Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanoparticles
2.2. Soil
2.3. Soil Experiments
2.4. Fractionation Analysis
2.5. Soil Enzymatic Activity
2.6. Greenhouse Studies
2.7. Plant Analysis
2.8. Statistics
3. Results
3.1. Soil Analysis
3.2. Element Distribution in Soil
3.3. Influence of Fe2O3-NPs and CuO-NPs on Fe and Cu Fractionation
3.4. Effect of NPs on Soil Enzyme Activity
3.5. L. sativum L. Growth Under NPs Treatment
4. Discussion
4.1. Effect of NPs on Soil Fractionation and Enzymatic Activity
4.2. NPs Impact on Plant Growth and Nutrient Accumulation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NPs | Nanoparticles |
BET | Brunauer–Emmett–Teller method |
TEM | Transmission Electron Microscopy |
F-AAS | Flame-Atomic Absorption Spectroscopy |
F1 | Water soluble soil fraction |
F2 | Acid soluble soil fraction |
F3 | Organic matter bound soil fraction |
F4 | Strongly complexed soil fraction |
F5 | Residual soil fraction |
DHA | Dehydrogenase activity |
UA | Urease activity |
ACP | Acid phosphatase activity |
References
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munne-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risk. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Oberdorster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Bader, B.R.; Taban, S.K.; Fahmi, A.H.; Abood, M.A.; Hamdi, G.J. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L.) growth. J. Saudi Soc. Agric. Sci. 2021, 20, 390–394. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Feng, Y.; Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of Mineral Elements in Wheat (Triticum aestivum) Plants. Plants 2022, 11, 1894. [Google Scholar] [CrossRef]
- Yang, X.; Alidoust, D.; Wang, C. Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiol. Plant 2020, 42, 128. [Google Scholar] [CrossRef]
- Ullah, J.; Gul, A.; Khan, I.; Shehzad, J.; Kausar, R.; Ahmed, M.S.; Batool, S.; Hasan, M.; Ghorbanpour, M.; Mustafa, G. Green synthesized iron oxide nanoparticles as a potential regulator of callus growth, plant physiology, antioxidative and microbial contamination in Oryza sativa L. BMC Plant Biol. 2024, 24, 939. [Google Scholar] [CrossRef]
- Faraz, A.; Faizan, M.; Rajput, V.D.; Minkina, T.; Hayat, S.; Faisal, M.; Alatar, A.A.; Abdel-Salam, E.M. CuO Nanoparticle-Mediated Seed Priming Improves Physio-Biochemical and Enzymatic Activities of Brassica juncea. Plants 2023, 12, 803. [Google Scholar] [CrossRef]
- Kadri, O.; Karmous, I.; Kharbech, O.; Arfaoui, H.; Chaoui, A. Cu and CuO Nanoparticles Affected the Germination and the Growth of Barley (Hordeum vulgare L.) Seedling. Bull. Environ. Contam. Toxicol. 2022, 108, 585–593. [Google Scholar] [CrossRef]
- ISO 11277:2009; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. ISO: Geneva, Switzerland, 2009.
- ISO 10390:2021; Soil, Sludge and Treated Biowaste—Determination of pH. ISO: Geneva, Switzerland, 2021.
- ISO 14235:1998; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 1998.
- ISO 14256-1:2003; Soil Quality—Determination of Nitrate, Nitrite and Ammonium in Field-Moist Soils by Extraction with Potassium Chloride Solution—Part 1: Manual Method. ISO: Geneva, Switzerland, 2003.
- ISO 11263:1994; Soil Quality—Determination of Phosphorus—Spectrometric Determination of Phosphorus Soluble in Sodium Hydrogen Carbonate Solution. ISO: Geneva, Switzerland, 1994.
- ISO 11466:1995/EN 13657; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. ISO: Geneva, Switzerland, 1995.
- Tessier, P.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Nannoni, F.; Protano, G.; Riccobono, F. Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma 2011, 161, 63–73. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Xue, G.-Q.; Song, H.; Di, D.L. Determination of the amount of 13 metal elements in the rape pollen from different regions by flame atomic absorption spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2006, 27, 1235–1238. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Rev. 2; AOAC International: Gaithersburg, MD, USA, 2006; Official Method 978.04–Nitrogen (Total) in Plants: Kjeldahl Method. [Google Scholar]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colorimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA, Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Rawls, W.J.; Brakensiek, D.L.; Saxtonn, K.E. Estimation of soil water properties. Trans. ASAE 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis Part 3: Chemical Methods; Soil Science Society of America; Sparks, D.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 475–490. [Google Scholar]
- Stevenson, F.J.; Cole, M.A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Johnston, A.E. Principles of crop nutrient management. In Balanced Fertilization; IFA: Paris, France, 2001. [Google Scholar]
- Mielki, G.F.; Novais, R.F.; Ker, J.C.; Vergütz, L.; de Castro, G.F. Iron Availability in Tropical Soils and Iron Uptake by Plants. Rev. Bras. Ciênc Solo 2016, 40, e0150174. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publishing Company: Warsaw, Poland, 1999. [Google Scholar]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Bozdar, B.; Chachar, S.; Rai, M.; Li, J.; Li, Y.; Hayat, F.; Chachar, Z.; Tu, P. The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front. Plant Sci. 2023, 14, 285512. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Mendel, R.R.; Schwarz, G. Molybdoenzymes and Molybdenum Cofactor in Plants. Crit. Rev. Plant Sci. 1999, 18, 33–69. [Google Scholar] [CrossRef]
- Rashed, M.; Hoque, T.; Jahangir, M.; Hashem, M. Manganese as a Micronutrient in Agriculture: Crop Requirement and Management. J. Environ. Sci. Nat. Resour. 2021, 12, 225–242. [Google Scholar] [CrossRef]
- Slimani, I.; Zhu-Barker, X.; Lazicki, P.; Horwath, W. Reviews and syntheses: Iron–a driver of nitrogen bioavailability in soils? Biogeosciences 2023, 20, 3873–3894. [Google Scholar] [CrossRef]
- Kamran, M.; Ali, H.; Saeed, M.F.; Bakhat, H.F.; Hassan, Z.; Tahir, M.; Abbas, G.; Naeem, M.A.; Rashid, M.I.; Shah, G.M. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicol. Environ. Saf. 2020, 205, 111099. [Google Scholar] [CrossRef]
- Jośko, I. Copper and zinc fractionation in soils treated with CuO and ZnO nanoparticles: The effect of soil type and moisture content. Sci. Total Environ. 2019, 653, 822–832. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Pan, B.; Zhang, X.; Zhang, H.; Steinberg, C.E.W.; Qiu, H.; Vijver, M.G.; Peijnenburg, W.J.G.M. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Sci. Total Environ. 2021, 757, 143807. [Google Scholar] [CrossRef]
- Wei, X.; Cao, P.; Wang, G.; Liu, Y.; Song, J.; Han, J. CuO, ZnO, and γ-Fe2O3 nanoparticles modified the underground biomass and rhizosphere microbial community of Salvia miltiorrhiza (Bge.) after 165-day exposure. Ecotoxicol. Environ. Saf. 2021, 217, 112232. [Google Scholar] [CrossRef] [PubMed]
- Maity, D.; Gupta, U.; Saha, S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: Next-generation nanotechnology for crop production, protection and management. Nanoscale 2022, 14, 13950–13989. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-M.; Jin, S.-Y.; Wang, Y.-J.; Wang, P.; Weng, N.-Y.; Wang, Y. Assessing the Impact of Iron-based Nanoparticles on pH, Dissolved Organic Carbon, and Nutrient Availability in Soils. Soil Sediment Contam. 2012, 21, 101–114. [Google Scholar] [CrossRef]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 604. [Google Scholar] [CrossRef]
- He, S.; Feng, Y.; Ren, H.; Zhang, Y.; Gu, N.; Lin, X. The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J. Soils Sediments 2011, 11, 1408–1417. [Google Scholar] [CrossRef]
- Kumar, A.; Rakshit, R.; Bhowmik, A.; Mandal, N.; Das, A.; Adhikary, S. Nanoparticle-Induced Changes in Resistance and Resilience of Sensitive Microbial Indicators towards Heat Stress in Soil. Sustainability 2019, 11, 862. [Google Scholar] [CrossRef]
- Burns, R.G. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol. Biochem. 1982, 14, 423–427. [Google Scholar] [CrossRef]
- Balemi, T.; Negisho, K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. J. Soil Sci. Plant Nutr. 2012, 12, 547–562. [Google Scholar] [CrossRef]
- Richardson, A.E.; Hocking, P.J.; Simpson, R.J.; George, T.S. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 2009, 60, 124. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Hiemstra, T.; Vaseur, C.; Chardon, W.J.; Voegelin, A.; Groenenberg, J.E. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus. Sci. Total Environ. 2020, 711, 135220. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Ali, B.; Adrees, M.; Arshad, M.; Hussain, A.; Zia ur Rehman, M.; Waris, A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019, 214, 269–277. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sans-Serramitjana, E.; de la Luz Mora, M.; Fuentes, B.; de los Ángeles Sepúlveda, M.; Silva-Yumi, J.; Celletti, S.; Celi, L.; Rivas, S.; Ruiz, A. Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability. Environments 2024, 11, 208. [Google Scholar] [CrossRef]
- Jośko, I.; Dobrzyńska, J.; Dobrowolski, R.; Kusiak, M.; Terpiłowski, K. The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils. Sci. Total Environ. 2020, 721, 137771. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Phosphatase activity and P transformation in soil. In Soil Biology: Enzymes in The Environment; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 22, pp. 215–243. [Google Scholar]
- Utobo, E.B.; Tewati, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2014, 13, 147169. [Google Scholar]
- Adetunji, C.O.; Olaniyan, O.T.; Anani, O.A.; Olisaka Frances, N.; Inobeme, A.; Bodunrinde, R.E.; Adetunji, J.B.; Singh, K.R.; Palnam, W.D.; Singh, R.P. Current Scenario of Nanomaterials in the Environmental, Agricultural, and Biomedical Fields. In Nanomaterials in Bionanotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 129–158. [Google Scholar]
- Azizah, N.; Nihayati, E.; Khotimah, H.; Rohmah, S.; Widaryanto, E.; Sugito, Y.; Kurniawan, S. Impact of potassium fertilization on yield, nutrient use and response efficiency, and antioxidant content of red ginger (Zingiber officinale var. rubrum Theilade). Chil. J. Agric. Res. 2022, 82, 380–389. [Google Scholar] [CrossRef]
- Bidast, S.; Golchin, A.; Baybordi, A.; Naidu, R. Effects of Fe oxide-based nanoparticles on yield and nutrient content of corn in Cobalt-contaminated soils. Environ. Technol. Inn. 2022, 26, 102314. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, C.; Wang, J.; Yin, M.; Wu, Z.; Song, N.; Song, X.; Shangguan, Y.; Sun, Z.; Zong, Q.; et al. Fe-CGS Effectively Inhibits the Dynamic Migration and Transformation of Cadmium and Arsenic in Soil. Toxics 2024, 12, 273. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. The Role of Organic Materials in Shaping the Content of Trace Elements in Iron-Contaminated Soil. Materials 2025, 18, 1522. [Google Scholar] [CrossRef]
- Guo, M.; Tong, H.; Cai, D.; Zhang, W.; Yuan, P.; Shen, Y.; Peng, C. Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles. J. Hazard. Mater. 2022, 436, 129119. [Google Scholar] [CrossRef]
- Pelegrino, M.T.; Kohatsu, M.Y.; Seabra, A.B.; Monteiro, L.R.; Gomes, D.G.; Oliveira, H.C.; Rolim, W.R.; de Jesus, T.A.; Batista, B.L.; Lange, C.N. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ. Monit. Assess. 2020, 192, 232. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.S.D.; Graciano, D.E.; Falco, W.F.; Caires, A.R.L.; de Arruda, E.J. Effects of copper oxide nanoparticles on germination of Sesbania virgata (FABACEAE) plants. An. Acad. Bras. Ciênc 2021, 93, e20190739. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, A.; Latif, M.; Ali, S.; Munir, M.; Sattar, M.N.; Alshehri, M.A. Exploring Metal Based Nanoparticles for Boosting Plant Tolerance to Heavy Metals and Trace Element Contamination. Phyton 2024, 93, 2683–2705. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Latta, D.E.; McLean, J.E.; Britt, D.W.; Boyanov, M.I.; Anderson, A.J. Fate of CuO and ZnO Nano- and Microparticles in the Plant Environment. Environ. Sci. Technol. 2013, 47, 4734–4742. [Google Scholar] [CrossRef] [PubMed]
- Lung, I.; Opriş, O.; Soran, M.-L.; Culicov, O.; Ciorîță, A.; Stegarescu, A.; Zinicovscaia, I.; Yushin, N.; Vergel, K.; Kacso, I.; et al. The Impact Assessment of CuO Nanoparticles on the Composition and Ultrastructure of Triticum aestivum L. Int. J. Environ. Res. Public Health 2021, 18, 6739. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Li, J.; Wang, Y.; Xiao, L.; Xing, B. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol. 2017, 15, 51. [Google Scholar] [CrossRef]
- Xiong, T.; Dumat, C.; Dappe, V.; Vezin, H.; Schreck, E.; Shahid, M.; Pierart, A.; Sobanska, S. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environ. Sci. Technol. 2017, 51, 5242–5251. [Google Scholar] [CrossRef]
Properties | Unit | Value (Mean (n = 3) ± SD) |
---|---|---|
Sand | % | 62 |
Silt | % | 24 |
Clay | % | 14 |
pH (H2O) | - | 6.22 ± 0.21 |
pH (KCl) | - | 5.55 ± 0.20 |
C org | % | 1.69 ± 0.18 |
N total | % | 0.13 ± 0.04 |
N-NO3− | mg kg−1 soil dry weight | 18.22 ± 0.34 |
N-NH4+ | mg kg−1 soil dry weight | 3.21 ± 0.78 |
P avail. | mg kg−1 soil dry weight | 142.49 ± 5.70 |
K | mg kg−1 soil dry weight | 285.08 ± 38.99 |
Fe | g kg−1 soil dry weight | 8.45 ± 0.32 |
Cu | mg kg−1 soil dry weight | 5.77 ± 0.11 |
Na | mg kg−1 soil dry weight | 103.11 ± 2.43 |
Mg | mg kg−1 soil dry weight | 540.33 ± 40.42 |
Ca | mg kg−1 soil dry weight | 1879.40 ± 67.31 |
Mo | mg kg−1 soil dry weight | 0.56 ± 0.04 |
Mn | mg kg−1 soil dry weight | 486.29 ± 21.11 |
Variant of Experiment | MF [%] | ||||
---|---|---|---|---|---|
N | P | K | Fe | Cu | |
Control | 33 | 54 | 30 | 27 | 25 |
10 ppm Fe2O3-NPs | 39 | 53 | 25 | 39 | 20 |
100 ppm Fe2O3-NPs | 42 | 41 | 26 | 42 | 17 |
300 ppm Fe2O3-NPs | 44 | 43 | 24 | 44 | 16 |
10 ppm CuO-NPs | 35 | 50 | 38 | 35 | 37 |
100 ppm CuO-NPs | 36 | 45 | 42 | 36 | 40 |
300 ppm CuO-NPs | 36 | 43 | 42 | 36 | 47 |
10 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 35 | 47 | 36 | 35 | 22 |
10 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 29 | 43 | 42 | 39 | 39 |
100 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 39 | 40 | 37 | 29 | 27 |
100 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 37 | 39 | 37 | 37 | 43 |
Variant of Experiment | DHA [µg TPF g−1 Soil DW h−1] | UA [µg NH4+-N g−1 Soil DW h−1] | ACP [µg pNP g−1 Soil DW h−1] |
---|---|---|---|
control | 6.74 ± 0.07 a | 12.67 ± 0.54 m | 31.55 ± 1.12 w |
10 ppm Fe2O3-NPs | 6.77 ± 0.12 a | 13.10 ± 0.60 m | 32.88 ± 0.26 w |
100 ppm Fe2O3-NPs | 7.12 ± 0.51 c | 12.55 ± 0.12 m | 30.42 ± 0.15 w |
300 ppm Fe2O3-NPs | 5.89 ± 0.22 b | 10.38 ± 0.41 n | 28.13 ± 0.08 z |
10 ppm CuO-NPs | 6.69 ± 0.16 a | 12.09 ± 0.49 m | 31.20 ± 0.70 w |
100 ppm CuO-NPs | 7.22 ± 0.22 c | 10.97 ± 0.63 n | 30.44 ± 0.24 w |
300 ppm CuO-NPs | 4.70 ± 0.24 d | 10.52 ± 0.17 n | 28.27 ± 0.59 z |
10 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 6.32 ± 0.12 b | 11.90 ± 0.81 m | 30.25 ± 1.20 w |
10 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 5.47 ± 0.41 b | 10.65 ± 0.40 n | 29.80 ± 0.84 z |
100 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 6.21 ± 0.40 b | 10.44 ± 0.47 n | 30.01 ± 1.19 w |
100 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 4.52 ± 0.06 d | 9.78 ± 0.09 p | 26.55 ± 0.40 x |
Variant of Experiment |
Fresh Biomass [g] |
N [%] |
P [mg 100 g−1 DW] |
K [mg 100 g−1 DW] |
Fe [mg 100 g−1 DW] |
Cu [mg 100 g−1 DW] |
---|---|---|---|---|---|---|
control | 18.72 ± 0.22 a | 2.45 ± 0.02 i | 0.27 ± 0.01 m | 1.60 ± 0.30 | 0.49 ± 0.02 w | 0.13 ± 0.01 r |
10 ppm Fe2O3-NPs | 19.52 ± 0.34 e | 3.23 ± 0.14 j | 0.28 ± 0.04 m | 1.58 ± 0.21 | 0.52 ± 0.03 w | 0.14 ± 0.03 r |
100 ppm Fe2O3-NPs | 19.61 ± 0.10 e | 3.32 ± 0.08 j | 0.31 ± 0.04 m | 1.68 ± 0.20 | 0.60 ± 0.01 z | 0.14 ± 0.04 r |
300 ppm Fe2O3-NPs | 18.79 ± 0.51 a | 3.27 ± 0.05 j | 0.34 ± 0.02 m | 1.70 ± 0.30 | 0.62 ± 0.01 z | 0.17 ± 0.05 r |
10 ppm CuO-NPs | 18.77 ± 0.05 a | 2.48 ± 0.10 i | 0.32 ± 0.06 m | 1.62 ± 0.05 | 0.49 ± 0.05 w | 0.20 ± 0.04 r |
100 ppm CuO-NPs | 17.74 ± 0.33 b | 2.53 ± 0.10 i | 0.31 ± 0.01 m | 1.74 ± 0.18 | 0.49 ± 0.02 x | 0.22 ± 0.01 s |
300 ppm CuO-NPs | 16.25 ± 0.57 c | 2.43 ± 0.07 i | 0.36 ± 0.02 n | 1.76 ± 0.16 | 0.50 ± 0.04 x | 0.39 ± 0.02 t |
10 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 18.69 ± 0.11 a | 2.45 ± 0.05 i | 0.30 ± 0.01 m | 1.58 ± 0.03 | 0.49 ± 0.03 wx | 0.17 ± 0.04 r |
10 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 18.24 ± 0.14 d | 2.51 ± 0.15 i | 0.34 ± 0.03 m | 1.62 ± 0.22 | 0.52 ± 0.03 x | 0.21 ± 0.02 r |
100 ppm Fe2O3-NPs + 10 ppm CuO-NPs | 19.11 ± 0.02 a | 2.89 ± 0.18 ij | 0.32 ± 0.04 mn | 1.63 ± 0.07 | 0.51 ± 0.02 w | 0.19 ± 0.01 r |
100 ppm Fe2O3-NPs + 100 ppm CuO-NPs | 18.40 ± 0.48 a | 2.83 ± 0.24 ij | 0.35 ± 0.03 mn | 1.59 ± 0.11 | 0.52 ± 0.05 x | 0.20 ± 0.02 r |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolińska, B. Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils. Agronomy 2025, 15, 1967. https://doi.org/10.3390/agronomy15081967
Smolińska B. Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils. Agronomy. 2025; 15(8):1967. https://doi.org/10.3390/agronomy15081967
Chicago/Turabian StyleSmolińska, Beata. 2025. "Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils" Agronomy 15, no. 8: 1967. https://doi.org/10.3390/agronomy15081967
APA StyleSmolińska, B. (2025). Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils. Agronomy, 15(8), 1967. https://doi.org/10.3390/agronomy15081967