Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Dataset
2.2.1. Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) Dataset
2.2.2. Remote Sensing Datasets
2.2.3. Standardized Precipitation Evapotranspiration Index (SPEI) Dataset
2.3. Methodology
2.3.1. Construction of a Standardized Drought Index
2.3.2. Bayesian Estimator of Abrupt Seasonal and Trend Change Algorithm (BEAST)
2.3.3. Improved Run Theory and Copula-Based Recurrence Period
- (1)
- A preliminary drought is triggered when SEWDI falls below X1;
- (2)
- Single-month droughts with SEWDI above X2 are deemed invalid;
- (3)
- Adjacent droughts separated by one month (with intermediate SEWDI < X0) are merged, with aggregated duration and severity.
2.3.4. Modified Mann–Kendall Method (MMK)
2.3.5. Cross-Wavelet Transform Technology
- (1)
- The PWC leverages wavelet-based time–frequency decomposition to isolate oscillatory components of time series across distinct spectral bands [64]. While traditional bivariate wavelet coherence identifies scale-specific interdependencies between variables, PWC eliminates spurious correlations induced by confounding factors through partial covariance conditioning [65]. This capability is particularly critical in drought studies where multiple drivers exhibit collinear behaviors.
- (2)
- Multiple wavelet coherence (MWC), a cornerstone analytical tool in geophysical research, investigates how a target variable depends on synergistic interactions among multiple predictors. By integrating cross-wavelet and auto-wavelet power spectra within a rigorous theoretical framework, MWC enables precise quantification of complex synergistic dependencies, thereby advancing mechanistic understanding of geophysical systems. During wavelet analysis, the percentage of significant power (POSP) and average wavelet coherence (AWC) are computed to quantitatively assess the explanatory capacity of predictor variables on the response variable [66].
3. Results
3.1. Characterizing the Multi-Scale Temporal Evolution of Ecological Drought
3.2. Dynamic Variation and Recurrence Period of Typical Drought Events
3.3. Spatial Trend Distribution of Ecological Drought at the Pixel Scale
3.4. Identification of Driving Factors
3.4.1. Univariate Influencing Factors
3.4.2. Multivariate Influencing Factors
4. Discussion
4.1. Discussion of Ecological Drought Response to Meteorological Drought
4.2. Reasons for the Results and Comparison with Previous Literature
4.3. Practical Significance and Impact of the Research Results
- (1)
- Refined Drought Monitoring and Early Warning: The SEWDI index, grounded in vegetation water supply–demand equilibrium, provides a direct measure of ecological water stress [12]. Its integration into national and regional drought monitoring platforms can significantly improve the detection of incipient and ecologically significant drought conditions, particularly during critical periods like winter and early spring, as identified here. The probabilistic detection of abrupt changes using BEAST offers a novel tool for identifying potential regime shifts in ecosystem drought susceptibility, serving as critical triggers for escalating drought response levels [57,58].
- (2)
- Regionalized Risk Assessment and Prioritization: The pronounced spatial heterogeneity in drought intensification trends (severe in AVR, milder in TFR), peak drought months (January nationally), and dominant drivers (ET–SM–AH synergy) underscores the necessity of regionalized drought risk management. Regions like AVR, exhibiting the most rapid deterioration and hosting fragile alpine ecosystems, require prioritized monitoring resources and proactive adaptation investments [16,72]. Maps of gridded trend eigenvalues (Zs; Figure 7) and drought hotspot shifts (Figure 3) can directly inform spatial planning for drought resilience.
- (3)
- Validating and Improving Predictive Models: The scale-dependent drivers identified by PWC-MWC (ET dominance at short scales, PC at long scales, ET–SM–AH synergy) provide critical empirical constraints for parameterizing and improving dynamical vegetation and drought prediction models. Incorporating these multivariate, scale-aware relationships can enhance the accuracy of forecasts, particularly for anticipating the ecological impacts of meteorological droughts with known lag times [37,43].
5. Conclusions
- (1)
- From 1982 to 2022, SEWDI across mainland China exhibited an overall declining trend, reaching its minimum value of −1.21 in February 2020. Among all vegetation sub-regions, AVR showed the most pronounced decrease (linear trend rate: −0.032/10a), with a minimum SEWDI of −1.78 in March 2022. At the decadal scale, SEWDI displayed an upward trend in the 1980s but shifted to a continuous decline from the 1990s onward. Notably, the average value of SEWDI in AVR decreased from 0.52 in the 1980s to −0.42 in the 2010s.
- (2)
- The seasonal component of SEWDI derived from the BEAST algorithm exhibited periodic fluctuations, peaking in winter and spring. A seasonal abrupt change was detected in January 2003, with a probability of 99.42%, during which the average value of SEWDI dropped from 1.29 to 0.10. The trend component transitioned from an increasing phase (1982–2002) to a decreasing phase (2002–2022), with two mutation points identified in January 2003 (probability: 96.35%) and November 2017 (probability: 43.67%).
- (3)
- The most severe ecological drought event in mainland China (MC) occurred from September 2019 to April 2020, with a maximum severity of 6.28. The optimal Copula functions for characterizing drought duration–severity–return period relationships varied across vegetation sub-regions. The Clayton-Copula was identified as the optimal model for MC, yielding a mean drought duration of 4.32 months, a mean severity of 2.46, and a return period exceeding 10 years.
- (4)
- Spatially heterogeneous trends in ecological drought were observed at the grid scale. On a monthly scale, the mean Zs of SEWDI reached its lowest values in January (–1.02) and December (−0.90), with partial alleviation from May to July. Seasonally, the mean Zs ranged from −1.06 (winter) to 0.19 (summer), indicating pronounced drought intensification in winter. The highest proportions of drought-aggravated areas occurred in January (88.51%) and winter (87.01%). Notably, AVR exhibited the most severe annual drought intensification, with a mean Zs of −1.11.
- (5)
- Under univariate driving factors, ET exerted the strongest influence on SEWDI (AWC = 0.95, POSP = 18.75%), predominantly exhibiting negative phase relationships across scales. For multivariate interactions, the bivariate ET–SM combination dominated drought dynamics, while the trivariate ET–SM–AH synergy emerged as the optimal driver (POSP = 19.21%), with enhanced explanatory power since the 21st century.
- (6)
- The response of ecological drought to meteorological drought demonstrated that the maximum correlation coefficient between SEWDI and SPEI exhibited a mean value of 0.48. However, a weak negative correlation was observed in eastern AVR, attributed to alpine vegetation’s osmotic regulation and the permafrost “slow-release reservoir” effect. Lag time analysis highlighted regional disparities: Faster responses occurred in TFR and CFR (1–3 months), whereas other sub-regions exhibited delayed responses (4–6 months), reflecting spatial heterogeneity in ecosystem drought resilience.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Betancourt, J.; Bradford, J.; Cartwright, J.; Dennison, W.C.; Dunham, J.; Enquist, C.A.; Frazier, A.G.; Hall, K.R.; Littell, J.S.; et al. Unfamiliar territory: Emerging themes for ecological drought research and management. One Earth 2020, 3, 337–353. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Shi, H.Y.; Fu, Q.; Li, T.X.; Gan, T.Y.; Liu, S.N.; Liu, K. Is the cold region in Northeast China still getting warmer under climate change impact? Atmos. Res. 2020, 237, 104864. [Google Scholar] [CrossRef]
- Sadiqi, S.S.J.; Hong, E.M.; Nam, W.H.; Kim, T. Review: An integrated framework for understanding ecological drought and drought resistance. Sci. Total Environ. 2022, 846, 157477. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Huang, S.Z.; Huang, Q.; Huang, G.H.; Wang, H.; Leng, G.Y.; Wang, L.; Li, P.; Ma, L. Bivariate probabilistic quantification of drought impacts on terrestrial vegetation dynamics in mainland China. J. Hydrol. 2019, 577, 123980. [Google Scholar] [CrossRef]
- Forootan, E.; Khaki, M.; Schumacher, M.; Wulfmeyer, V.; Mehrnegar, N.; van Dijk, A.I.; Brocca, L.; Farzaneh, S.; Akinluyi, F.; Ramillien, G.; et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total Environ. 2019, 650, 2587–2604. [Google Scholar] [CrossRef] [PubMed]
- Manzano, A.; Clemente, M.A.; Morata, A.; Luna, M.Y.; Beguería, S.; Vicente-Serrano, S.M.; Martín, M.L. Analysis of the atmospheric circulation pattern effects over SPEI drought index in Spain. Atmos. Res. 2019, 230, 104630. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, B.J.; Liu, Y.X.; Li, Y.; Wang, S.; Zhan, T.; Wang, Y.; Gao, D. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol. 2022, 314, 108809. [Google Scholar] [CrossRef]
- Su, X.L.; Jiang, T.L.; Niu, J.P. Concept and review of ecological drought. Water Resour. Prot. 2021, 37, 15–21. [Google Scholar]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Munson, S.M.; Bradford, J.B.; Hultine, K.R. An Integrative Ecological Drought Framework to Span Plant Stress to Ecosystem Transformation. Ecosystems 2021, 24, 739–754. [Google Scholar] [CrossRef]
- Jiang, T.L.; Su, X.L.; Singh, V.P.; Zhang, G.X. A novel index for ecological drought monitoring based on ecological water deficit. Ecol. Indic. 2021, 129, 107804. [Google Scholar] [CrossRef]
- Huang, W.J.; Wang, W.; Cao, M.; Fu, G.; Xia, J.; Wang, Z.; Li, J. Local climate and biodiversity affect the stability of China’s grasslands in response to drought. Sci. Total Environ. 2021, 768, 145482. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Huang, S.; Huang, Q.; Zheng, X.; Su, X.; Leng, G.; Li, Z.; Guo, Y.; Fang, W.; Liu, Y. Propagation characteristics and mechanism from meteorological to agricultural drought in various seasons. J. Hydrol. 2022, 610, 127897. [Google Scholar] [CrossRef]
- Sungmin, O.; Park, S.K. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions. Commun. Earth Environ. 2024, 5, 88. [Google Scholar] [CrossRef]
- Lin, H.; Yu, Z.; Chen, X.; Gu, H.; Ju, Q.; Shen, T. Spatial-temporal dynamics of meteorological and soil moisture drought on the Tibetan Plateau: Trend, response, and propagation process. J. Hydrol. 2023, 626, 130211. [Google Scholar] [CrossRef]
- Pei, F.S.; Wu, C.J.; Liu, X.P.; Li, X.; Yang, K.Q.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G.R. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.M.; Yang, H.B.; Di, D.Y.; Zhao, Y.; Liang, Q.H. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Fathi-Taperasht, A.; Shafizadeh-Moghadam, H.; Minaei, M.; Xu, T.T. Influence of drought duration and severity on drought recovery period for different land cover types: Evaluation using MODIS-based indices. Ecol. Indic. 2022, 141, 109146. [Google Scholar] [CrossRef]
- Kitzberger, T.; Tiribelli, F.; Barberá, I.; Gowda, J.H.; Morales, J.M.; Zalazar, L.; Paritsis, J. Projections of fire probability and ecosystem vulnerability under 21st century climate across a trans-Andean productivity gradient in Patagonia. Sci. Total Environ. 2022, 839, 156303. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; Cacamara, C.C.; Trigo, I.F. A climatological assessment of drought impact on vegetation health index. Agric. For. Meteorol. 2018, 259, 286–295. [Google Scholar] [CrossRef]
- Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J.-E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances. Rem. Sens. Environ. 2015, 166, 163–177. [Google Scholar] [CrossRef]
- McEvoy, J.; Bathke, D.; Burkardt, N.; Cravens, A.E.; Haigh, T.; Hall, K.R.; Hayes, M.J.; Jedd, T.; Poděbradská, M.; Wickham, E. Ecological drought: Accounting for the non-human impacts of water shortage in the upper Missouri headwaters basin, Montana, USA. Resources 2018, 7, 14. [Google Scholar] [CrossRef]
- Park, S.Y.; Sur, C.Y.; Lee, J.H.; Kim, J.S. Ecological drought monitoring through fish habitat-based flow assessment in the Gam River basin of Korea. Ecol. Indic. 2020, 109, 105830. [Google Scholar] [CrossRef]
- Huang, F.; Xu, S.L. Spatio-temporal variations of rain-use efficiency in the west of Songliao Plain, China. Sustainability 2016, 8, 308. [Google Scholar] [CrossRef]
- Wen, Y.Y.; Liu, X.P.; Xin, Q.C.; Wu, J.; Xu, X.G.; Pei, F.; Li, X.; Du, G.; Cai, Y.; Lin, K.; et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.-Biogeosciences 2019, 124, 789–806. [Google Scholar] [CrossRef]
- Wang, Y.X.; Liu, T.X.; Duan, L.M.; Chu, S.J.; Sun, J.; Tong, X.; Hao, L.N.; Bao, Y.Z.; Gong, Y. A novel index combining meteorological, hydrological, and ecological anomalies used for ecological drought assessment at a grassland-type basin scale. Ecol. Indic. 2025, 173, 113384. [Google Scholar] [CrossRef]
- Du, J.Q.; Zhao, C.X.; Shu, J.M.; Jiaerheng, A.; Yuan, X.J.; Yin, J.Q.; Fang, S.F.; He, P. Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982–2012. Environ. Earth Sci. 2016, 75, 77. [Google Scholar] [CrossRef]
- Chu, H.S.; Venevsky, S.; Wu, C.; Wang, M.H. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Agutu, N.O.; Awange, J.L.; Zerihun, A.; Ndehedehe, C.E.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef]
- Wang, X.; Pan, S.; Pan, N.; Pan, P. Grassland productivity response to droughts in northern China monitored by satellite-based solar-induced chlorophyll fluorescence. Sci. Total Environ. 2022, 830, 154550. [Google Scholar] [CrossRef] [PubMed]
- Masroor, M.; Sajjad, H.; Rehman, S.; Singh, R.; Rahaman, M.H.; Sahana, M.; Ahmed, R.; Avtar, R. Analyzing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geosci. Front. 2022, 13, 101312. [Google Scholar] [CrossRef]
- Du, L.T.; Liu, K.; Hu, Y.; Zhu, Y.G.; Gong, F. Ecological drought characteristics and analysis of driving factors of different ecological zones in Ningxia from 2000 to 2010. J. Nat. Disasters 2017, 26, 149–156. [Google Scholar]
- Cheng, C.H.; Nnadi, F.; Liou, Y.A. A Regional Land Use Drought Index for Florida. Remote Sens. 2015, 7, 17149–17167. [Google Scholar] [CrossRef]
- Shi, M.Q.; Yuan, Z.; Shi, X.L.; Li, M.X.; Chen, F.; Li, Y. Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China. J. Clean. Prod. 2022, 362, 132234. [Google Scholar] [CrossRef]
- Ge, W.Y.; Li, X.X.; Xie, M.X.; Yu, B.W.; Jiao, J.Y.; Han, J.Q.; Wang, F. Quantitative evaluation of drought risk related to vegetation productivity in China. J. Hydrol. 2023, 623, 129877. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol. 2004, 24, 1077–1090. [Google Scholar] [CrossRef]
- Yin, D.Q.; Roderick, M.L.; Leech, G.; Sun, F.B.; Huang, Y.F. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 2014, 41, 7891–7897. [Google Scholar] [CrossRef]
- Li, C.J.; Fu, B.; Wang, S.; Stringer, L.C.; Zhou, W.; Ren, Z.; Hu, M.; Zhang, Y.; Rodriguez-Caballero, E.; Weber, B.; et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain. 2023, 6, 1363–1372. [Google Scholar] [CrossRef]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Q.; Feng, Y.H.; Wang, Z.H. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lai, H.X.; Li, Y.B.; Feng, K.; Tian, Q.; Guo, W.; Zhang, W.; Di, D.; Yang, H. Dynamic variations of terrestrial ecological drought and propagation analysis with meteorological drought across the mainland China. Sci. Total Environ. 2023, 896, 165314. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.J.; Li, C.S.; Yang, W.N.; Yang, X.; Xing, X.L.; Feng, X.Y. Assessment of ecological drought vulnerability of the Qinghai-Tibet Plateau from 2003 to 2022 based on multi-source data. Catena 2024, 247, 108512. [Google Scholar] [CrossRef]
- Wang, F.; Lai, H.X.; Li, Y.B.; Feng, K.; Tian, Q.Q.; Zhang, Z.Z.; Di, D.Y.; Yang, H.B. Terrestrial ecological drought dynamics and its response to atmospheric circulation factors in the North China Plain. Atmos. Res. 2023, 294, 106944. [Google Scholar] [CrossRef]
- Jiang, T.L.; Su, X.L.; Qu, Y.P.; Singh, V.P.; Zhang, T.; Chu, J.D.; Hu, X.X. Determining the response of ecological drought to meteorological and groundwater droughts in Northwest China using a spatio-temporal matching method. J. Hydrol. 2024, 633, 130753. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Zhang, X.; Li, C.; Xu, Y.; Fei, J.Y. Compound ecological drought assessment of China using a Copula-based drought index. Ecol. Indic. 2024, 164, 112141. [Google Scholar] [CrossRef]
- Pereira, A.R. Symplifying the Thornthwaite-Mather water balance. Bragantia 2004, 64, 311–313. [Google Scholar] [CrossRef]
- Gao, S.K.; Lai, H.X.; Wang, F.; Qiang, X.M.; Li, H.; Di, D.Y. An Analysis of Spatial–Temporal Evolution and Propagation Features of Vegetation Drought in Different Sub-Zones of China. Agronomy 2023, 13, 2101. [Google Scholar] [CrossRef]
- Albarakat, R.; Le, M.H.; Lakshmi, V. Assessment of drought conditions over Iraqi transboundary rivers using FLDAS and satellite datasets. J. Hydrol.-Reg. Stud. 2022, 41, 101075. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Elnasharu, A.; Wang, L.J.; Wu, B.F.; Zhu, W.W.; Zeng, H.W. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Senay, G.B.; Parrish, G.E.L.; Schauer, M.; Friedrichs, M.; Khand, K.; Boiko, O.; Kagone, S.; Dittmeier, R.; Arab, S.; Ji, L. Improving the Operational Simplified Surface Energy Balance Evapotranspiration Model Using the Forcing and Normalizing Operation. Remote Sens. 2023, 15, 260. [Google Scholar] [CrossRef]
- Betancourt, C.; Li, C.W.Y.; Kleinert, F.; Schultz, M.G. Graph Machine Learning for Improved Imputation of Missing Tropospheric Ozone Data. Environ. Sci. Technol. 2023, 57, 18246–18258. [Google Scholar] [CrossRef] [PubMed]
- Gebrechorkos, S.H.; Peng, J.; Dyer, E.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C.; Beck, H.E.; Asfaw, D.T.; Singer, M.B.; Dadson, S.J. Global high-resolution drought indices for 1981–2022. Earth Syst. Sci. Data 2023, 15, 5449–5466. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Cai, Y.T.; Liu, S.T.; Lin, H. Monitoring the vegetation dynamics in the Dongting lake wetland from 2000 to 2019 using the BEAST algorithm based on dense Landsat time series. Appl. Sci. 2020, 10, 4209. [Google Scholar] [CrossRef]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L., Jr. Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol. 2021, 41, 2045–2059. [Google Scholar] [CrossRef]
- Wang, X.F.; Zhang, Y.; Feng, X.M.; Feng, Y.; Xue, Y.Y.; Pan, N.Q. Analysis and application of drought characteristics based on run theory and Copula function. Trans. Chin. Soc. Agric. Eng. 2017, 33, 206–214. [Google Scholar]
- Ayantobo, O.O.; Li, Y.; Song, S.B.; Javed, T.; Yao, N. Probabilistic modelling of drought events in China via 2-dimensional joint copula. J. Hydrol. 2018, 559, 373–391. [Google Scholar] [CrossRef]
- Lee, T.; Modarres, R.; Ouarda, T.B.M.J. Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol. Process. 2013, 27, 1454–1463. [Google Scholar] [CrossRef]
- Fan, L.L.; Wang, H.R.; Liu, Z.P.; Li, N. Quantifying the relationship between drought and water scarcity using copulas: Case study of Beijing-Tianjin-Hebei Metropolitan areas in China. Water 2018, 10, 1622. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Ng, E.K.W.; Chan, J.C.L. Geophysical applications of partial wavelet coherence and multiple wavelet coherence. J. Atmos. Ocean Technol. 2012, 29, 1845–1853. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical Note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, F.; Zeng, C.; Zhao, Y.; Yang, W. Dynamics of suspended sediment sources in the Kuoqionggangri glacier Basin, Tibetan Plateau, under diverse hydrometeorological conditions. J. Hydrol. 2025, 660, 133510. [Google Scholar] [CrossRef]
- Jiang, T.L.; Su, X.L.; Singh, V.P.; Zhang, G.X. Spatio-temporal pattern of ecological droughts and their impacts on health of vegetation in Northwestern China. J. Environ. Manag. 2022, 305, 114356. [Google Scholar] [CrossRef]
- Qin, J.; Si, J.H.; Jia, B. Water use strategies of Nitraria tangutorum in the lake-basin region of the Badain Jaran Desert. Front. Plant Sci. 2023, 14, 1240656. [Google Scholar] [CrossRef]
- Ma, R.; Sun, Z.Y.; Chang, Q.X.; Ge, M.; Pan, Z. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an alpine catchment, northeastern Tibet Plateau, China. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033689. [Google Scholar] [CrossRef]
- Manusch, C.; Bugmann, H.; Wolf, A. Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps. Ecol. Model. 2014, 282, 25–34. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhang, H.M.; Ding, M.J.; Li, L.H.; Zhang, Y.L. The Multiple Perspective Response of Vegetation to Drought on the Qinghai-Tibetan Plateau. Remote Sens. 2023, 15, 902. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fu, B.J.; Liu, Y.X.; Li, Y.; Feng, X.M.; Wang, S. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agric. For. Meteorol. 2021, 306, 108468. [Google Scholar] [CrossRef]
- Wan, L.L.; Bento, V.A.; Qu, Y.P.; Qiu, J.X.; Song, H.Q.; Zhang, R.R.; Wu, X.P.; Xu, F.; Lu, J.K.; Wang, Q.F. Drought characteristics and dominant factors across China: Insights from high-resolution daily SPEI dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef]
- Shang, S.S.; Zhu, G.F.; Zhang, K.; Chen, H.L.; Wang, Y.D.; Chen, Y.; Zhang, Z.Y.; Ma, N. Spatial-temporal variations in evapotranspiration across the continental United States: An atmospheric water balance perspective. J. Hydrol. 2024, 640, 131699. [Google Scholar] [CrossRef]
- Iqbal, N.; Fareed, Z.; Shahzad, F.; He, X.; Shahzad, U.; Lina, M. The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence. Sci. Total Environ. 2020, 729, 138916. [Google Scholar] [CrossRef] [PubMed]
Data | Acquired Time | Resolution | Data Source |
---|---|---|---|
NDVI | 1982–2022 | 8 km × 8 km | National Earth System Science Data Center (http://www.geodata.cn) (accessed on 20 December 2024) |
ET0 | 1982–2022 | 1 km × 1 km | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn) (accessed on 20 December 2024) |
ETa | 1982–2019 | 1 km × 1 km | HARVARD Dataverse (https://dataverse.harvard.edu/) (accessed on 20 December 2024) |
ETa | 2020–2022 | 8 km × 8 km | United States Geological Survey (https://earlywarning.usgs.gov/) (accessed on 20 December 2024) |
Copula Families | Mathematical Descriptions | Parameter Settings |
---|---|---|
Gaussian-copula | ||
t-copula | ||
Clayton-copula | \0 | |
Frank-copula | ||
Gumbel-copula |
PWC | Scale | ET | AH | PC | SM | ST | AT |
---|---|---|---|---|---|---|---|
AWC | Small | 0.91 | 0.91 | 0.90 | 0.89 | 0.91 | 0.91 |
Medium | 0.90 | 0.91 | 0.90 | 0.90 | 0.89 | 0.89 | |
Large | 0.96 | 0.95 | 0.97 | 0.94 | 0.95 | 0.96 | |
Total | 0.95 | 0.92 | 0.96 | 0.93 | 0.95 | 0.95 | |
POSP (%) | Small | 8.30 | 4.89 | 3.62 | 4.73 | 3.95 | 5.19 |
Medium | 6.11 | 5.49 | 2.12 | 1.73 | 1.08 | 1.60 | |
Large | 37.21 | 6.12 | 37.53 | 18.06 | 25.89 | 36.08 | |
Total | 18.75 | 5.55 | 16.20 | 8.94 | 11.51 | 15.97 |
Univariate | AWC | POSP (%) | Bivariate | AWC | POSP (%) | Trivariate | AWC | POSP (%) |
---|---|---|---|---|---|---|---|---|
ET | 0.95 | 18.75 | ET–AH | 0.94 | 15.37 | ET–SM–AH | 0.97 | 19.21 |
AH | 0.92 | 5.55 | ET–PC | 0.94 | 17.13 | ET–SM–PC | 0.97 | 17.45 |
PC | 0.96 | 16.20 | ET–SM | 0.93 | 19.05 | ET–SM–ST | 0.97 | 15.90 |
SM | 0.93 | 8.94 | ET–ST | 0.94 | 13.90 | ET–SM–AT | 0.97 | 18.46 |
ST | 0.95 | 11.51 | ET–AT | 0.93 | 16.03 | |||
AT | 0.95 | 15.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Q.; Men, R.; Wang, F.; Du, M.; Yu, W.; Lai, H.; Feng, K.; Li, Y.; Huang, S.; Yang, H. Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China. Agronomy 2025, 15, 2044. https://doi.org/10.3390/agronomy15092044
Qi Q, Men R, Wang F, Du M, Yu W, Lai H, Feng K, Li Y, Huang S, Yang H. Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China. Agronomy. 2025; 15(9):2044. https://doi.org/10.3390/agronomy15092044
Chicago/Turabian StyleQi, Qingqing, Ruyi Men, Fei Wang, Mengting Du, Wenhan Yu, Hexin Lai, Kai Feng, Yanbin Li, Shengzhi Huang, and Haibo Yang. 2025. "Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China" Agronomy 15, no. 9: 2044. https://doi.org/10.3390/agronomy15092044
APA StyleQi, Q., Men, R., Wang, F., Du, M., Yu, W., Lai, H., Feng, K., Li, Y., Huang, S., & Yang, H. (2025). Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China. Agronomy, 15(9), 2044. https://doi.org/10.3390/agronomy15092044