Spatiotemporal Simulation of Soil Moisture in Typical Ecosystems of Northern China: A Methodological Exploration Using HYDRUS-1D
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Experimental Design
2.3. Definition and Measurement of Indicators
2.3.1. Soil Water Content (SWC)
2.3.2. Field Water Holding Capacity (FC)
2.3.3. Meteorological Data
2.4. Construction of Physics-Based Model
2.4.1. Unsaturated Seepage Modeling
2.4.2. HYDRUS-1D Model
2.4.3. Model Validation
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Rainfall and Temperature Variations
3.2. FC at Different Depths
3.3. HYDRUS-1D Model Validation
3.4. SWC Simulation at Different Depths
4. Discussion
4.1. Analysis of Factors Influencing SWC Dynamics
4.2. SWC Dynamics Simulation Based on HYDRUS-1D
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsu, H.; Dirmeyer, P.A. Soil moisture-evaporation coupling shifts into new gears under increasing CO2. Nat. Commun. 2023, 14, 1162. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, X.; Wang, H.; Li, L.; Yao, N.; Liu, D.L.; Biswas, A.; Sun, S. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Comput. Electron. Agric. 2021, 185, 106142. [Google Scholar] [CrossRef]
- Samarina, L.; Wang, S.; Malyukova, L.; Bobrovskikh, A.; Doroshkov, A.; Koninskaya, N.; Shkhalakhova, R.; Matskiv, A.; Fedorina, J.; Fizikova, A.; et al. Long-term cold, freezing and drought: Overlapping and specific regulatory mechanisms and signal transduction in tea plant (Camellia sinensis (L.) Kuntze). Front. Plant Sci. 2023, 14, 1145793. [Google Scholar] [CrossRef]
- Han, W.; Li, X.; Yan, P.; Zhang, L.; Jalal Ahammed, G. Tea cultivation under changing climatic conditions. In Global Tea Science, Burleigh Dodds Series in Agricultural Science; Sharma, V.S., Gunasekare, M.T.K., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; pp. 455–472. [Google Scholar] [CrossRef]
- Ali Abaker Omer, A.; Zhang, C.H.; Liu, J.; Shan, Z.G. Comprehensive review of mapping climate change impacts on tea cultivation: Bibliometric and content analysis of trends, influences, adaptation strategies, and future directions. Front. Plant Sci. 2024, 15, 1542793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, T.; Wang, Q.; LeCompte, J.; Harkess, R.L.; Bi, G. Screening Tea Cultivars for Novel Climates: Plant Growth and Leaf Quality of Camellia sinensis Cultivars Grown in Mississippi, United States. Front. Plant Sci. 2020, 11, 280. [Google Scholar] [CrossRef]
- Ding, Z.J.; Shi, Y.Z.; Li, G.X.; Harberd, N.P.; Zheng, S.J. Tease out the future: How tea research might enable crop breeding for acid soil tolerance. Plant Commun. 2021, 2, 100182. [Google Scholar] [CrossRef]
- Bania, J.K.; Deka, J.R.; Paul, A.; Nath, A.J.; Sileshi, G.W.; Kumar, D.A. Highly suitable areas for tea (Camellia sinensis) production will decline under future climate change scenarios. Environ. Sustain. Indic. 2025, 26, 100720. [Google Scholar] [CrossRef]
- Liu, Y.-C. Research on the Promotion of CCP to Conventional Industries—Taking Rizhao Green Tea as an Example. In Proceedings of the 1st International Conference on Contemporary Education and Economic Development (CEED 2018); Advances in Social Science, Education and Humanities Research; Atlantis Press: Dordrecht, The Netherlands, 2018; pp. 397–403. [Google Scholar] [CrossRef]
- Yue, C.; Cao, H.; Zhang, S.; Shen, G.; Wu, Z.; Yuan, L.; Luo, L.; Zeng, L. Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress. Int. J. Biol. Macromol. 2023, 253 Pt 1, 126582. [Google Scholar] [CrossRef]
- Rigden, A.J.; Ongoma, V.; Huybers, P. Kenyan tea is made with heat and water: How will climate change influence its yield? Environ. Res. Lett. 2020, 15, 044003. [Google Scholar] [CrossRef]
- Wang, S.-H.; Juang, J.-Y. Different management strategies exert distinct influences on microclimate of soil and canopy in tea fields through surface-atmosphere interactions. Agric. Water Manag. 2024, 291, 108617. [Google Scholar] [CrossRef]
- Wang, P.; Wang, W.; Rong, Y.; Zhang, C.; Wang, C.; Wang, X.; Huo, Z. A novel conceptual model coupling crop growth and soil water-heat-salt processes in arid area. J. Hydrol. 2025, 647, 132284. [Google Scholar] [CrossRef]
- Wu, T.-H.; Chen, P.-Y.; Chen, C.-C.; Chung, M.-J.; Ye, Z.-K.; Li, M.-H. Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind. Agric. Water Manag. 2024, 299, 108869. [Google Scholar] [CrossRef]
- Du, R.; Chen, J.; Xiang, Y.; Xiang, R.; Yang, X.; Wang, T.; He, Y.; Wu, Y.; Yin, H.; Zhang, Z.; et al. Timely monitoring of soil water-salt dynamics within cropland by hybrid spectral unmixing and machine learning models. Int. Soil. Water Conserv. Res. 2024, 12, 726–740. [Google Scholar] [CrossRef]
- Bai, X.; Fan, S.; Li, R.; Dai, T.; Li, W.; Ye, S.; Qian, L.; Liu, L.; Zhang, Z.; Chen, H.; et al. Estimating root zone soil moisture in farmland by integrating multi-source remote sensing data based on the water balance equation. Agric. Water Manag. 2025, 314, 109544. [Google Scholar] [CrossRef]
- Tu, A.; Xie, S.; Mo, M.; Song, Y.; Li, Y. Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model. Agric. Water Manag. 2021, 243, 106426. [Google Scholar] [CrossRef]
- Yi, J.; Li, H.; Zhao, Y.; Shao, M.; Zhang, H.; Liu, M. Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agric. Water Manag. 2022, 265, 107543. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, X.; Zakari, S.; Chen, C.; Liu, W.; Jiang, X.-J. Assessing the Effects of Plant Roots on Soil Water Infiltration Using Dyes and Hydrus-1D. Forests 2022, 13, 1095. [Google Scholar] [CrossRef]
- Bai, X.; Jia, X.; Jia, Y.; Hu, W. Modeling long-term soil water dynamics in response to land-use change in a semi-arid area. J. Hydrol. 2020, 585, 124824. [Google Scholar] [CrossRef]
- Yu, J.; Wu, Y.; Xu, L.; Peng, J.; Chen, G.; Shen, X.; Lan, R.; Zhao, C.; Zhangzhong, L. Evaluating the Hydrus-1D Model Optimized by Remote Sensing Data for Soil Moisture Simulations in the Maize Root Zone. Remote Sens. 2022, 14, 6079. [Google Scholar] [CrossRef]
- Qu, W.; Bogena, H.R.; Huisman, J.A.; Martinez, G.; Pachepsky, Y.A.; Vereecken, H. Effects of Soil Hydraulic Properties on the Spatial Variability of Soil Water Content: Evidence from Sensor Network Data and Inverse Modeling. Vadose Zone J. 2014, 13, 1–12. [Google Scholar] [CrossRef]
- Mohammed, E.M.; Abid-Alziz Al-Qassab, S.; Salih Al-Wazan, F.A. Using Inverse Modeling by HYDRUS-1D to Predict Some Soil Hydraulic Parameters from Soil Water Evaporation. Colomb. For. 2022, 25, 21–35. [Google Scholar] [CrossRef]
- Kubát, J.-F.; Strouhal, L.; Kavka, P. Estimation of Infiltration Parameters: The Role of Pedotransfer Functions and Initial Moisture Conditions. J. Hydrol. 2024, 633, 130954. [Google Scholar] [CrossRef]
- Sayah, B.; Gil-Rodríguez, M.; Juana, L. Development of one-dimensional solutions for water infiltration. Analysis and parameters estimation. J. Hydrol. 2016, 535, 226–234. [Google Scholar] [CrossRef]
- Balugani, E.; Lubczynski, M.W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A.P.; Metselaar, K. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. J. Hydrol. 2017, 547, 54–66. [Google Scholar] [CrossRef]
- LÜ, X.; Nurmemet, I.; Xiao, S.; Zhao, J.; Yu, X.; Aili, Y.; Li, S. Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-Attention in the Yutian Oasis, Southern Xinjiang, China. Pedosphere, 2024; in press. [Google Scholar] [CrossRef]
- Wikipedia contributors. Rizhao. Wikipedia, The Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Rizhao (accessed on 15 July 2025).
- Xia, X.; Sun, S.; Wang, X.; Shen, F. Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024. Atmosphere 2025, 16, 895. [Google Scholar] [CrossRef]
- Lv, Y.; Li, X.; Yuan, J.; Tian, H.; Wei, T.; Wang, M.; Dai, Y.; Feng, J.; Zhang, Y.; Yang, P. Hydrogeochemical Signatures and Spatiotemporal Variation of Groundwater Quality in the Upper and Lower Reaches of Rizhao Reservoir. Water 2025, 17, 1659. [Google Scholar] [CrossRef]
- Rizhao Water Conservancy Bureau. 113711000043681603/2022-00023: Rizhao “14th Five-Year” Water Conservation Plan; Rizhao Water Conservancy Bureau: Rizhao, China, 2022. Available online: http://slj.rizhao.gov.cn/art/2022/10/28/art_171904_10285009.html (accessed on 28 October 2024).
- McConnaughey, J.P. Evaluation of Alternative Tea (Camellia sinensis L. Kuntze) Propagation and Nursery Systems. Master’s Thesis, University of Georgia, Athens, GA, USA, 2013. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resource, 4th ed; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 28 October 2024).
- Ministry of Agriculture of the People’s Republic of China. NY/T 1121.4–2006; Soil Testing—Part 4: Determination of Bulk Density; China Agriculture Press: Beijing, China, 2006. (In Chinese)
- Ministry of Ecology and Environment of the People’s Republic of China. HJ 615–2011; Soil—Determination of Organic Matter—Potassium Dichromate Oxidation–External Heating Method; China Environmental Science Press: Beijing, China, 2011. (In Chinese)
- Bean, E.Z.; Huffaker, R.G.; Migliaccio, K.W. Estimating Field Capacity from Volumetric Soil Water Content Time Series Using Automated Processing Algorithms. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Ser. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Richards, L.A. Capillary Conduction of Liquids Through Porous Mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Yurui, L.; Xuanchang, Z.; Zhi, C.; Zhengjia, L.; Zhi, L.; Yansui, L. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Li, Y.; Hu, Y.; Li, H. Study on recharge from dry farmland irrigation based on the HYDRUS-1D model in Da’an irrigation district. Agric. Res. Arid. Areas 2014, 32, 191–195. (In Chinese) [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, version 3.0; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2005. [Google Scholar]
- Sun, T.; Wang, Y.; Hui, D.; Jing, X.; Feng, W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil. Biol. Biochem. 2020, 148, 107905. [Google Scholar] [CrossRef]
- Manzeke-Kangara, M.G.; Ligowe, I.S.; Tibu, A.; Gondwe, T.N.; Greathead, H.M.R.; Galdos, M.V. Soil organic carbon and related properties under conservation agriculture and contrasting conventional fields in Northern Malawi. Front. Soil. Sci. 2025, 4, 1481275. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Liu, X.; Sun, H. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. Geoderma 2022, 422, 115954. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhou, Z.; Zhu, Q. Applying fractal analysis to detect spatio-temporal variability of soil moisture content on two contrasting land use hillslopes. Catena 2017, 157, 163–172. [Google Scholar] [CrossRef]
- Mallik, P.; Ghosh, T. Sub-regional variation in atmospheric and land variables regulates tea yield in the Dooars region of West Bengal, India. Int. J. Biometeorol. 2023, 67, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- De Melo, M.L.A.; Inforsato, L.; Pinheiro, E.A.R.; Lier, Q.d.J.v. Plant available water predicted by a flux-based approach. Geoderma 2023, 429, 116253. [Google Scholar] [CrossRef]
- Zettl, J.; Lee Barbour, S.; Huang, M.; Si, B.; Leskiw, L.A. Influence of textural layering on field capacity of coarse soils. Can. J. Soil. Sci. 2011, 91, 133–147. [Google Scholar] [CrossRef]
- Mwendwa, S.M.; Mbuvi, J.P.; Kironchi, G.; Gachene, C.K.K. Assessing spatial variability of selected soil properties in Upper Kabete Campus coffee farm, University of Nairobi, Kenya. Heliyon 2022, 8, e10190. [Google Scholar] [CrossRef]
- Lu, Y.-Z.; Liu, P.-F.; Montazar, A.; Paw, U.K.-T.; Hu, Y.-G. Soil Water Infiltration Model for Sprinkler Irrigation Control Strategy: A Case for Tea Plantation in Yangtze River Region. Agriculture 2019, 9, 206. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Wei, L.; Wang, G.; Dong, W.; Liu, X. Impact of soil textures on agricultural drought evolution and field capacity estimation in humid regions. J. Hydrol. 2023, 626, 130257. [Google Scholar] [CrossRef]
- Kumar, H.; Srivastava, P.; Lamba, J.; Lena, B.; Diamantopoulos, E.; Ortiz, B.; Takhellambam, B.; Morata, G.; Bondesan, L. A methodology to optimize site-specific field capacity and irrigation thresholds. Agric. Water Manag. 2023, 286, 108385. [Google Scholar] [CrossRef]
- Zhao, F.; Bin, Y.; Zhu, X.; Ma, S.; Xie, E.; Zeng, H.; Li, C.; Wu, J. An increase in intercropped species richness improves plant water use but weakens the nutrient status of both intercropped plants and soil in rubber–tea agroforestry systems. Agric. Water Manag. 2023, 284, 108353. [Google Scholar] [CrossRef]
- Kroes, J.; Supit, I.; van Dam, J.; van Walsum, P.; Mulder, M. Impact of capillary rise and recirculation on simulated crop yields. Hydrol. Earth Syst. Sci. 2018, 22, 2937–2952. [Google Scholar] [CrossRef]
- Gao, X.; Huo, Z.; Qu, Z.; Xu, X.; Huang, G.; Steenhuis, T.S. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Sci. Rep. 2017, 7, 43122. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yu, X.; Jia, G.; Liu, Z.; Sun, L.; Zheng, P.; Zhu, X. Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecol. Indic. 2021, 131, 108196. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, L.; Liu, T.; Chen, Z.; Wang, Y.; Li, M.; Zhou, Y. Experimental analysis of soil moisture response to rainfall in a typical grassland hillslope under different vegetation treatments. Environ. Res. 2022, 213, 113608. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Chen, C.-T.; Tsai, Y.-C.; Shen, Y. A Sentinel-2 Image-Based Irrigation Advisory Service: Cases for Tea Plantations. Water 2021, 13, 1305. [Google Scholar] [CrossRef]
- Man, X.; Gong, D.; Mei, X.; Chen, B.; Li, H.; Hao, W. Enhancing soil water stability and retention through plastic mulching under atypical climatic conditions on the Chinese loess plateau. Agric. Water Manag. 2024, 305, 109137. [Google Scholar] [CrossRef]
- Arnó, J.; Uribeetxebarria, A.; Llorens, J.; Escolà, A.; Rosell-Polo, J.R.; Gregorio, E.; Martínez-Casasnovas, J.A. Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot. Agronomy 2023, 13, 2369. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Šimůnek, J.; Wang, J.; Zhang, Y.; Wang, Y.; Zhen, Z.; He, R. Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations. Agric. Water Manag. 2024, 305, 109119. [Google Scholar] [CrossRef]
- Garbanzo, G.; do Rosário Cameira, M.; Paredes, P.; Temudo, M.; Ramos, T.B. Modeling soil water and salinity dynamics in mangrove swamp rice production system of Guinea Bissau, West Africa. Agric. Water Manag. 2025, 313, 109494. [Google Scholar] [CrossRef]
- Guo, T.; Ji, Y.; Yan, X.; Mady, A.Y.; Liu, R.; Huang, M. Temporal variations of soil saturated hydraulic conductivity under different land use types and its impact on water balance components. Agric. Water Manag. 2025, 315, 109557. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, R. A numerical analysis of soil-water dynamics in agricultural fields with temporally varying soil hydraulic properties. J. Hydrol. 2025, 661, 133628. [Google Scholar] [CrossRef]
- Ma, L.; Wang, S.; Ni, C.; Wang, W.; Kang, S.; Li, Z.; Wright, A.L.; Jiang, X. Measurement and modelling of soil water dynamics under ridge tillage in paddy field. Soil. Tillage Res. 2024, 244, 106172. [Google Scholar] [CrossRef]
- Raj, E.E.; Ramesh, K.V.; Rajkumar, R.; Tejada Moral, M. Modelling the impact of agrometeorological variables on regional tea yield variability in South Indian tea-growing regions: 1981–2015. Cogent Food Agric. 2019, 5, 1581457. [Google Scholar] [CrossRef]
- Vaheddoost, B.; Guan, Y.; Mohammadi, B. Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils. Environ. Sci. Pollut. Res. 2020, 27, 13131–13141. [Google Scholar] [CrossRef]
- Maihemuti, B.; Simayi, Z.; Alifujiang, Y.; Aishan, T.; Abliz, A.; Aierken, G. Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Glob. Ecol. Conserv. 2021, 25, e01408. [Google Scholar] [CrossRef]
- Bekele, E.; Tilahun, S.; Beyene, A.; Asres, S.; Geremew, B.; Atinkut, H. Soil Water Dynamics on Irrigated Garlic and Pepper Crops Using Hydrus–1D Model in the Lake Tana-Basin, Northwestern Ethiopia. In Advances of Science and Technology; Habtu, N.G., Ayele, D.W., Fanta, S.W., Admasu, B.T., Bitew, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 193–209. [Google Scholar] [CrossRef]
- Iqbal, M.; Kamal, M.R.; Mohd, M.F.; Che Man, H.; Wayayok, A. HYDRUS-1D Simulation of Soil Water Dynamics for Sweet Corn under Tropical Rainfed Condition. Appl. Sci. 2020, 10, 1219. [Google Scholar] [CrossRef]
- Krevh, V.; Filipović, L.; Petošić, D.; Mustać, I.; Bogunović, I.; Butorac, J.; Kisić, I.; Defterdarović, J.; Nakić, Z.; Kovač, Z.; et al. Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D. Agric. Water Manag. 2023, 275, 108039. [Google Scholar] [CrossRef]
Vegetation | Soil Depth (cm) | θr | θs | Alpha | N | Ks (cm/d) | l |
---|---|---|---|---|---|---|---|
Young tea plants | 0–10 | 0.105 | 0.350 | 0.0365 | 1.070 | 329 | 0.5 |
10–20 | 0.095 | 0.298 | 0.0115 | 1.125 | 361 | 0.5 | |
20–30 | 0.095 | 0.362 | 0.0179 | 1.180 | 382 | 0.5 | |
30–40 | 0.075 | 0.365 | 0.0119 | 1.150 | 358 | 0.5 | |
40–50 | 0.085 | 0.356 | 0.0115 | 1.125 | 360 | 0.5 | |
50–60 | 0.095 | 0.361 | 0.0134 | 1.158 | 264 | 0.5 | |
60–70 | 0.085 | 0.370 | 0.0135 | 1.112 | 125 | 0.5 | |
70–80 | 0.085 | 0.375 | 0.0135 | 1.075 | 363 | 0.5 | |
80–90 | 0.057 | 0.388 | 0.0132 | 1.146 | 112 | 0.5 | |
90–100 | 0.060 | 0.530 | 0.0175 | 1.155 | 384 | 0.5 | |
Grassland | 0–10 | 0.025 | 0.298 | 0.0236 | 1.785 | 180 | 0.5 |
10–20 | 0.048 | 0.300 | 0.0238 | 1.442 | 190 | 0.5 | |
20–30 | 0.040 | 0.358 | 0.0185 | 1.42 | 4.6 | 0.5 | |
30–40 | 0.040 | 0.326 | 0.0133 | 1.529 | 1.95 | 0.5 | |
40–50 | 0.061 | 0.340 | 0.0101 | 1.441 | 1.5 | 0.5 | |
50–60 | 0.050 | 0.3501 | 0.0124 | 1.381 | 7.1 | 0.5 | |
60–70 | 0.045 | 0.325 | 0.0048 | 1.400 | 4.7 | 0.5 | |
70–80 | 0.028 | 0.335 | 0.0085 | 1.232 | 4.2 | 0.5 | |
80–90 | 0.023 | 0.324 | 0.0021 | 1.468 | 4.0 | 0.5 | |
90–100 | 0.083 | 0.298 | 0.0085 | 1.231 | 4.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, Z.; Cheng, L.; Bai, Y.; Wang, K.; Zhang, Y. Spatiotemporal Simulation of Soil Moisture in Typical Ecosystems of Northern China: A Methodological Exploration Using HYDRUS-1D. Agronomy 2025, 15, 1973. https://doi.org/10.3390/agronomy15081973
Liu Q, Wang Z, Cheng L, Bai Y, Wang K, Zhang Y. Spatiotemporal Simulation of Soil Moisture in Typical Ecosystems of Northern China: A Methodological Exploration Using HYDRUS-1D. Agronomy. 2025; 15(8):1973. https://doi.org/10.3390/agronomy15081973
Chicago/Turabian StyleLiu, Quanru, Zongzhi Wang, Liang Cheng, Ying Bai, Kun Wang, and Yongbing Zhang. 2025. "Spatiotemporal Simulation of Soil Moisture in Typical Ecosystems of Northern China: A Methodological Exploration Using HYDRUS-1D" Agronomy 15, no. 8: 1973. https://doi.org/10.3390/agronomy15081973
APA StyleLiu, Q., Wang, Z., Cheng, L., Bai, Y., Wang, K., & Zhang, Y. (2025). Spatiotemporal Simulation of Soil Moisture in Typical Ecosystems of Northern China: A Methodological Exploration Using HYDRUS-1D. Agronomy, 15(8), 1973. https://doi.org/10.3390/agronomy15081973