Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Characterization of PaHsp20 Family Members in Petunia
2.3. Homologous Sequence Alignment and Phylogenetic Analysis
2.4. Conserved Motifs, Gene Structure, and Promoter Cis-Acting Element Analysis
2.5. Gene Expression Analysis
2.6. Y1H Assays
2.7. Dual-Luciferase Assays
2.8. Virus-Induced Gene Silencing in P. hybrida
2.9. Pollen Fertility Test
2.10. Statistical Analysis
3. Results and Analysis
3.1. Transcription Factor PhMYC2a Binds Directly to the Promoters of PhHsp20 Genes
3.2. Characterization of the PaHsp20 Gene Family in Petunia
3.3. Chromosomal Localization and Phylogenetic Analysis
3.4. Protein Conserved Motifs, Gene Structure, and Promoter Cis-Acting Element Analysis
3.5. The Expression Analysis of PhHsp20 Genes
3.6. Silencing of PhHsp16.0A and PhHsp16.1 Significantly Reduced the Stamen Fertility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.Y.; Zhang, X.Y.; Ning, K.; Yan, X.L.; Wang, Q.J.; Huang, Z.X.; Zhu, Q.Q.; Zhao, L.; Zhang, Y.Q.; Ren, Y.; et al. Stamen and pollen development in Menispermaceae with contrasting androecium structure. Plant Syst. Evol. 2022, 308, 36. [Google Scholar] [CrossRef]
- Song, S.S.; Qi, T.C.; Huang, H.; Xie, D.X. Regulation of Stamen Development by Coordinated Actions of Jasmonate, Auxin, and Gibberellin in Arabidopsis. Mol. Plant 2013, 6, 1065–1073. [Google Scholar] [CrossRef]
- Fang, Y.X.; Guo, D.S.; Wang, Y.; Wang, N.; Fang, X.W.; Zhang, Y.H.; Li, X.; Chen, L.T.; Yu, D.Q.; Zhang, B.L.; et al. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. Plant Cell 2024, 36, 1697–1717. [Google Scholar] [CrossRef]
- Sachdev, S.; Biswas, R.; Roy, A.; Nandi, A.; Roy, V.; Basu, S.; Chaudhuri, S. The Arabidopsis ARID–HMG DNA-BINDING PROTEIN 15 modulates jasmonic acid signaling by regulating MYC2 during pollen development. Plant Physiol. 2024, 196, 996–1013. [Google Scholar] [CrossRef]
- Yu, J.P.; Wu, Z.; Liu, X.Y.; Fang, Q.Q.; Pan, X.; Xu, S.J.; He, M.; Lin, J.X.; Teng, N.J. LoBLH6 interacts with LoMYB65 to regulate anther development through feedback regulation of gibberellin synthesis in lily. Hortic. Res. 2025, 12, uhae339. [Google Scholar] [CrossRef]
- Song, S.Y.; Chen, Y.; Liu, L.; See, Y.H.B.; Mao, C.Z.; Gan, Y.B.; Yu, H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nat. Plants 2018, 4, 495–504. [Google Scholar] [CrossRef]
- Chen, S.F.; Lou, S.L.; Zhao, X.C.; Zhang, S.J.; Chen, L.T.; Huang, P.; Li, G.D.; Li, Y.Y.; Liu, Y.G.; Chen, Y.L. Ectopic expression of a male fertility gene, LOGL8, represses LOG and hinders panicle and ovule development. Crop J. 2022, 10, 1665–1673. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Wang, X.; Zhao, T.Y.; Luo, J.F.; Liu, X.; Jiang, J. CYTOSOLIC INVERTASE2 regulates flowering and reactive oxygen species-triggered programmed cell death in tomato. Plant Physiol. 2024, 196, 1110–1125. [Google Scholar] [CrossRef]
- Li, P.; Tian, J.; Guo, C.; Luo, S.; Li, J. Interaction of gibberellin and other hormones in almond anthers: Phenotypic and physiological changes and transcriptomic reprogramming. Hortic. Res. 2021, 8, 94. [Google Scholar] [CrossRef]
- UI Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In vivo aspects of protein folding and quality control. Science 2016, 353, acc4353. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Waters, E.R. The evolution, function, structure, and expression of the plant sHSPs. J. Exp. Bot. 2013, 64, 391–403. [Google Scholar] [CrossRef]
- Siddique, M.; Gernhard, S.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.-D. The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperon. 2008, 13, 183–197. [Google Scholar] [CrossRef]
- Sarkar, N.K.; Kim, Y.K.; Grover, A. Rice sHsp genes: Genomic organization and expression profiling under stress and development. BMC Genom. 2009, 10, 393. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.H.; Lu, J.P.; Zhai, Y.F.; Wang, H.; Gong, Z.H.; Wang, S.B.; Lu, M.H. Genome-wide analysis of the CaHsp20 gene family in pepper: Comprehensive sequence and expression profile analysis under heat stress. Front. Plant Sci. 2015, 6, 806. [Google Scholar] [CrossRef]
- Yu, J.H.; Cheng, Y.; Feng, K.; Ruan, M.Y.; Ye, Q.J.; Wang, R.Q.; Li, Z.M.; Zhou, G.Z.; Yao, Z.P.; Yang, Y.J.; et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Front. Plant Sci. 2016, 17, 1215. [Google Scholar] [CrossRef]
- Huang, J.J.; Hai, Z.X.; Wang, R.Y.; Yu, Y.Y.; Chen, X.; Liang, W.H.; Wang, H.H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber (Cucumis sativus L.). Front. Plant Sci. 2022, 13, 968418. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.J.; Zhou, P.; Li, C.C. Genome-wide identification and characterization of RdHSP genes related to high temperature in Rhododendron delavayi. Plants 2024, 13, 1878. [Google Scholar] [CrossRef]
- Dafny-Yelin, M.; Tzfira, T.; Vainstein, A.; Adam, Z. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol. Biol. 2008, 67, 363–373. [Google Scholar] [CrossRef]
- Chauhan, H.; Khurana, N.; Nijhavan, A.; Khurana, J.P.; Khurana, P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ. 2012, 35, 1912–1931. [Google Scholar] [CrossRef]
- Ji, X.R.; Yu, Y.H.; Ni, P.Y.; Zhang, G.H.; Guo, D.L. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biol. 2019, 19, 433. [Google Scholar] [CrossRef]
- Zhang, F.J.; Li, Z.Y.; Zhang, D.E.; Ma, N.; Wang, Y.X.; Zhang, T.T.; Zhao, Q.; Zhang, Z.; You, C.X.; Lu, X.Y. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. Physiol. Plant. 2024, 176, e14288. [Google Scholar] [CrossRef]
- Lian, X.D.; Wang, Q.P.; Li, T.H.; Gao, H.Z.; Li, H.N.; Zheng, X.B.; Feng, J.C. Phylogenetic and transcriptional analyses of the HSP20 gene family in peach revealed that PpHSP20-32 is involved in plant height and heat tolerance. Int. J. Mol. Sci. 2022, 23, 10849. [Google Scholar] [CrossRef]
- Vandenbussche, M.; Chambrier, P.; Rodrigues Bento, S.; Morel, P. Petunia, your next supermodel? Front. Plant Sci. 2016, 7, 72. [Google Scholar] [CrossRef]
- Smith, A.G.; Gardner, N.; Zimmermann, E. Increased flower longevity in petunia with male sterility. Hortscience 2004, 39, 822. [Google Scholar] [CrossRef]
- García-Sogo, B.; Pineda, B.; Roque, E.; AntÓn, T.; Atarés, A.; Borja, M.; Beltrán, J.P.; Moreno, V.; Cañas, L.A. Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol. 2012, 12, 156–171. [Google Scholar] [CrossRef]
- Li, S.R.; Hu, Y.; Yang, H.Q.; Tian, S.B.; Wei, D.Y.; Tang, Q.L.; Yang, Y.; Wang, Z.M. The regulatory roles of MYC TFs in plant stamen development. Plant Sci. 2023, 333, 111734. [Google Scholar] [CrossRef]
- Xie, J.M.; Chen, Y.R.; Cai, G.J.; Cai, R.L.; Hu, Z.; Wang, H. Tree Visualization by One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Li, T.; Jiang, Z.; Zhang, L.; Tan, D.; Wei, Y.; Yuan, H.; Li, T.; Wang, A. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J. 2016, 88, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.Z.; Zhu, W.W.; Wang, J.H.; Wang, T.T.; Shi, L.S.; Thomas, H.R.; Hu, H.R.; Wang, L.G. Integration of DNA methylation, microRNAome, degradome and transcriptome provides insights into petunia anther development. Plant Cell Physiol. 2024, 66, 36–49. [Google Scholar] [CrossRef]
- Huang, X.; Yue, Y.Z.; Sun, J.; Peng, H.; Yang, Z.N.; Bao, M.Z.; Hu, H.R. Characterization of a fertility-related SANT/MYB gene (PhRL) from petunia. Sci. Hortic. 2015, 183, 152–159. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Barbanti, L.; Aamer, M.; Iqbal, M.M.; Nawaz, M.; Mahmood, A.; Ali, A.; et al. Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosyst. 2021, 155, 211–234. [Google Scholar] [CrossRef]
- Shi, L.C.; Kang, Y.D.; Ding, L.; Xu, L.J.; Liu, X.J.; Yu, A.M.; Liu, A.Z.; Li, P. Comprehensive characterization of poplar HSP20 gene family: Genome-wide identification, stress-induced expression profiling, and protein interaction verifications. BMC Plant Biol. 2025, 25, 251. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Dai, B.W.; Fan, M.; Yang, L.L.; Li, C.; Hou, G.G.; Wang, X.F.; Gao, H.B.; Li, J.R. Genome-wide profile analysis of the Hsp20 family in lettuce and identification of its response to drought stress. Front. Plant Sci. 2024, 15, 1426719. [Google Scholar] [CrossRef]
- Ham, D.J.; Moon, J.C.; Hwang, S.G.; Jang, C.S. Molecular characterization of two small heat shock protein genes in rice: Their expression patterns, localizations, networks, and heterogeneous overexpressions. Mol. Biol. Rep. 2013, 40, 6709–6720. [Google Scholar] [CrossRef]
- Roger, D.K.; Tamutenda, C.; Hannah, S.T.; Tea, M.; Robert, A.B.; Virginia, B.P. Chaperone function of two small heat shock proteins from maize. Plant Sci. 2014, 221–222, 48–58. [Google Scholar] [CrossRef]
- Lopes-Caitar, V.S.; de Carvalho, M.C.; Darben, L.M.; Kuwahara, M.K.; Nepomuceno, A.L.; Dias, W.P.; Abdelnoor, R.V.; Marcelino-Guimarães, F.C. Genome-wide analysis of the Hsp20 gene family in soybean: Comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genom. 2013, 28, 577. [Google Scholar]
- Yao, F.W.; Song, C.H.; Wang, H.T.; Song, S.W.; Jiao, J.; Wang, M.M.; Zheng, X.B.; Bai, T.H. Genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple. Front. Genet. 2020, 11, 609184. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, Z.M.; Dong, L.P.; Tang, M.; Zhang, P.; Zhang, C.H.; Cao, Z.Y.; Zhu, Q.; Chen, Y.C.; Wang, H.; et al. Histone H1 acetylation at lysine 85 regulates chromatin condensation and genome stability upon DNA damage. Nucleic Acids Res. 2018, 46, 7716–7730. [Google Scholar] [CrossRef]
- Liu, S.S.; Wu, Y.Z.; Yang, L.; Zhang, Z.B.; He, D.D.; Yan, J.G.; Zou, H.S.; Liu, Y.M. Genome-wide identification and expression analysis of heat shock protein 20 (HSP20) gene family in response to high-temperature stress in chickpeas (Cicer arietinum L.). Agronomy 2024, 14, 1696. [Google Scholar] [CrossRef]
- Latijnhouwers, M.; Xu, X.M.; Møller, S.G. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 2010, 232, 567–578. [Google Scholar] [CrossRef]
- Maruyama, D.; Sugiyama, T.; Endo, T.; Nishikawa, S. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol. 2014, 55, 801–810. [Google Scholar] [CrossRef]
- Chen, X.; Shi, L.; Chen, Y.Q.; Zhu, L.; Zhang, D.S.; Xiao, S.; Aharoni, A.; Shi, J.X.; Xu, J. Arabidopsis HSP70-16 is required for flower opening under normal or mild heat stress temperatures. Plant Cell Environ. 2019, 42, 1190–1204. [Google Scholar] [CrossRef]
- Zhong, L.L.; Zhou, W.; Wang, H.J.; Ding, S.H.; Lu, Q.T.; Wen, X.G.; Peng, L.W.; Zhang, L.X.; Lu, C.M. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 2013, 25, 2925–2943. [Google Scholar] [CrossRef]
- Feng, X.H.; Zhang, H.X.; Ali, M.; Gai, W.X.; Cheng, G.X.; Yu, Q.H.; Yang, S.B.; Li, X.X.; Gong, Z.H. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 142, 151–162. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Qiu, L.; Han, X.; Zhu, Y.; Liu, L.; Man, M.; Li, F.; Ren, M.; Xing, Y. MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int. J. Mol. Sci. 2023, 24, 3511. [Google Scholar] [CrossRef]
- Kazan, K.; Manners, J.M. MYC2: The Master in Action. Mol. Plant 2013, 6, 686–703. [Google Scholar] [CrossRef]
- Wu, S.F.; Hu, C.Y.; Zhu, C.G.; Fan, Y.F.; Zhou, J.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Foyer, H.C.; Yu, J.Q. The MYC2–PUB22–JAZ4 module plays a crucial role in jasmonate signaling in tomato. Mol. Plant 2024, 17, 598–613. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Jiang, S.; Wu, W.; Du, K.; Kang, X. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. New Phytol. 2024, 241, 2506–2522. [Google Scholar] [CrossRef]
- Zheng, J.R.; Liao, Y.L.; Ye, J.B.; Xu, F.; Zhang, W.W.; Zhou, X.; Wang, L.N.; He, X.; Cao, Z.Y.; Yi, Y.W.; et al. The transcription factor MYC2 positively regulates terpene trilactone biosynthesis through activating GbGGPPS expression in Ginkgo biloba. Hortic. Res. 2024, 11, uhae228. [Google Scholar] [CrossRef]
Name | Gene ID | Functional Annotation |
---|---|---|
PhHsp21.9 | Peaxi162Scf00011g00203 | 22.7 kDa class IV heat shock protein |
PhGOLS10A | Peaxi162Scf00058g02212 | Galactinol synthase 1 |
PhHsp16.8 | Peaxi162Scf00128g00741 | Small heat shock protein, chloroplastic |
PhHsp16.1 | Peaxi162Scf00132g00087 | 17.6 kDa class I heat shock protein |
PhHsp16.0A | Peaxi162Scf00420g00141 | 18.1 kDa class I heat shock protein |
PhHsp40.8 | Peaxi162Scf00565g00812 | 17.6 kDa class II heat shock protein |
Name | Amino Acid Sequence | Sequence Length 1 |
---|---|---|
Motif 1 | LPENAKLDKIKAKMENGVLTV | 21 |
Motif 2 | HIFRVDLPGLKKEEVKVZVEE | 21 |
Motif 3 | FFGGRRSNIFDPFSLDIFDPFEGFPFSGTVANIPSSARETSAFANARIDW | 50 |
Motif 4 | EKNDKWHRMERSSGKFVRRFR | 21 |
Motif 5 | GRVLKISGERKREZE | 15 |
Motif 6 | PKZEEKKPEVKAIDI | 15 |
Motif 7 | SAMAAARVDWKETPEA | 16 |
Motif 8 | LAAKLKMPRKVJNMTLVALLVLGIGLYVANVMKS | 34 |
Motif 9 | FYNNCVSPSCRNGNNKIKAMAVGERNNLDHLQRQKKHQSNQPRKRSVQMA | 50 |
Motif 10 | HGFGGGRGNNVFDPFSLDIWDPFEDFH | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, B.; Wang, Y.; Wang, L.; Tang, J.; Zhao, B.; Cheng, Q.; Guo, J.; Zhang, H.; Hu, H. Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development. Agronomy 2025, 15, 2048. https://doi.org/10.3390/agronomy15092048
Zhou X, Zhang B, Wang Y, Wang L, Tang J, Zhao B, Cheng Q, Guo J, Zhang H, Hu H. Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development. Agronomy. 2025; 15(9):2048. https://doi.org/10.3390/agronomy15092048
Chicago/Turabian StyleZhou, Xuecong, Bingru Zhang, Yilin Wang, Letian Wang, Jiajun Tang, Bingyan Zhao, Qian Cheng, Juntao Guo, Hang Zhang, and Huirong Hu. 2025. "Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development" Agronomy 15, no. 9: 2048. https://doi.org/10.3390/agronomy15092048
APA StyleZhou, X., Zhang, B., Wang, Y., Wang, L., Tang, J., Zhao, B., Cheng, Q., Guo, J., Zhang, H., & Hu, H. (2025). Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development. Agronomy, 15(9), 2048. https://doi.org/10.3390/agronomy15092048