Using Multi-Year Phenotypic Data in Rice Germplasms by Genome-Wide Association Study (GWAS)" Agronomy 15, no. 9: 2050. https://doi.org/10.3390/agronomy15092050
APA StyleBaek, D.-H., Kim, T.-H., Lee, C.-J., Gao, J., Park, W.-G., & Kim, S.-M. (2025). Identification of Candidate Genes Related to SPAD Value Using Multi-Year Phenotypic Data in Rice Germplasms by Genome-Wide Association Study (GWAS). Agronomy, 15(9), 2050. https://doi.org/10.3390/agronomy15092050