A Novel Framework for Winter Crop Mapping Using Sample Generation Automatically and Bayesian-Optimized Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Sentinel-2 Data
2.2.2. Crop Sample Data
2.2.3. Other Data
2.3. Methodology
2.3.1. An Overview of the Winter Crop Mapping Framework
2.3.2. Sentinel-2 Data Processing
2.3.3. Generation of Training Samples Based on WCI–Otsu
2.3.4. Bayesian-Optimized Machine Learning Methods
2.3.5. Accuracy Evaluation
3. Results
3.1. Training Samples Generated Based on WCI-OSTU
3.2. Accuracy of Winter Crop Mapping for Different Machine Learning Methods
3.3. Visualization of Winter Crop Mapping Results
4. Discussion
4.1. Importance Analysis of Crop Classification Features
4.2. Effect of WCI Threshold on Mapping Accuracy
4.3. Advantages, Limitations and Potential Solutions
5. Conclusions
- The WCI effectively distinguishes winter crops from other land cover types. The WCI value ranges vary significantly across regions, with Shenzhou City showing the highest values and the best performance of WCI-based classification.
- The Otsu algorithm successfully determines optimal WCI thresholds to separate winter crops from other land covers. The combination of the WCI and Otsu enables a reliable initial classification, facilitating the generation of high-quality training samples.
- Bayesian hyperparameter optimization improves the classification performance, especially for algorithms like XGBoost, which are sensitive to hyperparameter settings. In contrast, RF performs well even with default parameters, while the SVM is less sensitive due to its limited number of tunable hyperparameters.
- XGBoost yielded the best results in the Erhai Basin and Shenzhou City, while the SVM achieved the highest accuracy in Jiangling County. However, performance differences among the three algorithms were generally small.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Yuan, H.; Du, W.; Lyu, X. Crop Identification Based on Multi-Temporal Active and Passive Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2022, 11, 388. [Google Scholar] [CrossRef]
- Alami Machichi, M.; Mansouri, L.E.; Imani, Y.; Bourja, O.; Lahlou, O.; Zennayi, Y.; Bourzeix, F.; Hanade Houmma, I.; Hadria, R. Crop mapping using supervised machine learning and deep learning: A systematic literature review. Int. J. Remote Sens. 2023, 44, 2717–2753. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Liu, K.; Lan, S.; Gao, T.; Li, M. Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Comput. Electron. Agric. 2023, 213, 108250. [Google Scholar] [CrossRef]
- Di, Y.; Gao, M.; Feng, F.; Li, Q.; Zhang, H. A New Framework for Winter Wheat Yield Prediction Integrating Deep Learning and Bayesian Optimization. Agronomy 2022, 12, 3194. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Cheng, Z.; Gu, X.; Du, Y.; Wei, C.; Xu, Y.; Zhou, Z.; Li, W.; Cai, W. Multi-modal fusion and multi-task deep learning for monitoring the growth of film-mulched winter wheat. Precis. Agric. 2024, 25, 1933–1957. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, H.; Shen, Y.; Lou, B.; Jiang, C.; Li, T.; Hussain, S.B.; Shen, G. Large-Scale Crop Mapping From Multisource Remote Sensing Images in Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 414–427. [Google Scholar] [CrossRef]
- Gallo, I.; Ranghetti, L.; Landro, N.; La Grassa, R.; Boschetti, M. In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series. ISPRS J. Photogramm. Remote Sens. 2023, 195, 335–352. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, C.; Gao, L.; Zeng, Z.; Zhang, B.; Atkinson, P.M. Spatio-temporal multi-level attention crop mapping method using time-series SAR imagery. ISPRS J. Photogramm. Remote Sens. 2023, 206, 293–310. [Google Scholar] [CrossRef]
- Niu, B.; Feng, Q.; Chen, B.; Ou, C.; Liu, Y.; Yang, J. HSI-TransUNet: A transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery. Comput. Electron. Agric. 2022, 201, 107297. [Google Scholar] [CrossRef]
- Yu, Q.; Duan, Y.; Wu, Q.; Liu, Y.; Wen, C.; Qian, J.; Song, Q.; Li, W.; Sun, J.; Wu, W. An interactive and iterative method for crop mapping through crowdsourcing optimized field samples. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103409. [Google Scholar] [CrossRef]
- Hu, Q.; Yin, H.; Friedl, M.A.; You, L.; Li, Z.; Tang, H.; Wu, W. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sens. Environ. 2021, 258, 112365. [Google Scholar] [CrossRef]
- Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci. Data 2022, 9, 479. [Google Scholar] [CrossRef]
- Tran, K.H.; Zhang, H.K.; McMaine, J.T.; Zhang, X.; Luo, D. 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102692. [Google Scholar] [CrossRef]
- Son, N.-T.; Chi-Farn, C.; Cheng-Ru, C.; Piero, T.; Youg-Sing, C.; Hong-Yuh, G.; Syu, C.-H. A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan. Int. J. Remote Sens. 2021, 42, 2722–2739. [Google Scholar] [CrossRef]
- Tian, H.; Qin, Y.; Niu, Z.; Wang, L.; Ge, S. Summer Maize Mapping by Compositing Time Series Sentinel-1A Imagery Based on Crop Growth Cycles. J. Indian Soc. Remote Sens. 2021, 49, 2863–2874. [Google Scholar] [CrossRef]
- He, T.; Li, M.; Jin, D. Deep learning-based time series prediction for precision field crop protection. Front. Plant Sci. 2025, 16, 1575796. [Google Scholar] [CrossRef]
- Venkatanaresh, M.; Kullayamma, I. An efficient in-season crop mapping using Sentinel-2 imagery and transformer-based semantic segmentation in Andhra Pradesh, India. Int. J. Remote Sens. 2025, 46, 5149–5170. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, Z.; Hu, Y.; Wang, R.; Xu, T. A dual-branch network for crop-type mapping of scattered small agricultural fields in time series remote sensing images. Remote Sens. Environ. 2025, 316, 114497. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, W.; Yang, Z.; Lu, Y.; Zhang, X.; Dong, Y.; Sun, F. A new attention-based deep metric model for crop type mapping in complex agricultural landscapes using multisource remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104204. [Google Scholar] [CrossRef]
- Khosravi, I. Advancements in crop mapping through remote sensing: A comprehensive review of concept, data sources, and procedures over four decades. Remote Sens. Appl.-Soc. Environ. 2025, 38, 101527. [Google Scholar] [CrossRef]
- Singh, G.; Vyas, N.; Dahiya, N.; Singh, S.; Bhati, N.; Sood, V.; Gupta, D.K. A novel pixel-based deep neural network in posterior probability space for the detection of agriculture changes using remote sensing data. Remote Sens. Appl.-Soc. Environ. 2025, 38, 101527. [Google Scholar] [CrossRef]
- McCormick, R.; Thenkabail, P.S.; Aneece, I.; Teluguntla, P.; Oliphant, A.J.; Foley, D. Artificial Neural Network Multi-layer Perceptron Models to Classify California’s Crops using Harmonized Landsat Sentinel (HLS) Data. Photogramm. Eng. Remote Sens. 2025, 91, 91–100. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, L.V.; de Bie, C.A.J.M.; Ciampitti, I.A.; Nguyen, D.A.; Nguyen, M.V.; Nieto, L.; Schwalbert, R.; Nguyen, L.V. Mapping Maize Cropping Patterns in Dak Lak, Vietnam Through MODIS EVI Time Series. Agronomy 2020, 10, 478. [Google Scholar] [CrossRef]
- Mishra, D.; Pathak, G.; Singh, B.P.; Mohit; Sihag, P.; Rajeev; Singh, K.; Singh, S. Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data. Environ. Monit. Assess. 2022, 195, 115. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, X.-P.; Hansen, M.C.; Becker-Reshef, I.; Adusei, B.; Pickering, J.; Wang, L.; Wang, L.; Lin, Z.; Zalles, V.; et al. Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation. Remote Sens. Environ. 2023, 294, 113623. [Google Scholar] [CrossRef]
- Kang, X.; Huang, C.; Chen, J.M.; Lv, X.; Wang, J.; Zhong, T.; Wang, H.; Fan, X.; Ma, Y.; Yi, X.; et al. The 10-m cotton maps in Xinjiang, China during 2018–2021. Sci. Data 2023, 10, 688. [Google Scholar] [CrossRef]
- Kumari, M.; Varun, P.; Kumar, C.K.; Murthy, C.S. Object-based machine learning approach for soybean mapping using temporal sentinel-1/sentinel-2 data. Geocarto Int. 2022, 37, 6848–6866. [Google Scholar] [CrossRef]
- Maleki, S.; Baghdadi, N.; Bazzi, H.; Dantas, C.F.; Ienco, D.; Nasrallah, Y.; Najem, S. Machine Learning-Based Summer Crops Mapping Using Sentinel-1 and Sentinel-2 Images. Remote Sens. 2024, 16, 4548. [Google Scholar] [CrossRef]
- Kumar, H.; Kumar, R.; Dutta, S.; Singh, M. Google’s Cloud Computing Platform-Based Performance Assessment of Machine Learning Algorithms for Precisely Maize Crop Mapping Using Integrated Satellite Data of Sentinel-2A/B and Planetscope. J. Indian Soc. Remote Sens. 2023, 51, 2599–2613. [Google Scholar] [CrossRef]
- Hamidi, M.; Homayouni, S.; Safari, A.; Hasani, H. Deep learning based crop-type mapping using SAR and optical data fusion. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103860. [Google Scholar] [CrossRef]
- Lykhovyd, P.; Vozhehova, R.; Bidnyna, I.; Shablia, O.; Averchev, O.; Avercheva, N.; Kozyriev, V.; Marchenko, T.; Leliavska, L.; Haydash, O.; et al. Supervised machine learning in crop recognition through remote sensing: A case study for Ukrainian croplands. Mod. Phytomorphol. 2024, 18, 183–187. [Google Scholar]
- Xu, S.; Zhu, X.; Chen, J.; Zhu, X.; Duan, M.; Qiu, B.; Wan, L.; Tan, X.; Xu, Y.N.; Cao, R. A robust index to extract paddy fields in cloudy regions from SAR time series. Remote Sens. Environ. 2023, 285, 113374. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Liu, Z.; Zhang, C.; Zhang, S.; Atkinson, P.M. A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images. Remote Sens. Environ. 2023, 295, 113679. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, S.; Xun, L.; Wang, P. A multitemporal index for the automatic identification of winter wheat based on Sentinel-2 imagery time series. Giscience Remote Sens. 2023, 60, 2262833. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, B.; Yang, P.; Wu, W.; Chen, X.; Zhu, X.; Xu, S.; Wang, L.; Dong, Z.; Zhang, J.; et al. National-scale 10 m annual maize maps for China and the contiguous United States using a robust index from Sentinel-2 time series. Comput. Electron. Agric. 2024, 221, 109018. [Google Scholar] [CrossRef]
- Wang, M.; Lv, M.; Liu, H.; Li, Q. Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm. Agriculture 2023, 13, 1281. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Zhu, R.; Che, T.; Hao, X. A Downscaling Algorithm for Snow Cover Extent Over the Tibetan Plateau Based on a Similar Conditional Probability and Otsu’s Method. IEEE Trans. Geosci. Remote Sens. 2025, 63, 3543433. [Google Scholar] [CrossRef]
- Nabil, M.; Farg, E.; Afify, N.M.; Arafat, S.M. Optimizing crop monitoring: Mapping cultivation stages and types with sentinel-1/2 and random forest algorithm. Int. J. Remote Sens. 2025, 46, 273–299. [Google Scholar] [CrossRef]
- Snevajs, H.; Charvat, K.; Onckelet, V.; Kvapil, J.; Zadrazil, F.; Kubickova, H.; Seidlova, J.; Batrlova, I. Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems. Remote Sens. 2022, 14, 1095. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xuan, F.; Dong, Y.; Li, J.; Li, X.; Su, W.; Huang, X.; Huang, J.; Xie, Z.; Li, Z.; Liu, H.; et al. Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103178. [Google Scholar] [CrossRef]
- Li, N.; Zhan, P.; Pan, Y.Z.; Zhu, X.F.; Li, M.Y.; Zhang, D.J. Comparison of Remote Sensing Time-Series Smoothing Methods for Grassland Spring Phenology Extraction on the Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 3383. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Qin, Y.W.; Xiao, X.M.; Dong, J.W.; Zhou, Y.T.; Zhu, Z.; Zhang, G.L.; Du, G.M.; Jin, C.; Kou, W.L.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. Isprs J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef]
- Zhong, L.H.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Yang, G.; Li, X.; Liu, P.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. Automated in-season mapping of winter wheat in China with training data generation and model transfer. ISPRS J. Photogramm. Remote Sens. 2023, 202, 422–438. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Farmonov, N.; Amankulova, K.; Szatmári, J.; Sharifi, A.; Abbasi-Moghadam, D.; Nejad, S.M.M.; Mucsi, L. Crop Type Classification by DESIS Hyperspectral Imagery and Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1576–1588. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C.; Assoc Comp, M. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wang, Y.; Su, H.; Li, M. An Improved Model Based Detection of Urban Impervious Surfaces Using Multiple Features Extracted from ROSIS-3 Hyperspectral Images. Remote Sens. 2019, 11, 136. [Google Scholar] [CrossRef]
- Chen, J.; Du, X.; Wang, C.; Cai, C.; Fang, G.; Wang, Z.; Liu, M.; Zhang, H. Zonal Estimation of the Earliest Winter Wheat Identification Time in Shandong Province Considering Phenological and Environmental Factors. Agronomy 2025, 15, 1463. [Google Scholar] [CrossRef]
- Liu, M.; He, W.; Zhang, H. CN_Wheat10: A 10 m resolution dataset of spring and winter wheat distribution in China (2018–2024) derived from time-series remote sensing. Earth Syst. Sci. Data Discuss. 2025, 2025, 1–31. [Google Scholar] [CrossRef]
- Hou, D.; Chen, J.; Dong, J.; Ji, C.; Feng, J.; Du, G.; Yang, L. A 30-m annual paddy rice dataset in Northeastern China during period 2000–2023. Sci. Data 2025, 12, 1355. [Google Scholar] [CrossRef]
- Zhang, H.K.; Shen, Y.; Zhang, X.; Li, J.; Yang, Z.; Xu, Y.; Zhang, C.; Di, L.; Roy, D.P. Robust and timely within-season conterminous United States crop type mapping using Landsat Sentinel-2 time series and the transformer architecture. Remote Sens. Environ. 2025, 329, 114950. [Google Scholar] [CrossRef]
- Hu, M.; Tang, H.; Yu, Q.; Wu, W. A new approach for spatial optimization of crop planting structure to balance economic and environmental benefits. Sustain. Prod. Consum. 2025, 53, 109–124. [Google Scholar] [CrossRef]
- Li, J.; Yu, W.; Du, J.; Song, K.; Xiang, X.; Liu, H.; Zhang, Y.; Zhang, W.; Zheng, Z.; Wang, Y.; et al. Mapping Maize Tillage Practices over the Songnen Plain in Northeast China Using GEE Cloud Platform. Remote Sens. 2023, 15, 1461. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, W.; Yu, C.; Chen, H.; Tan, Y. Mapping Cropland Abandonment in Mountainous Areas in China Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1145. [Google Scholar] [CrossRef]
- He, S.; Shao, H.; Xian, W.; Yin, Z.; You, M.; Zhong, J.; Qi, J. Monitoring Cropland Abandonment in Hilly Areas with Sentinel-1 and Sentinel-2 Timeseries. Remote Sens. 2022, 14, 3806. [Google Scholar] [CrossRef]
- Rinaldi, M.; Ruggieri, S.; Ciavarella, F.; De Santis, A.P.; Palmisano, D.; Balenzano, A.; Mattia, F.; Satalino, G. How can be used earth observation data in conservation agriculture monitoring? In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience And Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 2022–2025. [Google Scholar]
- Zhou, W.; Rao, P.; Jat, M.L.; Singh, B.; Poonia, S.; Bijarniya, D.; Kumar, M.; Singh, L.K.; Schulthess, U.; Singh, R.; et al. Using Sentinel-2 to Track Field-Level Tillage Practices at Regional Scales in Smallholder Systems. Remote Sens. 2021, 13, 5108. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Wang, J.; Quan, W.; Liu, J. Attention mechanism-based deep learning approach for wheat yield estimation and uncertainty analysis from remotely sensed variables. Agric. For. Meteorol. 2024, 356, 110183. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Vimalkumar, C.; Sinha, P. Deep Learning Analysis of Rice Blast Disease Using Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3244324. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; He, L.; Zhang, D.; Wang, D.; Yu, Q. Assimilating remote sensing data into a crop model improves winter wheat yield estimation based on regional irrigation data. Agric. Water Manag. 2022, 266, 107583. [Google Scholar] [CrossRef]
- Liu, M.; He, W.; Zhang, H. Cross-regional sample generation based on Cropland Data Layer for large-scale winter wheat mapping: A case study of Huang-Huai-Hai Plain, China. Int. J. Appl. Earth Obs. Geoinf. 2025, 142, 104764. [Google Scholar] [CrossRef]
- Qiu, B.; Wu, F.; Hu, X.; Yang, P.; Wu, W.; Chen, J.; Chen, X.; He, L.; Joe, B.; Tubiello, F.N.; et al. A robust framework for mapping complex cropping patterns: The first national-scale 10 m map with 10 crops in China using Sentinel 1/2 images. ISPRS J. Photogramm. Remote Sens. 2025, 224, 361–381. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Vizzari, M.; Lesti, G.; Acharki, S. Crop classification in Google Earth Engine: Leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches. GEO-Spat. Inf. Sci. 2024, 28, 815–830. [Google Scholar] [CrossRef]
- Latif, R.M.A.; He, J.; Umer, M. Mapping Cropland Extent in Pakistan Using Machine Learning Algorithms on Google Earth Engine Cloud Computing Framework. ISPRS Int. J. Geo-Inf. 2023, 12, 81. [Google Scholar] [CrossRef]
- Fernando, W.A.M.; Senanayake, I.P. Developing a two-decadal time-record of rice field maps using Landsat-derived multi-index image collections with a random forest classifier: A Google Earth Engine based approach. Inf. Process. Agric. 2024, 11, 260–275. [Google Scholar] [CrossRef]
Indices | Formulation | Reference |
---|---|---|
NDVI | [46] | |
EVI | [47] | |
LSWI | [48] | |
GCVI | [44] |
Model | Parameter | Range |
---|---|---|
RF | n estimators | [50, 300] |
max depth | [5, 50] | |
min sample split | [2, 10] | |
min sample leaf | [1, 10] | |
max features | [1, 56] | |
SVM | C | (0.1, 100] |
gamma | [1 × 10−5, 1 × 10−1] | |
XGBoost | n estimators | [50, 300] |
max depth | [5, 50] | |
learning rate | [0.1, 1] | |
subsample | [0.5, 1] | |
colsample bytree | [0.5, 1] |
Region | Best Model | Parameter | Default | Optimized |
---|---|---|---|---|
Erhai Basin | XGBoost | n estimators | 100 | 74 |
max depth | 6 | 3 | ||
learning rate | 1.0 | 0.02 | ||
subsample | 0.8 | 0.87 | ||
colsample bytree | 0.8 | 0.55 | ||
Shenzhou | XGBoost | n estimators | 100 | 191 |
max depth | 6 | 3 | ||
learning rate | 1.0 | 0.60 | ||
subsample | 0.8 | 0.83 | ||
colsample bytree | 0.8 | 0.67 | ||
Jiangling | SVM | C | 1.0 | 54.90 |
gamma | 0.028 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Gao, M.; Gao, R.; Jin, Y.; Yang, Y. A Novel Framework for Winter Crop Mapping Using Sample Generation Automatically and Bayesian-Optimized Machine Learning. Agronomy 2025, 15, 2034. https://doi.org/10.3390/agronomy15092034
Feng F, Gao M, Gao R, Jin Y, Yang Y. A Novel Framework for Winter Crop Mapping Using Sample Generation Automatically and Bayesian-Optimized Machine Learning. Agronomy. 2025; 15(9):2034. https://doi.org/10.3390/agronomy15092034
Chicago/Turabian StyleFeng, Fukang, Maofang Gao, Ruilu Gao, Yunxiang Jin, and Yadong Yang. 2025. "A Novel Framework for Winter Crop Mapping Using Sample Generation Automatically and Bayesian-Optimized Machine Learning" Agronomy 15, no. 9: 2034. https://doi.org/10.3390/agronomy15092034
APA StyleFeng, F., Gao, M., Gao, R., Jin, Y., & Yang, Y. (2025). A Novel Framework for Winter Crop Mapping Using Sample Generation Automatically and Bayesian-Optimized Machine Learning. Agronomy, 15(9), 2034. https://doi.org/10.3390/agronomy15092034