Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Overview of the Test Site
2.3. Experimental Design
2.4. Measurement Indicators and Methods
2.4.1. Yield and Agronomic Traits
2.4.2. Osmotic Adjustment Substances
2.4.3. Protective Enzyme System Activity
2.4.4. Photosynthetic Indices
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Saline–Alkali Stress on Rapeseed Yield and Its Components
3.2. Effects of Saline–Alkali Stress on Agronomic Traits, Stress Physiology, and Photosynthesis of Rapeseed
3.3. Variation Analysis of Each Index of Rapeseed
3.4. Correlation Analysis of Each Index
3.5. Principal Component Analysis of Each Index
3.6. Comprehensive Evaluation
4. Discussion
4.1. Relationship Between Rapeseed Phenotype, Physiological Characteristics, Photosynthetic Indexes, Yield, and Saline–Alkali Tolerance
4.2. Identification, Evaluation, and Germplasm Screening of Rapeseed Saline–Alkali Tolerance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Above-ground biomass |
BGB | Below-ground biomass |
RSR | root-to-shoot ratio |
SRL | specific root length |
SSA | specific root surface area |
L | total root length |
NES | number of effective pods per plant |
AN | number of seeds per pod |
1000-SW | 1000-grain weight |
SY | theoretical yield |
SP | proline |
Pro | protein |
MDA | malondialdehyde |
CAT | catalase |
SOD | superoxide dismutase |
POD | peroxidase |
Pn | net photosynthetic rate |
Gs | stomatal conductance |
Ci | intercellular CO2 concentration |
Tr | transpiration rate |
Appendix A
Index | AGB | L | BGB | SRL | MDA | SP | Gs | SY |
---|---|---|---|---|---|---|---|---|
BGB | 0.97 ** | |||||||
SSA | 0.99 ** | |||||||
Pro | 0.92 * | |||||||
Pn | 0.82 * | 0.88 * | ||||||
Gs | 0.88 * | |||||||
SY | 0.90 * | 0.88 * | 0.87 * | 0.86 * | ||||
NES | 0.87 * | |||||||
AN | 0.87 * |
Index | PC1 | PC2 | PC3 | PC4 | The Total Number of Loads | Ranking of the Best Indicators |
---|---|---|---|---|---|---|
M_AGB | 0.933 * | −0.202 | 0.293 | 0.022 | 31.842 | 15 |
M_BGB | 0.608 | −0.555 | −0.039 | 0.561 | 14.087 | 31 |
M_L | 0.342 | 0.855 * | 0.007 | 0.378 | 38.750 | 9 |
M_RSR | −0.934 | −0.116 | −0.205 | −0.129 | −39.967 | 60 |
M_SRL | −0.587 | 0.355 | 0.126 | −0.717 | −19.208 | 54 |
M_SSA | 0.166 | 0.494 | −0.287 | −0.796 | 1.878 | 42 |
M_SOD | −0.549 | −0.679 | 0.303 | −0.356 | −35.859 | 59 |
M_POD | 0.600 | −0.607 | 0.299 | 0.244 | 13.590 | 33 |
M_CAT | −0.743 | 0.474 | −0.346 | 0.323 | −14.445 | 53 |
M_MDA | −0.019 | 0.441 | −0.261 | −0.193 | 3.349 | 40 |
M_SP | 0.016 | 0.145 | 0.632 | 0.328 | 19.467 | 23 |
M_Pro | 0.113 | −0.476 | 0.722 * | 0.100 | 5.325 | 39 |
M_Pn | −0.545 | −0.407 | 0.378 | 0.569 | −14.315 | 52 |
M_Tr | −0.121 | 0.155 | 0.884 * | −0.338 | 9.695 | 36 |
M_Gi | 0.371 | 0.387 | 0.177 | −0.788 | 14.011 | 32 |
M_Gs | −0.025 | −0.035 | 0.667 | −0.508 | 2.101 | 41 |
H_AGB | 0.770 * | −0.630 | 0.011 | 0.096 | 11.857 | 34 |
H_BGB | 0.918 * | −0.337 | 0.209 | 0.000 | 26.207 | 19 |
H_L | 0.328 | 0.688 | 0.364 | 0.439 | 40.897 | 6 |
H_RSR | 0.444 | 0.756 * | 0.319 | 0.279 | 43.507 | 2 |
H_SRL | −0.534 | 0.795 * | 0.180 | 0.091 | 6.208 | 38 |
H_SSA | 0.020 | 0.902 * | 0.091 | 0.400 | 30.703 | 17 |
H_SOD | 0.186 | 0.311 | −0.931 | 0.026 | −0.997 | 46 |
H_POD | −0.232 | 0.045 | 0.146 | 0.934 * | 9.105 | 37 |
H_CAT | 0.213 | 0.004 | −0.962 | −0.104 | −10.209 | 51 |
H_MDA | 0.513 | −0.597 | 0.265 | −0.494 | −0.290 | 44 |
H_SP | 0.179 | 0.500 | −0.761 | −0.289 | 1.844 | 43 |
H_Pro | 0.622 | 0.774 * | −0.032 | −0.115 | 38.493 | 11 |
H_Pn | 0.869 * | −0.387 | 0.136 | 0.123 | 23.829 | 20 |
H_Tr | 0.827 * | −0.112 | −0.032 | −0.306 | 20.368 | 22 |
H_Gi | −0.572 | −0.313 | −0.104 | 0.496 | −21.958 | 56 |
H_Gs | 0.681 | −0.018 | −0.657 | 0.201 | 14.627 | 30 |
J_AGB | 0.823 * | −0.462 | −0.053 | 0.223 | 18.654 | 24 |
J_BGB | 0.845 * | −0.437 | −0.099 | 0.088 | 17.325 | 25 |
J_L | 0.673 | 0.577 | 0.284 | 0.039 | 42.746 | 4 |
J_RSR | 0.597 | −0.339 | −0.285 | −0.637 | −2.161 | 47 |
J_SRL | −0.371 | 0.819 * | 0.364 | −0.220 | 10.959 | 35 |
J_SSA | 0.396 | 0.857 * | 0.232 | −0.018 | 38.702 | 10 |
J_SOD | −0.686 | 0.312 | 0.569 | −0.104 | −7.455 | 49 |
J_POD | 0.025 | −0.475 | 0.628 | −0.598 | −9.243 | 50 |
J_CAT | 0.687 | −0.201 | −0.017 | −0.232 | 14.675 | 29 |
J_MDA | 0.861 * | −0.202 | −0.290 | −0.276 | 15.378 | 27 |
J_SP | 0.837 * | 0.286 | −0.303 | 0.307 | 35.034 | 13 |
J_Pro | 0.286 | 0.642 | 0.274 | 0.596 | 39.062 | 8 |
C_AGB | 0.910 * | 0.121 | 0.389 | −0.010 | 40.351 | 7 |
C_BGB | 0.909 * | −0.259 | 0.251 | 0.174 | 31.071 | 16 |
C_L | 0.696 | 0.370 | 0.592 | 0.166 | 45.273 | 1 |
C_RSR | −0.310 | −0.889 | −0.141 | 0.307 | −30.912 | 58 |
C_SRL | −0.070 | 0.824 * | 0.433 | −0.326 | 20.951 | 21 |
C_SSA | 0.877 | 0.420 | 0.177 | −0.154 | 41.163 | 5 |
C_SOD | −0.332 | 0.704 | 0.120 | 0.476 | 15.313 | 28 |
C_POD | 0.097 | −0.721 | 0.615 | 0.082 | −3.445 | 48 |
C_CAT | 0.456 | 0.094 | −0.504 | −0.697 | −0.551 | 45 |
C_MDA | 0.530 | 0.147 | −0.667 | 0.425 | 16.706 | 26 |
C_SP | −0.412 | −0.318 | −0.428 | 0.530 | −21.563 | 55 |
C_Pro | 0.722 * | 0.213 | 0.617 | 0.226 | 43.476 | 3 |
SY | 0.947 * | 0.033 | −0.138 | 0.099 | 32.158 | 14 |
NES | 0.771 | 0.509 | −0.206 | 0.128 | 37.463 | 12 |
AN | 0.506 | 0.249 | −0.054 | 0.318 | 27.159 | 18 |
1000-SW | −0.198 | −0.861 | 0.047 | 0.259 | −23.948 | 57 |
Eigenvalue | 20.406 | 15.137 | 10.017 | 8.623 | ||
Contribution rate (%) | 34.009 | 25.228 | 16.694 | 14.371 | ||
Cumulative contribution rate (%) | 34.009 | 59.238 | 75.932 | 90.303 |
References
- FAO. Global Status of Salt-Affected Soils—Main Report; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhao, H.L.; Chen, X.B. Research Status and Prospects of Saline-alkali Land Amelioration in the Coastal Region of China. Chin. Agric. Sci. Bull. 2022, 38, 67–74. [Google Scholar]
- Xing, J.; Li, X.Y.; Li, Z.Q.; Wang, X.T.; Hou, N.; Li, D.P. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar] [CrossRef]
- Fan, C. Genetic mechanisms of salt stress responses in halophytes. Plant Signal. Behav. 2020, 15, 1704528. [Google Scholar] [CrossRef]
- Li, Z.S.; Lian, X.J.; Wang, W.; Zhao, T.K.; Li, H.J. Research progress of green manure in China. Pratacult. Sci. 2013, 30, 1135–1140. [Google Scholar]
- Zhen, J.D. Effects of Soil Salt Content on Photosynthesis, Biomass Accumulation and Carbon and Nitrogen Physiology of Rapeseed. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Wang, H.M.; Li, Y.Y.; Huang, Y.H.; Wang, Y.; Qu, W.T.; Lin, Y.W.; Wang, L.; Lin, G.B.; Zuo, Q.S. Response of rapeseed growth to soil salinity content and its improvement effect on coastal saline soil. Front. Plant Sci. 2025, 16, 1601627. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guo, L.; Wang, S.B.; Wang, X.Y.; Ren, M.; Zhao, P.J.; Huang, Z.Y.; Jia, H.J.; Wang, J.H.; Lin, A.J. Effective strategies for reclamation of saline-alkali soil and response mechanisms of the soil-plant system. Sci. Total Environ. 2023, 905, 167179. [Google Scholar] [CrossRef]
- Rao, Y.; Peng, T.; Xue, S.W. Mechanisms of plant saline-alkaline tolerance. J. Plant Physiol. 2023, 281, 153916. [Google Scholar] [CrossRef]
- Li, J.M.; Li, A.G.; Li, H.P.; Guan, M.W.; Wu, J.Y.; Shun, W.C.; Zhai, L.J.; Ma, L.; Guo, A.Q. Identification and screening of saline-alkali tolerant winter rapeseed varieties in the Bohai Rim region. Chin. J. Oil Crop Sci. 2025, 47, 402–412. [Google Scholar]
- Ma, L.; Lian, Y.T.; Li, S.Y.; Fahim, A.M.; Hou, X.F.; Liu, L.J.; Pu, Y.Y.; Yang, G.; Wang, W.T.; Wu, J.Y.; et al. Integrated transcriptome and metabolome analysis revealed molecular regulatory mechanism of saline-alkali stress tolerance and identified bHLH142 in winter rapeseed (Brassica rapa). Int. J. Biol. Macromol. 2025, 295, 139542. [Google Scholar] [CrossRef]
- Guan, Z.B.; Dong, Y.H.; Li, G.T.; Zhong, Z.X. Cultivation Technology of Rapeseed in Salt-Alkali Land in Weibei Area of Shaanxi. China Seed Ind. 2024, 5, 173–175. [Google Scholar]
- Yuan, Y.T.; Zhang, X.Y.; Wu, G.F.; Huang, L.; Yuan, X.X.; Chen, X.; Liu, X.Y.; Xue, C.C. Comprehensive Evaluation of Salt Tolerance of Soybean Germplasm Resources Based on Principal Component and Membership Function Analysis. Soybean Sci. 2025, 44, 22–32. [Google Scholar]
- Wu, Q.S. Plant Physiology Experiment Guidance, 5th ed.; Agriculture Press: Beijing, China, 2018. [Google Scholar]
- Wang, X.K. Principles and Techniques of Plant Physiology and Biochemical Experiments, 2nd ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Liu, Y.; Yin, Z.Q.; Wu, B.C.; Xu, M.L.; Liu, C.; Shi, H.S.; Pang, B.; Miao, X.F. Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties. Crops 2024, 3, 207–215. [Google Scholar]
- Feng, N.J.; Yu, M.L.; Li, Y.; Jin, D.; Zhang, D.F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol. Environ. Saf. 2021, 220, 112369. [Google Scholar] [CrossRef]
- Cheng, H.; Ye, M.Y.; Wu, T.T.; Ma, H. Evaluation and Heritability Analysis of the Seed Vigor of Soybean Strains Tested in the Huanghuaihai Regional Test of China. Plants 2023, 12, 1347. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Tian, Y.M.; Qu, Z.P.; Wang, J.X.; Han, D.Z.; Dong, S.K. Comparing the Salt Tolerance of Different Spring Soybean Varieties at the Germination Stage. Plants 2023, 12, 2789. [Google Scholar] [CrossRef]
- Long, W.H.; Pu, H.M.; Zhang, J.F.; Qi, C.K.; Zhang, X.K. Screening of Brassica napus for salinity tolerance at germination stage. Chin. J. Oil Crop Sci. 2013, 35, 271–275. [Google Scholar]
- Wang, Y.F.; Mou, J.M.; Dang, K.; Shao, X.W.; Geng, Y.Q.; Zhang, Q.; Yu, L.T.; Guo, L.Y. Insights into physiological, biochemical and molecular responses in wheat under salt stress. Jiangsu Agric. Sci. 2024, 52, 112–122. [Google Scholar]
- Kesh, H.; Devi, S.; Kumar, N.; Kumar, A.; Kumar, A.; Dhansu, P.; Sheoran, P.; Mann, A. Insights into Physiological, Biochemical and Molecular Responses in Wheat under Salt Stress. In Wheat-Recent Advances, 10th ed.; Ansari, M.-u.-R., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y.; Feng, X.H.; Otie, V.; Matsuura, A.; Irshad, M.; Zheng, Y.R.; An, P. Cell Wall Components and Extensibility Regulate Root Growth in Suaeda salsa and Spinacia oleracea under Salinity. Plants 2022, 11, 900. [Google Scholar] [CrossRef]
- Shehzadi, S.; Faiza, G.G.Y. Effect of Salt Stress on the Germination and Early Seedling Growth in Okra (Abelmoschus esculentus). Sarhad J. Agric. 2022, 38, 388–397. [Google Scholar] [CrossRef]
- Montez, M.; Majchrowska, M.; Krzyszton, M.; Bokota, G.; Sacharowski, S.; Wrona, M.; Yatusevich, R.; Massana, F.; Plewczynski, D.; Swiezewski, S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J. 2023, 42, e112443. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Weng, X.L.; Jiang, L.Q.; Huang, Y.; Wu, H.; Wang, K.J.; Li, K.; Guo, X.Q.; Zhu, G.L.; Zhou, G.S. Screening and Evaluation of Salt-Tolerant Wheat Germplasm Based on the Main Morphological Indices at the Germination and Seedling Stages. Plants 2024, 13, 3201. [Google Scholar] [CrossRef]
- Zeeshan, M.; Lu, M.; Sehar, S.; Holford, P.; Wu, F. Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy 2020, 10, 127. [Google Scholar] [CrossRef]
- Dai, R.; Zhan, N.; Geng, R.D.; Xu, K.; Zhou, X.C.; Li, L.X.; Yan, G.X.; Zhou, F.L.; Cai, G.Q. Progress on Salt Tolerance in Brassica napus. Plants 2024, 13, 1990. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Aycan, M.; Baslam, M.; Mitsui, T.; Yildiz, M. Assessing Contrasting Wheat (Triticum aestivum L.) Cultivars Responsiveness to Salinity at the Seedling Stage and Screening of Tolerance Marker Traits. J. Plant Growth Regul. 2024, 43, 2646–2666. [Google Scholar] [CrossRef]
- Najar, R.; Aydi, S.; Sassi-Aydi, S.; Zarai, A.; Abdelly, C. Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosyst. 2019, 153, 88–97. [Google Scholar] [CrossRef]
- Deng, P.; Feng, N.; Zheng, D. Regulation of Photosynthetic Capacity and Ion Metabolism of Oilseed Rape Under Salt Stress by Prohexadione-Calcium Priming. 2024. Available online: https://www.preprints.org/manuscript/202403.1080/v1 (accessed on 11 July 2025).
- Wang, C.L.; Hai, J.B.; Yang, J.L.; Tian, J.H.; Chen, W.J.; Chen, T.; Luo, H.B.; Wang, H. Influence of leaf and silique photosynthesis on seeds yield and seeds oil quality of oilseed rape (Brassica napus L.). Eur. J. Agron. 2016, 74, 112–118. [Google Scholar] [CrossRef]
- Liu, Q.Q. Study on the Mechanism of Salt Exclusion in the Roots of Suaeda salsa in Different Habitats. Master’s Thesis, Shandong Normal University, Jinan, China, 2018. [Google Scholar]
- Li, X.; Liu, C.X.; Xu, B.; Dong, R.S.; Huan, H.F.; Huang, C.Q.; Yan, L.Q.; Wang, W.Q.; Yang, H.B.; Yu, D.G.; et al. Plant Salt-exclusion Mechanism: A Review. Chin. Agric. Sci. Bull. 2023, 39, 86–94. [Google Scholar]
- Chen, T.X.; Zhang, J.L.; Lu, N.; Wang, S.M. The characteristics of free proline distribution in various types of salt-resistant plants. Acta Prataculturae Sin. 2006, 1, 36–41. [Google Scholar]
- Zhang, Z.C.; Xia, Z.L.; Zhou, C.J.; Wang, G.; Meng, X.; Yin, P.C. Insights into Salinity Tolerance in Wheat. Genes 2024, 15, 573. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Abu Alhmad, M.F.; Kordrostami, M.; Abo Baker, A.A.; Zakir, A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J. Plant Growth Regul. 2020, 39, 1293–1306. [Google Scholar] [CrossRef]
- Shi, J.Q.; Xie, N.; Cui, S.Q.; Shun, G.T.; Pan, X.; Zhang, L.F.; Liu, Z.K.; Liu, Z.Y.; Zhang, H.F.; Li, Y.N.; et al. Evaluation of Salt Tolerance of 16 Alfalfa Varieties under Different Salt Concentration Stress at Germination Stage. Acta Prataculturae Sin. 2025, 33, 472–480. [Google Scholar]
- Kaur, M.; Gupta, N.; Kaur, N.; Sohu, R.S.; Mahal, A.K.; Choudhary, A. Preliminary screening of sorghum (Sorghum bicolor L.) germplasm for salinity stress tolerance at the early seedling stage. Cereal Res. Commun. 2023, 51, 603–613. [Google Scholar] [CrossRef]
- Cao, Y.B.; Song, H.F.; Zhang, L.Y. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int. J. Mol. Sci. 2022, 23, 23. [Google Scholar] [CrossRef]
- Wang, X.Y.; Song, J.W.; Fan, W.; He, Z.L.; Zhang, X.Y. Evaluation of comprehensive alkali resistance in tomato germplasm seedlings. Euphytica 2025, 221, 137. [Google Scholar] [CrossRef]
- Wang, H.; Takano, T.; Liu, S.K. Screening and Evaluation of Saline—Alkaline Tolerant Germplasm of Rice (Oryza sativa L.) in Soda Saline—Alkali Soil. Agronomy 2018, 8, 16. [Google Scholar] [CrossRef]
Index | Content |
---|---|
pH | 8.24 ± 0.31 |
EC (μS·cm−1) | 311 ± 56 |
Organic matter (g·kg−1) | 9.57 ± 0.15 |
Total nitrogen (g·kg−1) | 1.93 ± 0.24 |
Total phosphorus (g·kg−1) | 0.97 ± 0.15 |
Total amount of water-soluble salts (g·kg−1) | 0.87 ± 0.20 |
Period | Seedling Stage | Flowering Stage | Pod-Setting Stage | Maturity Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | Average Value | Standard Deviation | Coefficient% | Average Value | Standard Deviation | Coefficient% | Average Value | Standard Deviation | Coefficient% | Average Value | Standard Deviation | Coefficient% |
AGB (g·m−2) | 17.25 | 12.25 | 71.01 | 109.03 | 71.35 | 65.44 | 278.51 | 166.33 | 59.72 | 445.64 | 351.87 | 78.96 |
BGB (g·m−2) | 1.46 | 0.81 | 55.32 | 18.57 | 12.80 | 68.93 | 26.17 | 17.03 | 65.07 | 33.78 | 20.65 | 61.13 |
L (cm) | 49.86 | 7.21 | 14.46 | 475.55 | 220.82 | 46.43 | 307.69 | 139.90 | 45.47 | 358.91 | 202.10 | 56.31 |
RSR | 0.12 | 0.07 | 57.76 | 0.17 | 0.04 | 23.53 | 0.09 | 0.01 | 11.11 | 0.09 | 0.04 | 44.44 |
SRL (m·g−1) | 8.66 | 4.39 | 50.74 | 6.08 | 3.04 | 50.00 | 2.83 | 1.31 | 46.29 | 2.21 | 0.66 | 29.86 |
SSA (cm2·g−1) | 8.63 | 2.29 | 26.54 | 5.22 | 1.89 | 36.21 | 2.60 | 1.04 | 40.00 | 2.12 | 0.77 | 36.32 |
SOD (U·g−1) | 80.18 | 39.66 | 49.46 | 95.84 | 56.01 | 58.44 | 121.00 | 98.82 | 81.67 | 142.61 | 21.40 | 15.01 |
POD (U·g−1) | 5.66 | 1.52 | 26.86 | 28.43 | 6.50 | 22.86 | 42.21 | 7.38 | 17.48 | 52.10 | 14.20 | 27.26 |
CAT (U·g−1) | 47.15 | 14.54 | 30.84 | 8.88 | 5.79 | 65.20 | 5.30 | 1.82 | 34.34 | 3.13 | 0.71 | 22.68 |
MDA (μmol·g−1) | 7.88 | 1.70 | 21.57 | 10.45 | 1.63 | 15.60 | 9.29 | 1.80 | 19.38 | 8.79 | 1.13 | 12.86 |
SP (mg·g−1) | 22.86 | 5.92 | 25.90 | 13.83 | 6.54 | 47.29 | 10.76 | 1.54 | 14.31 | 4.72 | 1.16 | 24.58 |
Pro (μg·g−1) | 207.46 | 45.60 | 21.98 | 196.06 | 61.74 | 31.49 | 32.70 | 27.50 | 84.10 | 21.29 | 13.06 | 61.34 |
Pn (μmol CO2·m−2·g−1) | 8.86 | 3.37 | 38.04 | 18.06 | 9.93 | 54.98 | ||||||
Tr (m mol H2O·m−2·g−1) | 5.41 | 1.53 | 28.28 | 6.76 | 1.88 | 27.81 | ||||||
Ci (μmol CO2·mol−1) | 215.60 | 42.08 | 19.52 | 425.55 | 85.51 | 20.09 | ||||||
Gs (mol H2O·m−2·g−1) | 154.45 | 39.25 | 25.41 | 236.67 | 57.58 | 24.33 | ||||||
SY (kg·hm−2) | 1465.23 | 731.68 | 49.94 | |||||||||
NES | 107.45 | 30.76 | 28.63 | |||||||||
AN | 19.70 | 2.39 | 12.13 | |||||||||
1000-SW (g) | 4.12 | 0.30 | 7.28 |
Varieties | F1 | F2 | F3 | F4 | u1 | u2 | u3 | u4 | D-Value | Sort |
---|---|---|---|---|---|---|---|---|---|---|
H62 | 11.552 | 1.667 | −1.865 | 0.522 | 0.736 | 0.501 | 0.059 | 0.505 | 4.555 | 3 |
H158 | 5.290 | 6.403 | −2.306 | 0.273 | 0.379 | 0.954 | 0.000 | 0.463 | 3.398 | 4 |
20C4 | 7.550 | −3.564 | 1.053 | 1.640 | 0.508 | 0.000 | 0.450 | 0.697 | 2.304 | 5 |
20C14 | 16.164 | 0.724 | 5.158 | 0.867 | 1.000 | 0.411 | 1.000 | 0.565 | 7.381 | 1 |
20C17 | 7.842 | 6.882 | 5.036 | 3.402 | 0.525 | 1.000 | 0.984 | 1.000 | 6.348 | 2 |
17C2 | −1.338 | 2.343 | 3.961 | −2.420 | 0.000 | 0.565 | 0.840 | 0.000 | 0.498 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; An, H.; Yang, W.; Zhang, X.; Chai, J.; Hao, Y.; Wang, B.; Zhou, G.; Fu, T.; Yang, Z. Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle. Agronomy 2025, 15, 2046. https://doi.org/10.3390/agronomy15092046
Jiang H, An H, Yang W, Zhang X, Chai J, Hao Y, Wang B, Zhou G, Fu T, Yang Z. Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle. Agronomy. 2025; 15(9):2046. https://doi.org/10.3390/agronomy15092046
Chicago/Turabian StyleJiang, Hongyu, Hua An, Wenping Yang, Xiangyu Zhang, Jingjing Chai, Yani Hao, Bo Wang, Guangsheng Zhou, Tingdong Fu, and Zhenping Yang. 2025. "Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle" Agronomy 15, no. 9: 2046. https://doi.org/10.3390/agronomy15092046
APA StyleJiang, H., An, H., Yang, W., Zhang, X., Chai, J., Hao, Y., Wang, B., Zhou, G., Fu, T., & Yang, Z. (2025). Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle. Agronomy, 15(9), 2046. https://doi.org/10.3390/agronomy15092046