Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review
Abstract
1. Introduction
2. Materials and Methods
3. Crop Rotation Strategies
3.1. Crop Rotation
3.2. Legume Integration
3.3. Cover Cropping
3.4. Incorporation of Livestock
3.5. Alternate Intercropping Systems
4. Advantages and Disadvantages of Crop Rotation
4.1. Soil Fertility
Aspect | Monocropping | Crop Rotation |
---|---|---|
Soil Health and Fertility | Lower soil health index [108,109]. | Improves soil health by 45%; adds organic matter [108,109]. |
Nutrient depletion reduced microbial diversity [102,110]. | Improves soil fertility, biodiversity [102,110]. | |
Degradation implied [111]. | Stabilises yield across climates [111]. | |
Microbial and Soil Biodiversity | Lower bacterial diversity [112,113]. | Higher diversity in rotations like maize–alfalfa [113]. |
Reduces biodiversity [108,110]. | Enhance biodiversity [108,110] | |
Soil Organic Carbon | Reduced soil organic carbon [109]. | Significantly increases SOC [109]. Increased SOC by 18% [114] |
Nutrient Management | Greater reliance on synthetic inputs; up to 120 kg N/ha in cereals [115]. | Reduces N input: oats = 82 vs. clover–oats = 42 kg N/ha [115]. |
Nitrogen limitation in corn-after-corn [111]. | Soybean N fixation boosts corn yield [111]. | |
−41 kg N, −6 kg P, −26 kg K ha−1 yr−1 lost; higher fertiliser use [87]. | Enhances nutrient cycling, esp. with legumes [87]. | |
Reduces N requirement [116]. | ||
GHG Emissions | Higher N2O emissions [109]. | Reduces N2O emissions in rotation systems; one study reported a 39% decrease [109]. |
Climate Resilience | More vulnerable to climate variability [117]. | Up to 1000 kg/ha more during heat/drought [117]. |
Improves resilience to biotic/abiotic stress [116]. | ||
Sustainability and Environment | Associated with land degradation [118]. | Promotes sustainable land use [118]. |
Environmental degradation and deforestation [108]. | Promotes sustainability and biodiversity [108]. | |
Pest and Disease Management | Increased pest/disease pressure [102,108]. | Reduces pest/disease pressure [102,116]. |
Higher pest pressure [111]. | Benefit increases under high pest pressure [111]. | |
Weed pressure may increase [26]. | Suppresses weeds with rye, radish [26]. | |
High dependency on synthetic inputs [108]. | Improves natural fertility, pest control [108]. | |
Management and Scalability | Simpler and widely adopted [87,102]. | Requires complex planning [87,102]. |
Treated as control [111]. | Treated as treatment [111]. | |
Traditional practice, being replaced [110]. | Core principle of CA, increasingly adopted [110]. | |
Dependent on synthetic inputs [26]. | Reduces input reliance; improves stability [26]. | |
Economic Performance | Lower gross margins [119]. | A 48% higher margin in faba bean–wheat rotation [119]. |
More profit fluctuations [115] | Stable profits under variable weather [115]. | |
Requires more external input [110]. | Decreases variability in returns [116]. | |
Reduces costs by 15–16% [110]. Economic outcomes may vary for small-scale farmers depending on local conditions and resource access. | ||
Agrobiodiversity | Enhances agroecosystem diversity [116]. | |
Food Safety | Higher risk of nitrate accumulation in edible crops because of excessive use of synthetic fertiliser and decrease nutrient efficiency in monocultures [108,120]. | Potential contamination risk when manure managed poorly but otherwise supports to lower nitrate accumulation because of enhancing nutrient cycling and organic management systems [108,121]. |
Mechanization and Machinery Cost | Mechanisation-friendly machinery. Costs USD 67,200 [100]. | Less compatible with single-crop machinery. Costs USD 115,000 [100]. |
Yield | Lower yields in cereals [117]. | Higher yields; 860 kg/ha (winter), 390 kg/ha [117]. |
Short-term yields maintained, long-term decline [87]. | Stabilises yield via fertility and pest control [87]. | |
Lower yields under monoculture [111]. | Corn +1.03 t/ha; Soy +0.21 t/ha higher under rotation vs. monoculture [111]. | |
Increased output in trials [26]. |
4.2. Nutrient Optimisation
4.3. Pest and Disease Control
4.4. Weed Control
Crop Rotation or Related Practices | Effect on Weed Management | Reference |
---|---|---|
Maize–soybean rotation | Weed seed density reduced by ~80% (450 seeds/m2) vs. monoculture (2250 seeds/m2). | [100] |
Wheat, maize, cereals with legumes and vegetables Monoculture vs. crop rotation and intercropping. | Reduced weed density in 75–78% of comparisons. | [171] |
Field pea–barley monoculture vs. intercropping | Suppressed 96% of broadleaf weeds. | [178] |
Multiple systems (rice–wheat, cotton–wheat, sorghum–wheat, mung bean–wheat, intensive and multiyear rotations) | Effective in reducing specific weeds; some pest challenges remain. Suppresses weeds but allows pest carryover. Reduces weed infestation effectively; suppression is attributed to allelopathy. Moderate weed control reduces herbicide reliance. Significant weed suppression: wheat (−51%), maize (−70%), cotton (−66%). Reduces weeds in cotton by 31–57% through extended cropping cycles. | [179] |
Rice–wheat with residue management (mulching/incorporation vs. no residue) | Weed biomass reduced by up to 31.3%. | [174] |
Rye, maize, soybean, cotton monoculture vs. cover-crop-based rotation | Reduced broadleaf weeds by 96% and grass weeds by 61%. | [51] |
4.5. Increased Crop Yields
5. Environmental Benefits
5.1. GHG Emissions
5.2. Carbon Dioxide Emissions
5.3. Methane Emissions
5.4. Nitrous Oxide Emissions
6. Conclusions
- Region-specific rotation schemes: Developing and testing rotations tailored to arid, tropical, and mountainous environments, where existing data are limited;
- Integration into precision agriculture technologies: Examining how remote sensing and machine learning can be used to optimise rotation schedules, nutrient management, and yield productivity;
- Long-term ecological impact quantification: Conducting multiyear experiments to assess biodiversity trends, carbon storage, and GHG fluxes under diverse rotation regimes;
- Economic and policy modelling: Evaluating the cost-effectiveness of rotation strategies under various policy settings (e.g., carbon pricing, subsides, conservation incentives);
- Integration of new crop species: Exploring the integration of non-conventional or climate-resilient crops (i.e., pigeon pea, quinoa, or native legumes) into rotation systems to enhance system diversity and ecological functionality;
- Farmer-led innovation and socio-cultural adaptation: Considering social acceptability, incorporation of indigenous knowledge, and participatory practices when developing crop rotation systems, especially among smallholder farmers and subsistence farmers.
7. Policy Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf (accessed on 7 October 2024).
- Bisht, I.S. Biodiversity conservation, sustainable agriculture and climate change: A complex interrelationship. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change; Sharma, V.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–142. [Google Scholar] [CrossRef]
- Robertson, G.P. A sustainable agriculture? Daedalus 2015, 144, 76–89. [Google Scholar] [CrossRef]
- Tsyhankova, T.; Yatsenko, O.; Zavadska, Y. Global Transformations of International Organic Agrofood Markets. Manag. Theory Stud. Rural. Bus. Infrastruct. Dev. 2014, 36, 425–434. [Google Scholar] [CrossRef]
- Espolov, T.; Espolov, A.; Satanbekov, N.; Tireuov, K.; Mukash, J.; Suleimenov, Z. Economic trend in developing sustainable agriculture and organic farming. Int. J. Sustain. Dev. Plan. 2023, 18, 1057–1062. [Google Scholar] [CrossRef]
- Wojciechowska-Solis, J.; Smoluk-Sikorska, J.; Śmiglak-Krajewska, M.; Malinowski, M.; Krnáčová, P.; Jarossová, M.; Györéné Kis, G.; Zámková, M.; Rojík, S. Consumer in the Organic Food Market: Example of the Visegrad Countries; CeDeWu: Warsaw, Poland, 2024; ISBN 978-83-8102-896-7. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point. 2023. Available online: https://www.fao.org/3/cc9005en/cc9005en.pdf (accessed on 28 July 2025).
- Cillis, D.; Maestrini, B.; Pezzuolo, A.; Marinello, F.; Sartori, L. Modelling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions. Soil Tillage Res. 2018, 183, 51. [Google Scholar] [CrossRef]
- Lika, E.; Sutherland, C.; Gleim, S.; Smyth, S.J. Analyzing shifts in fertilizer use with crop rotation practices in Saskatchewan across distinct periods from 1991–94 to 2016–19. Front. Sustain. Food Syst. 2024, 8, 1412443. [Google Scholar] [CrossRef]
- Ralls, K.M. Crop Rotations Have Been Around Since Roman Times; Oregon State University Agricultural Sciences: Corvallis, Oregon, 2013; Available online: https://agsci.oregonstate.edu/sites/agscid7/files/coarec/attachments/may_2013_article.pdf (accessed on 14 November 2024).
- Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Wu, L. Crop rotation modelling—A European model intercomparison. Eur. J. Agron. 2015, 70, 98–111. [Google Scholar] [CrossRef]
- Garland, G.; Edlinger, A.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Pescador, D.S.; van der Heijden, M.G.A. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2021, 2, 28–37. [Google Scholar] [CrossRef]
- Smith, M.E.; Vico, G.; Costa, A.; Bowles, T.; Gaudin, A.C.; Hallin, S.; Bommarco, R. Increasing crop rotational diversity can enhance cereal yields. Commun. Earth Environ. 2023, 4, 89. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Dangi, S. Soil carbon dioxide and methane emissions and carbon balance with crop rotation and nitrogen fertilization. Sci. Total Environ. 2021, 775, 145902. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Calonego, J.C.; Rosolem, C.A.; Scala, N.L. Cover crop rotations in no-till system: Shortterm CO2 emissions and soybean yield. Sci. Agric. 2018, 75, 18. [Google Scholar] [CrossRef]
- Maas, S.E.; Glenn, A.J.; Tenuta, M.; Amiro, B.D. Net CO2 and N2O exchange during perennial forage establishment in an annual crop rotation in the Red River Valley, Manitoba. Can. J. Soil Sci. 2013, 93, 639. [Google Scholar] [CrossRef]
- Abagandura, G.O.; Şentürklü, S.; Singh, N.; Kumar, S.; Landblom, D.G.; Ringwall, K. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes. PLoS ONE 2019, 14, e0217069. [Google Scholar] [CrossRef] [PubMed]
- Della Chiesa, T.; Northrup, D.; Miguez, F.E.; Archontoulis, S.V.; Baum, M.E.; Venterea, R.T.; Emmett, B.D.; Malone, R.W.; Iqbal, J.; Necpalova, M.; et al. Reducing greenhouse gas emissions from North American soybean production. Nat. Sustain. 2024, 7, 1608. [Google Scholar] [CrossRef]
- Chen, M.; Shen, Y.; Wang, H.; Cheng, X.; Luo, Y. Analysis of the rainfall pattern and rainfall utilization efficiency during the growth period of paddy rice. Agronomy 2024, 14, 1332. [Google Scholar] [CrossRef]
- Cherlinka, V. Crop Rotation: A Way to Boost Your Yields. EOS Data Analytics. 2024. Available online: https://eos.com/blog/crop-rotation/ (accessed on 8 March 2024).
- Jabeen, H. What Is Crop Rotation: Nurturing Agriculture Through Sustainable Practices. Times Agriculture. 2024. Available online: https://timesagriculture.com/what-is-crop-rotation-nurturing-agriculture-through-sustainable-practices (accessed on 7 October 2024).
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62. [Google Scholar] [CrossRef]
- Kurtz, L.T.; Boone, L.V.; Peck, T.R.; Hoeft, R.G. Crop rotations for efficient nitrogen use. In Nitrogen in Crop Production; Hauck, R.D., Ed.; ASA, CSSA, and SSSA: Madison, WI, USA, 1984; pp. 295–306. [Google Scholar] [CrossRef]
- Witt, C.; Cassman, K.G.; Olk, D.C.; Biker, U.; Liboon, S.P.; Samson, M.I.; Ottow, J.C.G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 2000, 225, 263–278. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Gaudin, A.C.; Janovicek, K.; Deen, B.; Hooker, D.C. Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems. Agric. Ecosyst. Environ. 2015, 210, 1–10. [Google Scholar] [CrossRef]
- Karlen, D.L.; Hurley, E.G.; Andrews, S.S.; Cambardella, C.A.; Meek, D.W.; Duffy, M.D.; Mallarino, A.P. Crop rotation effects on soil quality at three northern corn/soybean belt locations. Agron. J. 2006, 98, 484–495. [Google Scholar] [CrossRef]
- Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of crop rotation on spring wheat yield and pest occurrence in different tillage systems: A multi-year experiment in Finnish growing conditions. Front. Sustain. Food Syst. 2021, 5, 647335. [Google Scholar] [CrossRef]
- Pande, S.; Gowda, C.L.L. Role of legumes in poverty reduction in Asia: A synthesis. In Role of Legumes in Crop Diversification and Poverty Reduction in Asia; ICRISAT: Patancheru, Andhra Pradesh, India, 2004; pp. 204–219. [Google Scholar]
- Gou, X.; Reich, P.B.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Glob. Change Biol. 2023, 29, 4028. [Google Scholar] [CrossRef] [PubMed]
- Vance, C.P. Legume Symbiotic Nitrogen Fixation: Agronomic Aspects. In The Rhizobiaceae; Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J., Eds.; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Halbleib, C.M.; Ludden, P.W. Regulation of biological nitrogen fixation. J. Nutr. 2000, 130, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Stüeken, E.E.; Buick, R.; Guy, B.M.; Koehler, M.C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 2015, 520, 666–669. [Google Scholar] [CrossRef]
- Shanuj, V.C.; Thomas, S.; Chettri, R.; Pradhan, P. Proceedings of the Resilient Mountain Solutions Annual Partners’ Workshop, Kathmandu, Nepal, 28–31 January 2020; International Centre for Integrated Mountain Development (ICIMOD): Patan, Nepal, 2020. [Google Scholar]
- Pueppke, S.G. Nitrogen fixation by soybean in North America. In Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment; Nitrogen Fixation: Origins, Applications, and Research Progress; Werner, D., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 4, pp. 39–44. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Specht, J.E.; Cassman, K.G.; Walters, D.T.; Weiss, A.; Dobermann, A. Growth and nitrogen fixation in high-yielding soybean: Impact of nitrogen fertilization. Agron. J. 2009, 101, 958–970. [Google Scholar] [CrossRef]
- Heichel, G.H.; Barnes, D.K.; Vance, C.P. Nitrogen fixation of alfalfa in the seeding year. Crop Sci. 1981, 21, 330–335. [Google Scholar] [CrossRef]
- Kazula, M.J.; Lauer, J.G.; Arriaga, F.J. Crop rotation effect on selected physical and chemical properties of Wisconsin soils. J. Soil Water Conserv. 2017, 72, 553–563. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.; Noreldin, T. Crop Rotation Maintains Soil Sustainability. In Crop Rotation; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- USDA Sustainable Agriculture Research and Extension. Cover Crops for Sustainable Crop Rotations: SARE. 2024. Available online: https://www.sare.org/resources/cover-crops/ (accessed on 5 September 2024).
- Rodale Institute. Cover Crops. 2018. Available online: https://rodaleinstitute.org/why-organic/organic-farming-practices/cover-crops/ (accessed on 12 October 2018).
- Myers, R.; Watts, C. Progress and perspectives with cover crops: Interpreting three years of farmer surveys on cover crops. J. Soil Water Conserv. 2015, 70, 125A–129A. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosystems Geosci. Environ. 2020, 3, e20105. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Camargo Silva, G.; Bagavathiannan, M. Mechanisms of weed suppression by cereal rye cover crop: A review. Agron. J. 2023, 115, 1571–1585. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Gallandt, E.R. Brassica cover cropping for weed management: A review. Renew. Agric. Food Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Björkman, T.; Lowry, C.; Shail, J.W., Jr.; Brainard, D.C.; Anderson, D.S.; Masiunas, J.B. Mustard cover crops for biomass production and weed suppression in the Great Lakes region. Agron. J. 2015, 107, 1235–1249. [Google Scholar] [CrossRef]
- Fernando, M.; Shrestha, A. The potential of cover crops for weed management: A sole tool or component of an integrated weed management system? Plants 2023, 12, 752. [Google Scholar] [CrossRef]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brinton, C.; Crozier, C. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 2011, 103, 1578–1590. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Claassen, M.M.; Presley, D.R. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 2012, 104, 137–147. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Bressler, A.; Blesh, J. A grass–legume cover crop maintains nitrogen inputs and nitrous oxide fluxes from an organic agroecosystem. Ecosphere 2023, 14, e4428. [Google Scholar] [CrossRef]
- Basche, A.D.; Archontoulis, S.V.; Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Miguez, F.E. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agric. Ecosyst. Environ. 2016, 218, 95–106. [Google Scholar] [CrossRef]
- Malik, R.K.; Green, T.H.; Brown, G.F.; Mays, D. Use of cover crops in short rotation hardwood plantations to control erosion. Biomass Bioenergy 2000, 18, 479–487. [Google Scholar] [CrossRef]
- Langdale, G.W.; Blevins, R.L.; Karlen, D.L.; McCool, D.K.; Nearing, M.A.; Skidmore, E.L.; Williams, J.R. Cover crop effects on soil erosion by wind and water. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 15–22. Available online: https://www.researchgate.net/publication/238089979 (accessed on 2 August 2025).
- Olson, K.; Ebelhar, S.A.; Lang, J.M. Long-term effects of cover crops on crop yields, soil organic carbon stocks and sequestration. Open J. Soil Sci. 2014, 4, 284–292. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Singer, J.W. The use of cover crops to manage soil. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 321–337. [Google Scholar] [CrossRef]
- Smith, R.G.; Warren, N.D.; Cordeau, S. Are cover crop mixtures better at suppressing weeds than cover crop monocultures? Weed Sci. 2020, 68, 186–194. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Aglasan, S.; Rejesus, R.M.; Hagen, S.; Salas, W. Cover crops, crop insurance losses, and resilience to extreme weather events. Am. J. Agric. Econ. 2024, 106, 1410–1434. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Review of corn yield response under winter cover cropping systems using meta-analytic methods. Crop Sci. 2005, 45, 2318–2329. [Google Scholar] [CrossRef]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping system and rotational grazing effects on soil fertility and enzymatic activity in an integrated organic crop-livestock system. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Penn State Extension. Integrating Grazing into Cropping Systems: Grazing Cover Crops for Soil Health. 2022. Available online: https://extension.psu.edu/integrating-grazing-into-cropping-systems-grazing-cover-crops-for-soil-health (accessed on 3 January 2025).
- Xu, S.; Jagadamma, S.; Rowntree, J. Response of grazing land soil health to management strategies: A summary review. Sustainability 2018, 10, 4769. [Google Scholar] [CrossRef]
- de Otálora, X.D.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A global meta-analysis of grazing impacts on soil health indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Russell, J.R.; Bisinger, J.J. Forages and Pastures Symposium: Improving soil health and productivity on grasslands using managed grazing of livestock. J. Anim. Sci. 2015, 93, 2626–2640. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Crop Residues: Agriculture’s Largest Harvest: Crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 1999, 49, 299–308. [Google Scholar] [CrossRef]
- Dunn, M.W. Stocking System Effects on Cattle Performance, Forage, and Soil Properties of Cool-Season Pastures. Master’s Thesis, Iowa State University, Ames, IA, USA, 2013. [Google Scholar]
- Bisinger, J.J.; Russell, J.R.; Morrical, D.G.; Isenhart, T.M. Pasture size effects on the ability of off-stream water or restricted stream access to alter the spatial/temporal distribution of grazing beef cows. J. Anim. Sci. 2014, 92, 3650–3658. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric. Ecosyst. Environ. 2009, 129, 28–36. [Google Scholar] [CrossRef]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Hoorman, J.J. Using Cover Crops to Improve Soil and Water Quality. Ohioline—Ohio State University Extension, ANR-57. 15 May 2017. Available online: https://ohioline.osu.edu/factsheet/anr-57 (accessed on 27 July 2025).
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Vendramini, J.M.B.; Silveira, M.L.A.; Dubeux, J.C.B., Jr.; Sollenberger, L.E. Environmental impacts and nutrient recycling on pastures grazed by cattle. Rev. Bras. De Zootec. 2007, 36, 139–149. [Google Scholar] [CrossRef]
- van der Voort, M.; Van Meensel, J.; Lauwers, L.; de Haan, M.H.A.; Evers, A.G.; Van Huylenbroeck, G.; Charlier, J. Economic modelling of grazing management against gastrointestinal nematodes in dairy cattle. Vet. Parasitol. 2017, 236, 68–75. [Google Scholar] [CrossRef]
- Teague, W.R. Forages and pastures symposium: Cover crops in livestock production: Whole-system approach: Managing grazing to restore soil health and farm livelihoods. J. Anim. Sci. 2018, 96, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Uti, M.J.U. Soil health parameters in sustainable grazing systems. Int. J. Sustain. Livest. Pract. 2023, 1, 43–54. [Google Scholar]
- Lv, Q.; Chi, B.; He, N.; Zhang, D.; Dai, J.; Zhang, Y.; Dong, H. Cotton-based rotation, intercropping, and alternate intercropping increase yields by improving root–shoot relations. Agronomy 2023, 13, 413. [Google Scholar] [CrossRef]
- Chi, B.; Liu, J.; Dai, J.; Li, Z.; Zhang, D.; Xu, S.; Dong, H. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Res. 2023, 302, 109059. [Google Scholar] [CrossRef]
- Lv, Q.; Dai, J.; Ding, K.; He, N.; Li, Z.; Zhang, D.; Dong, H. Managing interspecific competition to enhance productivity through selection of soybean varieties and sowing dates in a cotton–soybean intercropping system. Field Crops Res. 2024, 316, 109513. [Google Scholar] [CrossRef]
- Belete, T.; Yadete, E. Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: A review. Plant Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Gaillard, V.; Chenu, C.; Recous, S.; Richard, G. Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil. Eur. J. Soil Sci. 1999, 50, 567–578. [Google Scholar] [CrossRef]
- Martens, D.A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef]
- Andreetta, A.; Macci, C.; Giansoldati, V.; Masciandaro, G.; Carnicelli, S. Microbial activity and organic matter composition in Mediterranean humus forms. Geoderma 2013, 209, 198–208. [Google Scholar] [CrossRef]
- Zhang, W.P.; Surigaoge, S.; Yang, H.; Li, X.; Xu, M.; Wang, X. Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant Soil 2024, 502, 7–30. [Google Scholar] [CrossRef]
- Shabala, S.; White, R.G.; Djordjevic, M.A.; Ruan, Y.L.; Mathesius, U. Root-to-shoot signalling: Integration of diverse molecules, pathways and functions. Funct. Plant Biol. 2015, 43, 87–104. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Dungait, J.A.J. Soil microbiology and nutrient cycling. In Soil Microbiology and Sustainable Crop Production; Dixon, G.R., Tilston, E.L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 59–80. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M.; Abdel-Azeem, A.M.; Ahluwalia, A.S.; Saxena, A.K. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Chiaramonte, J.B.; Mendes, L.W.; Mendes, R. Rhizosphere microbiome and soil-borne diseases. In Rhizosphere Biology: Interactions Between Microbes and Plants; Kumar, V., Prasad, R., Eds.; Springer: Singapore, 2021; pp. 155–168. [Google Scholar] [CrossRef]
- De Corato, U. Governance of soil amendment to enhance suppression to soil-borne plant pathogens from a long-term perspective. Appl. Soil Ecol. 2023, 182, 104721. [Google Scholar] [CrossRef]
- Shen, J.; Li, R.; Zhang, F.; Fan, J.; Tang, C.; Rengel, Z. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Res. 2004, 86, 225–238. [Google Scholar] [CrossRef]
- Dias, T.; Dukes, A.; Antunes, P.M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 2015, 95, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Man, M.; Wagner-Riddle, C.; Dunfield, K.E.; Deen, B.; Simpson, M.J. Crop rotational diversity alters the composition of stabilized soil organic matter compounds in soil physical fractions. Can. J. Soil Sci. 2022, 103, 213–233. [Google Scholar] [CrossRef]
- Bullock, D.G. Crop rotation. Crit. Rev. Plant Sci. 1992, 11, 309–326. [Google Scholar] [CrossRef]
- Brankatschk, G.; Finkbeiner, M. Modeling crop rotation in agricultural LCAs—Challenges and potential solutions. Agric. Syst. 2015, 138, 66–76. [Google Scholar] [CrossRef]
- Selim, M. A review of advantages, disadvantages and challenges of crop rotations. Egypt. J. Agron. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Keil, A.; D’souza, A.; McDonald, A. Zero-tillage as a pathway for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: Does it work in farmers’ fields? Food Secur. 2015, 7, 983–1001. [Google Scholar] [CrossRef]
- Huo, D.; Frey, T.; Lindsey, L.E.; Benitez, M.S. Yield and soil responses to adding wheat to a corn–soybean rotation. Crop Forage Turfgrass Manag. 2022, 8, e20143. [Google Scholar] [CrossRef]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.; Liu, W.; Liu, J. Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Prod. Sci. 2019, 22, 131–142. [Google Scholar] [CrossRef]
- Vidigal, P.; Romeiras, M.M.; Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Traore, A.; Falconnier, G.N.; Couedel, A.; Sultan, B.; Chimonyo, V.G.; Adam, M.; Affholder, F. Sustainable intensification of sorghum-based cropping systems in semi-arid sub-Saharan Africa: The role of improved varieties, mineral fertilizer, and legume integration. Field Crops Res. 2023, 304, 109180. [Google Scholar] [CrossRef]
- Salaheen, S.; Biswas, D. Organic farming practices: Integrated culture versus monoculture. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 23–32. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Pacenka, S.; Siddique, K.H.M.; Kang, S.; Xia, L.; Du, T.; Gan, Y.; Ju, X.; Butterbach-Bahl, K.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef]
- Adhikary, S.; Biswas, B.; Priya, A. Conservation agriculture: An efficient tool to overcome the drawbacks of conventional agricultural system towards sustainable crop production. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1333–1340. [Google Scholar] [CrossRef]
- Kluger, D.M.; Owen, A.B.; Lobell, D.B. Combining randomized field experiments with observational satellite data to assess the benefits of crop rotations on yields. Environ. Res. Lett. 2022, 17, 044066. [Google Scholar] [CrossRef]
- Zhao, C.; Fu, S.; Mathew, R.P.; Lawrence, K.S.; Feng, Y. Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment. J. Plant Ecol. 2015, 8, 623–632. [Google Scholar] [CrossRef]
- Mayer, Z.; Szentpéteri, V.; Posta, K.; Sasvári, Z.; Pethőné Rétháti, B.; Vajna, B. Effect of long-term cropping systems on the diversity of the soil bacterial communities. Agronomy 2019, 9, 878. [Google Scholar] [CrossRef]
- Francaviglia, R.; Álvaro-Fuentes, J.; Di Bene, C.; Gai, L.; Regina, K.; Turtola, E. Diversified arable cropping systems and management schemes in selected European regions have positive effects on soil organic carbon content. Agriculture 2019, 9, 261. [Google Scholar] [CrossRef]
- Lötjönen, S.; Ollikainen, M. Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions? Rev. Agric. Food Environ. Stud. 2017, 98, 283–312. [Google Scholar] [CrossRef]
- Simão, L.M.; Cruppe, G.; Michaud, J.P.; Schillinger, W.F.; Diaz, D.R.; Dille, A.J.; Rice, C.W.; Lollato, R.P. Beyond grain: Agronomic, ecological, and economic benefits of diversifying crop rotations with wheat. Adv. Agron. 2024, 186, 51–112. [Google Scholar] [CrossRef]
- Marini, L.; St-Martin, A.; Morari, F.; Blecharczyk, A.; Malecka-Jankowiak, I.; Vico, G.; Bommarco, R.; Sawinska, Z.; Baldoni, G.; Berti, A. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 2020, 15, 124011. [Google Scholar] [CrossRef]
- Kussul, N.; Nivievskyi, O.; Deininger, K.; Shumilo, L.; Lavreniuk, M.; Ali, D.A. Biophysical impact of sunflower crop rotation on agricultural fields. Sustainability 2022, 14, 3965. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; Boughlala, M.; Niane, A.A.; El-Shater, T.; Aw-Hassan, A.; Wery, J.; Maalouf, F.; Bishaw, Z.; Boutfiras, M.; Degu, W.T. Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agron. Sustain. Dev. 2019, 39, 60. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Akhtar, M.; Yaseen, M.; Khurshid, M.; Hussain, S. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ. Sci. Pollut. Res. 2020, 27, 17661–17670. [Google Scholar] [CrossRef]
- Breza, L.C.; Mooshammer, M.; Bowles, T.M.; Jin, V.L.; Schmer, M.R.; Thompson, B.; Grandy, A.S. Complex crop rotations improve organic nitrogen cycling. Soil Biol. Biochem. 2023, 177, 108911. [Google Scholar] [CrossRef]
- Msimbira, L.A.; Smith, D.L. The roles of plant growth-promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Bhat, R.A.; Hakeem, K.R. Role of soil biota and associated threats. In Bioremediation and Biotechnology, Volume 4; Bhat, R.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2020; pp. 129–150. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Warren, M.W.; Chen, J. Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. Eur. J. Soil Biol. 2012, 53, 23–31. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Guo, K.; Yang, J.; Yu, N.; Luo, L.; Wang, E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2023, 4, 100499. [Google Scholar] [CrossRef] [PubMed]
- Hagh-Doust, N.; Färkkilä, S.M.; Moghaddam, M.S.H.; Tedersoo, L. Symbiotic fungi as biotechnological tools: Methodological challenges and relative benefits in agriculture and forestry. Fungal Biol. Rev. 2022, 42, 34–55. [Google Scholar] [CrossRef]
- Feng, C.; Yi, Z.; Qian, W.; Liu, H.; Jiang, X. Rotations improve the diversity of rhizosphere soil bacterial communities, enzyme activities and tomato yield. PLoS ONE 2023, 18, e0270944. [Google Scholar] [CrossRef] [PubMed]
- Janovicek, K.; Hooker, D.; Weersink, A.; Vyn, R.; Deen, B. Corn and soybean yields and returns are greater in rotations with wheat. Agron. J. 2021, 113, 1691–1711. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar] [CrossRef]
- da Silva Dias, J.C. Nutritional and health benefits of carrots and their seed extracts. Food Nutr. Sci. 2014, 5, 2147. [Google Scholar] [CrossRef]
- Johansen, T.J.; Thomsen, M.G.; Løes, A.K.; Riley, H. Root development in potato and carrot crops–influences of soil compaction. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 182–192. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Batool, A.; Tariq, R.M.S.; Ghani, M.A.; Azam, M. Phytochemicals in Daucus carota and their importance in nutrition–Review article. PeerJ Prepr. 2017, 5, 424. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Singh, U.; Bohra, A.; Choudhary, K.K.; Kumar, S.; Meena, R.S.; Jat, M.L. Nitrogen and Legumes: A Meta-analysis. In Legumes for Soil Health and Sustainable Management; Meena, R., Das, A., Yadav, G., Lal, R., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Narsing Rao, M.P.N.; Shi, Y.; Lian, Z.H.; Jin, P.J.; Wang, W.; Li, Y.M.; Wang, K.K.; Banerjee, A.; et al. The shift of soil microbial community induced by cropping sequence affect soil properties and crop yield. Front. Microbiol. 2023, 14, 1095688. [Google Scholar] [CrossRef]
- Maharjan, B.; Das, S.; Acharya, B.S. Soil Health Gap: A concept to establish a benchmark for soil health management. Glob. Ecol. Conserv. 2020, 23, e01116. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Romig, D.E.; Garlynd, M.J.; Harris, R.F.; McSweeney, K. How farmers assess soil health and quality. J. Soil Water Conserv. 1995, 50, 229–236. [Google Scholar] [CrossRef]
- Fine, A.K.; Van Es, H.M.; Schindelbeck, R.R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Aggarwal, S.; Srinivas, R.; Puppala, H.; Magner, J. Integrated decision support for promoting crop rotation based sustainable agricultural management using geoinformatics and stochastic optimization. Comput. Electron. Agric. 2022, 200, 107213. [Google Scholar] [CrossRef]
- Omay, A.B.; Rice, C.W.; Maddux, L.D.; Gordon, W.B. Corn yield and nitrogen uptake in monoculture and in rotation with soybean. Soil Sci. Soc. Am. J. 1998, 62, 1596–1603. [Google Scholar] [CrossRef]
- Nevens, F.; Reheul, D. Crop rotation versus monoculture: Yield, N yield and ear fraction of silage maize at different levels of mineral N fertilization. NJAS Wagening. J. Life Sci. 2001, 49, 405–425. [Google Scholar] [CrossRef]
- Varvel, G.E.; Wilhelm, W.W. Soybean nitrogen contribution to corn and sorghum in western Corn Belt rotations. Agron. J. 2003, 95, 1220–1225. [Google Scholar] [CrossRef]
- Aziz, I.; Ashraf, M.; Mahmood, T.; Islam, K.R. Crop rotation impact on soil quality. Pak. J. Bot. 2011, 43, 949–960. [Google Scholar]
- Farmaha, B.S.; Yang, H.; Grassini, P.; Cassman, K.G.; Specht, J.E.; Eskridge, K.M. Rotation Impact on On-Farm Yield and Input-Use Efficiency in High-Yield Irrigated Maize–Soybean Systems. Agron. J. 2016, 108, 2313–2321. [Google Scholar] [CrossRef]
- Bot, A.; Benites, J. Chapter 7. The role of conservation agriculture in organic matter deposition and carbon sequestration. In The Importance of Soil Organic Matter. Key to Drought-Resistant Soil and Sustained Food Production; FAO: Rome, Italy, 2005; Available online: https://www.fao.org/4/a0100e/a0100e0a.htm (accessed on 5 March 2025).
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- Pierret, A.; Maeght, J.L.; Clément, C.; Montoroi, J.P.; Hartmann, C.; Gonkhamdee, S. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Ann. Bot. 2016, 118, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, Y.; Wang, W.; Chen, F. Long-term effects of crop rotation on soil fertility and nutrient cycling: Methodology and impact analysis. Geogr. Res. Bull. 2024, 3, 282–285. [Google Scholar] [CrossRef]
- Isaac, M.E.; Kimaro, A.A. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems. J. Environ. Qual. 2011, 40, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, Z.D.; Zhang, J.J.; Gao, Q.; Feng, G.Z.; Abelrahman, A.M.; Chen, Y. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China. Environ. Sci. Pollut. Res. 2016, 23, 4576–4584. [Google Scholar] [CrossRef] [PubMed]
- Prochnow, L.I. Optimizing nutrient use in low fertility soils of the tropics. Better Crops 2008, 92, 19–21. [Google Scholar]
- Johnson, F.E.; Roth, R.T.; Ruffatti, M.D.; Armstrong, S.D. Cover crop impacts on nitrogen losses and environmental damage cost. Agric. Ecosyst. Environ. 2024, 363, 108859. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, National Agricultural Statistics Service. Agricultural Statistics 2020; U.S. Government Printing Office: Washington, DC, USA, 2020. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/j3860694x/z890sn81j/cv43pq78m/Ag_Stats_2020_Complete_Publication.pdf (accessed on 11 June 2024).
- Singer, J.W.; Chase, C.A.; Karlen, D.L. Profitability of various corn, soybean, wheat, and alfalfa cropping systems. Crop Manag. 2003, 2, 1–10. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, H.; Hussain, N.; Nasim, W.; Mubeen, M.; Ahmad, S.; Hasanuzzaman, M. Fundamentals of Crop Rotation in Agronomic Management. In Agronomic Crops; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Reddy, P.P. Crop Rotation. In Agro-Ecological Approaches to Pest Management for Sustainable Agriculture; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Mailafiya, D.M. Agrobiodiversity for biological pest control in Sub-Saharan Africa. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2015; Volume 18, pp. 107–143. [Google Scholar] [CrossRef]
- Liu, J.L.; Ren, W.; Zhao, W.Z.; Li, F.R. Cropping systems alter the biodiversity of ground- and soil-dwelling herbivorous and predatory arthropods in a desert agroecosystem: Implications for pest biocontrol. Agric. Ecosyst. Environ. 2018, 266, 109–121. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Dinelli, G.; Negri, L. Towards an agroecological approach to crop health: Reducing pest incidence through synergies between plant diversity and soil microbial ecology. npj Sustain. Agric. 2024, 2, 6. [Google Scholar] [CrossRef]
- Carrière, Y.; Brown, Z.; Aglasan, S.; Dutilleul, P.; Carroll, M.; Head, G.; Tabashnik, B.E.; Jørgensen, P.S.; Carroll, S.P. Crop rotation mitigates impacts of corn rootworm resistance to transgenic Bt corn. Proc. Natl. Acad. Sci. USA 2020, 117, 18385–18392. [Google Scholar] [CrossRef]
- Peralta, A.L.; Sun, Y.; McDaniel, M.D.; Lennon, J.T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018, 9, e02235. [Google Scholar] [CrossRef]
- Kelley, K.W.; Long, J.H., Jr.; Todd, T.C. Long-term crop rotations affect soybean yield, seed weight, and soil chemical properties. Field Crops Res. 2003, 83, 41–50. [Google Scholar] [CrossRef]
- Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 2002, 81, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Kremsa, V.Š. Sustainable management of agricultural resources (agricultural crops and animals). In Sustainable Resource Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–145. [Google Scholar] [CrossRef]
- Guinet, M.; Adeux, G.; Cordeau, S.; Courson, E.; Nandillon, R.; Zhang, Y.; Munier-Jolain, N. Fostering temporal crop diversification to reduce pesticide use. Nat. Commun. 2023, 14, 7416. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on the environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- SDA Sustainable Agriculture Research and Extension. The Role of Crop Rotation in Weed Management—SARE. 2023. Available online: https://www.sare.org/publications/crop-rotation-on-organic-farms/physical-and-biological-processes-in-crop-production/the-role-of-crop-rotation-in-weed-management/ (accessed on 6 September 2023).
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E.; Cirilo, A.G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Butkevičienė, L.M.; Skinulienė, L.; Auželienė, I.; Bogužas, V.; Pupalienė, R.; Steponavičienė, V. The influence of long-term different crop rotations and monoculture on weed prevalence and weed seed content in the soil. Agronomy 2021, 11, 1367. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, S.; Deol, J.S.; Sharma, R.; Kaur, T.; Brar, A.S.; Choudhary, O.P. Soil properties and weed dynamics in wheat as affected by rice residue management in the rice–wheat cropping system in South Asia: A review. Plants 2021, 10, 953. [Google Scholar] [CrossRef]
- Jabran, K. Allelopathy: Introduction and Concepts. In Manipulation of Allelopathic Crops for Weed Control; SpringerBriefs in Plant Science; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Tibugari, H.; Chiduza, C. Sorghum allelopathy under field conditions may be caused by a combination of allelochemicals. Cogent Food Agric. 2024, 10, 2324528. [Google Scholar] [CrossRef]
- Gorooei, A.; Gaiser, T.; Aynehband, A.; Rahnama, A.; Kamali, B. The effect of farming management and crop rotation systems on chlorophyll content, dry matter translocation, and grain quantity and quality of wheat (Triticum aestivum L.) grown in a semi-arid region of Iran. Agronomy 2023, 13, 1007. [Google Scholar] [CrossRef]
- Poggio, S.L. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric. Ecosyst. Environ. 2005, 109, 48–58. [Google Scholar] [CrossRef]
- Zohry, A.; Ouda, S. Crop rotation defeats pests and weeds. In Crop Rotation: An Approach to Secure Future Food; Springer International Publishing: Cham, Switzerland, 2018; pp. 77–88. [Google Scholar] [CrossRef]
- NACL Industries Ltd. Crop Rotation Benefits for Optimum Crop Yield. 2024. Available online: https://naclind.com/the-benefits-of-crop-rotation-for-soil-health-and-crop-yield/ (accessed on 1 November 2024).
- Verdesian Life Sciences. Crop Rotation Benefits. 2024. Available online: https://vlsci.com/blog/crop-rotation-benefits/#:~:text=Crop%20rotation%20is%20useful%20to,spread%20of%20diseases%20and%20pests (accessed on 16 September 2024).
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- Peoples, M.B.; Baldock, J.A. Nitrogen dynamics of pastures: Nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Aust. J. Exp. Agric. 2001, 41, 327–346. [Google Scholar] [CrossRef]
- Hirzel, J.; Undurraga, P. Nutritional Management of Cereals Cropped under Irrigation Conditions. In Crop Production; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Porter, P.M.; Lauer, J.G.; Lueschen, W.E.; Ford, J.H.; Hoverstad, T.R.; Oplinger, E.S.; Crookston, R.K. Environment affects the corn and soybean rotation effect. Agron. J. 1997, 89, 442–448. [Google Scholar] [CrossRef]
- Geng, S.; Tan, J.; Li, L.; Miao, Y.; Wang, Y. Legumes can increase the yield of subsequent wheat with or without grain harvesting compared to Gramineae crops: A meta-analysis. Eur. J. Agron. 2023, 142, 126643. [Google Scholar] [CrossRef]
- Agomoh, I.V.; Drury, C.F.; Yang, X.; Phillips, L.A.; Reynolds, W.D. Crop rotation enhances soybean yields and soil health indicators. Soil Sci. Soc. Am. J. 2021, 85, 1185–1195. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Marburger, D.; Gaska, J.; Diallo, T.; Lauer, J.; Conley, S. Corn and soybean yield response to tillage, rotation, and nematicide seed treatment. Crop Sci. 2017, 57, 1704–1712. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Abaidoo, R.C.; Iwuafor, E.N.O.; Olufajo, O.O.; Sanginga, N. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric. Ecosyst. Environ. 2009, 129, 325–331. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.; Smith, P.; Zang, H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef]
- Meissle, M.; Mouron, P.; Musa, T.; Bigler, F.; Pons, X.; Vasileiadis, V.P.; Oldenburg, E. Pests, pesticide use and alternative options in European maize production: Current status and future prospects. J. Appl. Entomol. 2010, 134, 357–375. [Google Scholar] [CrossRef]
- Peterson, T.A.; Varvel, G.E. Crop yield as affected by rotation and nitrogen rate. III. Corn. Agron. J. 1989, 81, 735–738. [Google Scholar] [CrossRef]
- Crookston, R.K.; Kurle, J.E.; Copeland, P.J.; Ford, J.H.; Lueschen, W.E. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 1991, 83, 108–113. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Santos, H.P.D.; Fontaneli, R.S.; Pires, J.; Lampert, E.A.; Vargas, A.M.; Verdi, A.C. Grain yield and agronomic traits in soybean according to crop rotation systems. Bragantia 2014, 73, 263–273. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J.; Staniak, M. Comparison of maize yield and soil chemical properties under maize (Zea mays L.) grown in monoculture and crop rotation. J. Elementol. 2018, 23, 531–543. [Google Scholar] [CrossRef]
- Badagliacca, G.; Ruisi, P.; Rees, R.M.; Amato, G.; Giambalvo, D. An assessment of factors controlling N2O and CO2 emissions from crop residues using different measurement approaches. Biol. Fertil. Soils 2017, 53, 547–561. [Google Scholar] [CrossRef]
- Kong, D.; Liu, N.; Ren, C.; Li, H.; Wang, W.; Li, N.; Yang, G. Effect of nitrogen fertilizer on soil CO2 emission depends on crop rotation strategy. Sustainability 2020, 12, 5271. [Google Scholar] [CrossRef]
- Cha-un, N.; Chidthaisong, A.; Yagi, K.; Sudo, S.; Towprayoon, S. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric. Ecosyst. Environ. 2017, 237, 109–120. [Google Scholar] [CrossRef]
- Li, Y.L.; Yi, F.J.; Yuan, C.J. Influences of large-scale farming on carbon emissions from cropping: Evidence from China. J. Integr. Agric. 2023, 22, 3209–3219. [Google Scholar] [CrossRef]
- Ma, B.; Karimi, M.S.; Mohammed, K.S.; Shahzadi, I.; Dai, J. Nexus between climate change, agricultural output, fertilizer use, agriculture soil emissions: Novel implications in the context of environmental management. J. Clean. Prod. 2024, 450, 141801. [Google Scholar] [CrossRef]
- Hashim, Z.K.; De Silva, A.G.; Hassouni, A.A.; Vona, V.M.; Bede, L.; Stencinger, D.; Horváth, B.; Zsebő, S.; Kulmány, I.M. Effects of Various Herbicide Types and Doses, Tillage Systems, and Nitrogen Rates on CO2 Emissions from Agricultural Land: A Literature Review. Agriculture 2024, 14, 1800. [Google Scholar] [CrossRef]
- Kamyab, H.; SaberiKamarposhti, M.; Hashim, H.; Yusuf, M. Carbon dynamics in agricultural greenhouse gas emissions and removals: A comprehensive review. Carbon Lett. 2024, 34, 265–289. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Zhang, Y.; Wang, R.; Zhang, Y.; Xu, Z.; Li, J. The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions. Agric. Water Manag. 2018, 203, 376–384. [Google Scholar] [CrossRef]
- Pravia, M.V.; Kemanian, A.R.; Terra, J.A.; Shi, Y.; Macedo, I.; Goslee, S. Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop–pasture rotations. Agric. Syst. 2019, 171, 13–22. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Kadziene, G.; Vaideliene, A.; Povilaitis, V.; Deveikyte, I. CO2 fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2012, 62, 311–328. [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Otto, R.; Pereira, G.L.; Tenelli, S.; Carvalho, J.L.; Lavres, J.; de Castro, S.A.; Lisboa, I.P.; Sermarini, R.A. Planting legume cover crop as a strategy to replace synthetic N fertilizer applied for sugarcane production. Ind. Crops Prod. 2020, 156, 112853. [Google Scholar] [CrossRef]
- Sainju, U.M.; Allen, B.L. Carbon footprint of perennial bioenergy crop production receiving various nitrogen fertilization rates. Sci. Total Environ. 2023, 861, 160663. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131. [Google Scholar] [CrossRef]
- Wegner, B.R.; Chalise, K.S.; Singh, S.; Lai, L.; Abagandura, G.O.; Kumar, S.; Osborne, S.L.; Lehman, R.M.; Jagadamma, S. Response of soil surface GHG fluxes to crop residue removal and cover crops under a corn–soybean rotation. J. Environ. Qual. 2018, 47, 1146. [Google Scholar] [CrossRef]
- Behnke, G.D.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Exploring the relationships between greenhouse gas emissions, yields, and soil properties in cropping systems. Agriculture 2018, 8, 62. [Google Scholar] [CrossRef]
- Alluvione, F.; Halvorson, A.D.; Del Grosso, S.J. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J. Environ. Qual. 2009, 38, 2023. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J. Environ. Manag. 2020, 261, 110261. [Google Scholar] [CrossRef]
- Nyambo, P.; Cornelius, C.; Araya, T. Carbon dioxide fluxes and carbon stocks under conservation agricultural practices in South Africa. Agriculture 2020, 10, 374. [Google Scholar] [CrossRef]
- Buivydienė, A.; Deveikytė, I.; Veršulienė, A.; Feiza, V. The Influence of Cropping Systems and Tillage Intensity on Soil CO2 Exchange Rate. Sustainability 2024, 16, 3591. [Google Scholar] [CrossRef]
- Lusizi, Z.; Motsi, H.; Nyambo, P.; Elephant, D.E. Black (Acacia mearnsii) and silver wattle (Acacia dealbata) invasive tree species impact on soil physicochemical properties in South Africa: A systematic literature review. Heliyon 2024, 10, e24102. [Google Scholar] [CrossRef]
- Šarauskis, E.; Vaitauskienė, K.; Romaneckas, K.; Jasinskas, A.; Butkus, V.; Kriaučiūnienė, Z. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 2017, 118, 957–968. [Google Scholar] [CrossRef]
- Kongchum, M.; Harrell, D.L.; Barron, M.A.; Adotey, N.; Li, F.J. Methane and nitrous oxide emission from Louisiana rice fields under three water management practices. J. Rice Res. Dev. 2020, 3, 74–81. [Google Scholar] [CrossRef]
- Kongchum, M.; Bollich, P.K.; Hudnall, W.H.; DeLaune, R.D.; Lindau, C.W. Decreasing methane emission of rice by better crop management. Agron. Sustain. Dev. 2006, 26, 45–54. [Google Scholar] [CrossRef]
- Wu, X.; Wang, W.; Xie, K.; Yin, C.; Hou, H.; Xie, X. Combined effects of straw and water management on CH4 emissions from rice fields. J. Environ. Manag. 2019, 231, 1257–1262. [Google Scholar] [CrossRef]
- Saeed, Q.; Zhang, A.; Mustafa, A.; Sun, B.; Zhang, S.; Yang, X. Effect of long-term fertilization on greenhouse gas emissions and carbon footprints in northwest China: A field scale investigation using wheat-maize-fallow rotation cycles. J. Clean. Prod. 2022, 332, 130075. [Google Scholar] [CrossRef]
- Velthof, G.L.; Rietra, R. Nitrous Oxide Emission from Agricultural Soils (Report 2921); Wageningen Environmental Research: Wageningen, The Netherlands, 2018; Available online: https://scispace.com/pdf/nitrous-oxide-emission-from-agricultural-soils-c81a6ephu2.pdf (accessed on 14 March 2024).
Rotation Strategy | Main Advantages | Quantitative Representative Outcomes |
---|---|---|
3.1 General Crop Rotation | Disrupts pest/disease cycles; improves soil health and yield; enhances nitrogen cycling; improves soil organic carbon (SOC) and pH balance. | Up to 18% increase in SOC; yield increase of 13–44% in cereal–legume sequences; 39% reduction in N2O emissions. |
3.2 Legume Integration | Fixes atmospheric nitrogen (e.g., soybean ~75 kg N/ha, alfalfa ~148 kg N/ha); enhances P availability; boosts soil biodiversity and fertility. | Soybean biological nitrogen fixation (BNF) ~75 kg N/ha; alfalfa ~148 kg N/ha; improved nutrient cycling and organic matter; enhances microbial activity. |
3.3 Cover Cropping | Reduces erosion by 11–29%; increases soil organic matter (SOM); fixes up to 217 kg N/ha (e.g., hairy vetch); suppresses weeds via competition and allelopathy. | Hairy vetch fixed 217 kg N/ha; erosion reduced by 11–29%; crop yields increased up to 24% (corn); reduced pesticide runoff by >50%. |
3.4 Rotational Grazing | Increases SOC by 0.3–1.6 Mg C/ha/year; improves enzymatic activity; enhances water retention and microbial biomass; reduces input needs. | SOC gains 0.3–1.6 Mg C/ha/year; enzymatic activity (β-glucosidase, phosphatase) increased; 22–32% SOM rise in long-term trials. |
3.5 Alternate Intercropping | Increases land equivalent ratios (LERs (20–30%)); improves root–shoot interactions; enhances canopy photosynthesis and yield stability. | Yield increase: cotton-peanut 17–21%; LER improvement up to 30%; increased economic return by 10–23%; improved stress resilience. |
Crop Type | Treatment (Continuous/Monoculture) | Yield (kg/ha, Monoculture) | Treatment (Rotated) | Yield (kg/ha, Rotated) | % Difference |
---|---|---|---|---|---|
Soybeans (2001) | No-till treatment (continuous) | 3701 | W/S-C-S rotation | 3564 | −3.6% |
Soybeans (2001) | Chisel treatment (continuous) | 2960 | W/S-C-S rotation | 3228 | 9.10% |
Wheat (2001) | Mouldboard plough | Higher by 8% | Chisel/ridge tillage | −8% | - |
Alfalfa (2000/2001) | Mouldboard plough | No significant difference | No-till | 0% | - |
Wheat straw (2000/2001) | Chisel tillage | ~1000 kg/ha | No-till | ~1000 kg/ha | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Musawi, Z.K.; Vona, V.; Kulmány, I.M. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy 2025, 15, 1966. https://doi.org/10.3390/agronomy15081966
Al-Musawi ZK, Vona V, Kulmány IM. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy. 2025; 15(8):1966. https://doi.org/10.3390/agronomy15081966
Chicago/Turabian StyleAl-Musawi, Zainulabdeen Kh., Viktória Vona, and István Mihály Kulmány. 2025. "Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review" Agronomy 15, no. 8: 1966. https://doi.org/10.3390/agronomy15081966
APA StyleAl-Musawi, Z. K., Vona, V., & Kulmány, I. M. (2025). Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy, 15(8), 1966. https://doi.org/10.3390/agronomy15081966