Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Site Characteristics, Field Surveys, and Data Collection
2.3. Greenhouse Experiment and Data Collection
2.4. Interspecific Phytoallelopathy Effects
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Populations on Plant Growth and Productivity of M. micrantha in Field Survey
3.2. The Effects of A. argyi, P. oleracea, and Their Combinations on the Growth of M. micrantha in the Greenhouse
3.3. Competitive Interactions
3.4. Interspecific Phytoallelopathy Effects
3.4.1. Allelopathic Effects of P. oleracea on M. micrantha and A. argyi
3.4.2. Allelopathic Effects of A. argyi on M. micrantha and P. oleracea
3.5. Photosynthesis Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Ye, W.; Cao, H.; Feng, H. Mikania micrantha H.B.K. in China—An overview. Weed Res. 2004, 44, 42–49. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; Poorter, M. 100 of the World’s Worst Invasive Alien Species. In A Selection from the Global Invasive Species Database; IUCN/SSC Invasive Species Specialist Group (ISSG): Auckland, New Zealand, 2001. [Google Scholar]
- Clements, D.R.; Day, M.D.; Oeggerli, V.; Shen, S.; Weston, L.A.; Xu, G.; Zhang, F.; Zhu, X. Site-specific management is crucial to managing Mikania micrantha. Weed Res. 2019, 59, 155–169. [Google Scholar] [CrossRef]
- Su, Y.; Huang, Q.; Wang, Z.; Wang, T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol. Evol. 2021, 11, 13501–13517. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; He, W.; Liu, J.; Miao, S.; Dong, M. Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities. Biol. Invasions 2009, 11, 835–844. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, T.; Lin, C. Using a consecutive cutting method and allelopathy to control the invasive vine, Mikania micrantha H.B.K. Taiwan J. Forest Sci. 2002, 17, 171–181. [Google Scholar]
- Barreto, R.; Evans, H. The mycobiota of the weed Mikania micrantha in Southern Brazil with particular reference to fungal pathogens for biological control. Mycol. Res. 1995, 99, 343–352. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J. Research progress on the control of Mikania micrantha. J. Zhongkai Univ. Agri. Eng. 2018, 31, 66–71. [Google Scholar]
- Li, X.; Shen, Y.; Huang, Q.; Fan, Z.; Huang, D. Regeneration capacity of small clonal fragments of the invasive Mikania micrantha H.B.K.: Effects of burial depth and stolon internode length. PLoS ONE 2013, 8, e84657. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Zang, R.; Zan, Q.; Wang, B. Dynamics of seeds bank of Mikania micrantha populations. J. Wuhan Bota. Res. 2005, 23, 49–52. [Google Scholar]
- Funk, L.; Cleland, E.; Suding, N.; Zavaleta, S. Restoration through reassembly: Plant traits and invasion resistance. Trends Ecol. Evol. 2008, 23, 695–703. [Google Scholar] [CrossRef]
- Baraibar, B.; Hunter, M.; Schipanski, M.; Hamilton, A.; Mortensen, D. Weed suppression in cover crop monocultures and mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Li, W.; Luo, J.; Tian, X.; Chow, W.; Sun, Z.; Zhang, T.; Peng, S.; Peng, C. A new strategy for controlling invasive weeds: Selecting valuable native plants to defeat them. Sci. Rep. 2015, 5, 11004. [Google Scholar] [CrossRef]
- Shen, S.; Xu, G.; Li, D.; Jin, G.; Liu, S.; Clements, D.R.; Yang, Y.; Rao, J.; Chen, A.; Zhang, F. Ipomoea batatas (sweet potato), a promising replacement control crop for the invasive alien plant Ageratina adenophora (Asteraceae) in China. Manag. Biol. Invasions 2019, 10, 559–572. [Google Scholar] [CrossRef]
- Han, Y.; Yang, K.; Kong, L.; Liu, X.; Yan, J.; Zhang, F. Effect of native plants (combination) on the functional traits of the invasive plant, Flaveria bidentis. J. Biosaf. 2019, 28, 140–146. [Google Scholar] [CrossRef]
- Storkey, J.; Döring, T.; Baddeley, J.; Collins, R.; Roderick, S.; Jones, H.; Watson, C. Engineering a plant community to deliver multiple ecosystem services. Ecol. Appl. 2015, 25, 1034–1043. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, W.; Wan, F.; Li, Z. Measurements of plant competition ability and their applications: A review. Chin. J. Ecol. 2008, 27, 985–992. [Google Scholar]
- Sher, A.; Marshall, D.; Taylor, J. Establishment patterns of native Populus and Salix in the presence of invasive nonnative Tamarix. Ecol. Appl. 2002, 12, 760–772. [Google Scholar] [CrossRef]
- Shen, S.; Xu, G.; Zhang, F.; Li, T.; Liu, S.; Jin, G.; Zhang, Y. Effects of different life plants on the growth and competition of Mikania micrantha seedlings. In Plant Protection Technology Innovation and Modern Agriculture Construction; Wu, K., Ed.; China Agricultural Science and Technology Press: Beijing, China, 2012; pp. 311–320. [Google Scholar]
- Xu, G.; Yue, Y.; Shen, S.; Guo, J.; Jin, G.; Zhang, F.; Zhang, Y. Evaluation of the controlling methods on inhibiting the secondary invasion of Mikania micrantha H.B.K. Ecol. Environ. Sci. 2017, 26, 911–918. [Google Scholar]
- Lin, Y. The Chinese Artemisia Linn. The classification, distribution and application of Artemisia Linn. in Chian. Bull. Bot. Res. 1988, 8, 1–61. [Google Scholar]
- Li, L.; Zhang, H.; Yang, Y.; Xi, C.; Zhou, P. Influence of enhanced UV-B radiation on growth morphology and competitive effects of Eupatorium adenophorum L. and Artemisia argyi levl. Chin. J. Appl. Environ. Biol. 2016, 22, 759–766. [Google Scholar]
- Wang, C.; Shao, J.; Ye, M. Comparative on physiological and biochemical characteristics of Portulaca oleracea L. under different Habitats. J. Anhui Agric. Sci. 2019, 47, 44–46. [Google Scholar]
- Li, B.; Zhang, D.; Li, Y.; Song, X.; Deng, C.; Zhang, X. Research progress on chemical constituents and pharmacological effects of Portulaca oleracea. J. Shaanxi Univ. Chin. Med. 2025, 5, 1–10. [Google Scholar]
- De Wit, C.T. On Competition; Verslagen Landbouwkundige Onderzoekigen; Institute for Biological and Chemical Research on Field Crops and Herbage: Wageninoen, The Netherlands, 1960; Volume 66, pp. 1–82. [Google Scholar]
- Fowler, N. Competition and coexistence in a North Carolina grassland: III. mixtures of component species. J. Ecol. 1982, 70, 77–92. [Google Scholar] [CrossRef]
- Campbell, B.; Grime, J. An experimental test of plant strategy theory. Ecology 1992, 73, 15–29. [Google Scholar] [CrossRef]
- Wilson, J. Shoot competition and root competition. J. Appl. Ecol. 1988, 25, 279. [Google Scholar] [CrossRef]
- Williams, A.; McCarthy, B. A new index of interspecific competition for replacement and additive designs. Ecol. Res. 2001, 16, 29–40. [Google Scholar] [CrossRef]
- Williamson, G.B.; Richardson, D. Bioassays for allelopathy: Measuring treatment responses with independent controls. J. Chem. Ecol. 1988, 14, 181–187. [Google Scholar] [CrossRef]
- Morales-Rosales, E.J.; Franco-Mora, O. Biomass, yield and land equivalent ratio of Helianthus annus L. in sole crop and intercropped with Phaseolus vulgaris L. in high valleys of Mexico. Trop. Subtrop. Agroecosyst. 2009, 10, 431–439. [Google Scholar]
- Cheng, C.; Liu, Z.; Song, W.; Chen, X.; Zhang, Z.; Li, B.; Kleunen, M.; Wu, J. Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes. Nat. Commun. 2024, 15, 4506. [Google Scholar] [CrossRef] [PubMed]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable crop and weed management in the era of the EU green deal: A survival guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Zheng, Y.; Burns, J.; Liao, Z.; Li, Y.; Yang, J.; Chen, Y.; Zhang, J.; Zheng, Y. Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecol. Lett. 2018, 21, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Xu, G.; Ma, G.; Li, D.; Yang, S.; Jin, G.; Clements, D.R.; Chen, A.; Wen, L.; Cui, Y.; et al. Sweet potato (Ipomoea batatas) and hyacinth bean (Lablab purpureus) in combination provide greater suppression of mile-a-minute (Mikania micrantha) than either crop alone. Front. Plant Sci. 2023, 14, 1070674. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Yuan, L.; Weber, E.; Kleunen, M. Effect of allelopathy on plant performance: A meta-analysis. Ecol. Lett. 2021, 24, 348–362. [Google Scholar] [CrossRef]
- Cao, C.; Huang, M.; He, Z.; Luo, X.; Wu, L.; Wang, C. Study on micromorphological characteristics at different developmental stages of invasive weed Mikrania micrantha leaf. J. Anhui Agric. Sci. 2022, 50, 102–105. [Google Scholar]
- Ackerly, D. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. S2), 19699–19706. [Google Scholar] [CrossRef]
- Lambers, H.; Poorter, H. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 1992, 23, 187–261. [Google Scholar]
- Baldwin, I.; Schmelz, E. Constraints on an induced defense: The role of leaf area. Oecologia 1994, 97, 424–430. [Google Scholar] [CrossRef] [PubMed]
Growth and Reproductive Parameters of M. micrantha | Biological Habitat Characteristics | |||
---|---|---|---|---|
Group A | Group B | Group C | Group D | |
Aboveground biomass (g) | 19.14 ± 2.11 b | 28.29 ± 2.87 a | 10.39 ± 1.58 c | 27.26 ± 2.64 a |
Total shoot length (cm) | 596.75 ± 8.11 b | 651.32 ± 10.87 a | 513.56 ± 12.58 c | 635.51 ± 7.64 a |
Flower biomass (g) | 1.15 ± 0.19 c | 3.31 ± 0.78 a | 0.58 ± 0.14 d | 2.98 ± 0.57 b |
Inflorescence biomass (g) | 2.02 ± 0.12 b | 4.60 ± 0.27 a | 1.07 ± 0.15 c | 4.43 ± 0.24 a |
Seed biomass (g) | 0.31 ± 0.08 b | 1.01 ± 0.12 a | 0.13 ± 0.05 c | 0.93 ± 0.11 a |
Seed number | 4069.21 ± 395.93 c | 13,481.63 ± 757.41 a | 2084.55 ± 159.47 d | 12,609.96 ± 684.96 b |
Synthetic Allelopathic Index | Concentration (g/mL) | Aqueous Extract of A. argyi | Aqueous Extract of P. oleracea | ||
---|---|---|---|---|---|
M. micrantha | P. oleracea | M. micrantha | A. argyi | ||
IRSE | 0.1 | −0.82 ± 0.11 d | 0.12± 0.04 a | −0.13 ± 0.04 b | −0.12 ± 0.03 b |
0.05 | −0.53 ± 0.06 c | 0.06 ± 0.02 a | −0.03 ± 0.01 a | −0.07 ± 0.01 a | |
0.025 | −0.26 ± 0.07 b | 0.06 ± 0.01 a | 0.08 ± 0.02 a | 0.07 ± 0.02 a | |
0.0125 | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.09 ± 0.01 a | 0.03 ± 0.01 a |
Species | Net Photosynthetic Rate (Pn) of M. micrantha | |||
---|---|---|---|---|
June | July | August | September | |
Mm (Aa) | 7.83 ± 0.19 b | 8.57 ± 0.18 cb | 11.22 ± 0.27 c | 13.67 ± 0.11 a |
Mm (Po) | 8.43 ± 0.21 a | 9.05 ± 0.23 b | 12.96 ± 0.21 b | 13.70 ± 0.13 a |
Mm1 (Aa + Po) | 7.05 ± 0.05 d | 7.79 ± 0.08 d | 8.68 ± 0.11 f | 9.08 ± 0.49 c |
Mm2 (Aa + Po) | 7.26 ± 0.08 cd | 7.97 ± 0.10 d | 9.32 ± 0.25 e | 10.29 ± 0.17 b |
Mm3 (Aa + Po) | 7.60 ± 0.16 bc | 8.06 ± 0.06 d | 10.09 ± 0.15 d | 10.59 ± 0.29 b |
Mm (mono) | 8.51 ± 0.09 a | 10.89 ± 0.17 a | 13.61 ± 0.22 a | 13.97 ± 0.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Shen, S.; Gao, J.; Yang, Y.; Clements, D.R.; Yang, S.; Zhen, F.; Yao, B.; Jin, G.; Zhang, Y.; et al. Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha. Agronomy 2025, 15, 1998. https://doi.org/10.3390/agronomy15081998
Xu G, Shen S, Gao J, Yang Y, Clements DR, Yang S, Zhen F, Yao B, Jin G, Zhang Y, et al. Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha. Agronomy. 2025; 15(8):1998. https://doi.org/10.3390/agronomy15081998
Chicago/Turabian StyleXu, Gaofeng, Shicai Shen, Jiale Gao, Yunhai Yang, David Roy Clements, Shaosong Yang, Fengping Zhen, Bin Yao, Guimei Jin, Yun Zhang, and et al. 2025. "Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha" Agronomy 15, no. 8: 1998. https://doi.org/10.3390/agronomy15081998
APA StyleXu, G., Shen, S., Gao, J., Yang, Y., Clements, D. R., Yang, S., Zhen, F., Yao, B., Jin, G., Zhang, Y., & Zhang, F. (2025). Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha. Agronomy, 15(8), 1998. https://doi.org/10.3390/agronomy15081998