Plant Long Non-Coding RNAs: Multilevel Regulators of Development, Stress Adaptation, and Crop Improvement
Abstract
1. Introduction
2. Multilevel Regulatory Rules of LncRNAs in Plant Growth and Stress Response
2.1. Growth and Development Regulation
2.2. Abiotic Stress Adaptation
2.3. Biotic Stress Defense
2.4. Functional Module Network: Bridging Stress and Development
3. Functional Mechanism of Plant lncRNAs in Regulating Gene Expression Involved in Growth and Stress Response
3.1. Act in Cis on Target Genes
3.2. Act in Trans on Target Genes
3.3. Act as Endogenous Target Mimics (eTMs)
4. Applications and Future Directions
4.1. Bioinformatics Database of Plant-Specific lncRNA for Function Investigation
4.2. Application Values in Agricultural Production
4.3. Limitations and Perspectives of Plant lncRNA Exploration
4.4. Conclusions
Author Contributions
Funding
Data Availability Statements
Acknowledgments
Conflicts of Interest
References
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef]
- International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Kim, V.N. Small and long non-coding RNAs: Past, present, and future. Cell 2024, 187, 6451–6485. [Google Scholar] [CrossRef] [PubMed]
- Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef]
- Chekanova, J.A. Long non-coding RNAs and their functions in plants. Curr. Opin. Plant Biol. 2015, 27, 207–216. [Google Scholar] [CrossRef]
- Kapusta, A.; Feschotte, C. Volatile evolution of long noncoding RNA repertoires: Mechanisms and biological implications. Trends Genet. 2014, 30, 439–452. [Google Scholar] [CrossRef]
- Chen, J.; Wu, K. New Plant Protection: New challenge and new opportunity for plant protection. New Plant Prot. 2024, 1, e9. [Google Scholar] [CrossRef]
- Henriques, R.; Wang, H.; Liu, J.; Boix, M.; Huang, L.F.; Chua, N.H. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 2017, 216, 854–867. [Google Scholar] [CrossRef]
- Severing, E.; Faino, L.; Jamge, S.; Busscher, M.; Kuijer-Zhang, Y.; Bellinazzo, F.; Busscher-Lange, J.; Fernández, V.; Angenent, G.C.; Immink, R.G.; et al. Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biol. 2018, 18, 145. [Google Scholar] [CrossRef]
- Jin, Y.; Ivanov, M.; Dittrich, A.; Nelson, A.; Marquardt, S. A trans-acting long non-coding RNA represses flowering in Arabidopsis. bioRxiv 2021, 11, 1–45. [Google Scholar]
- Yu, J.; Maxim, I.; Anna, D.; Andrew, D.N.; Sebastian, M. LncRNA FLAIL affects alternative splicing and represses flowering in Arabidopsis. EMBO J. 2023, 42, e110921. [Google Scholar] [CrossRef] [PubMed]
- Csorba, T.; Questa, J.I.; Sun, Q.W.; Dean, C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl. Acad. Sci. USA 2014, 111, 16160–16165. [Google Scholar] [CrossRef]
- He, G.M.; Luo, X.J.; Tian, F.; Li, K.G.; Zhu, Z.; Su, W.; Qian, X.Y.; Fu, Y.C.; Wang, X.K.; Sun, C.Q.; et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res. 2006, 16, 618–626. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.J.; Sun, F.; Hu, J.H.; Zha, X.J.; Su, W. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat. Commun. 2018, 9, 3516. [Google Scholar] [CrossRef]
- Kajiwara, T.; Miyazaki, M.; Yamaoka, S.; Yoshitake, Y.; Yasui, Y.; Nishihama, R.; Kohchi, T. Transcription of the antisense long non-coding RNA, SUPPRESSOR OF FEMINIZATION, represses expression of the female-promoting gene FEMALE GAMETOPHYTE MYB in the liverwort Marchantia polymorpha. Plant Cell Physiol. 2024, 65, 338–349. [Google Scholar] [CrossRef]
- Zhu, B.Z.; Yang, Y.F.; Li, R.; Fu, D.Q.; Wen, L.W.; Luo, Y.B.; Zhu, H.L. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J. Exp. Bot. 2015, 66, 4483–4495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Chen, D.G.; Zhang, T.; Duan, A.G.; Zhang, J.G.; He, C.Y. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res. 2018, 25, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.Q.; Zhang, Y.H.; Duan, M.S.; Huang, L.L.; Wang, W.; Xu, Q.S.; Yang, Y.J.; Yu, Y.B. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNAs reveals the regulatory role of lncRNAs associated with salt resistance in Camellia sinensis. Front. Plant Sci. 2020, 11, 218. [Google Scholar] [CrossRef]
- Ye, X.; Wang, S.; Zhao, X.; Gao, N.; Wang, Y.; Yang, Y.; Wu, E.; Jiang, C.; Cheng, Y.; Wu, W.; et al. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. Plant J. 2022, 110, 978–993. [Google Scholar] [CrossRef]
- Qin, T.; Zhao, H.Y.; Cui, P.; Albesher, N.; Xiong, L.M. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol. 2017, 175, 1321–1336. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Li, J.R.; Lian, B.; Gu, H.Q.; Li, Y.; Qi, Y.J. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun. 2018, 9, 5056. [Google Scholar] [CrossRef]
- Rigo, R.; Bazin, J.; Romero-Barrios, N.; Moison, M.; Lucero, L.; Christ, A.; Benhamed, M.; Blein, T.; Huguet, S.; Charon, C.; et al. The Arabidopsis lncRNA ASCO modulates the transcriptome through interaction with splicing factors. EMBO Rep. 2020, 21, e48977. [Google Scholar] [CrossRef]
- Kong, X.Y.; Wang, H.C.; Zhang, M.T.; Chen, X.Y.; Fang, R.X.; Yan, Y.S. A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. Plant Sci. 2022, 316, 111178. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.F.; Feng, Y.Z.; He, H.; Lian, J.P.; Yang, Y.W.; Lei, M.Q.; Zhang, Y.C.; Chen, Y.Q. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance. Plant Biotechnol. J. 2020, 18, 679–690. [Google Scholar] [CrossRef]
- Gai, Y.P.; Yuan, S.S.; Zhao, Y.N.; Zhao, H.N.; Zhang, H.L.; Ji, X.L. A novel lncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis). Front. Plant Sci. 2018, 9, 669. [Google Scholar] [CrossRef]
- Joshi, R.K.; Megha, S.; Basu, U.; Rahman, M.H.; Kav, N.N.V. Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus. PLoS ONE 2016, 11, e0158784. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.N.; Wang, X.; Zhang, Y.; Yang, J.; Li, Z.K.; Wu, L.Z.; Wu, J.H.; Wu, N.; Liu, L.X.; Liu, Z.W.; et al. Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC Plant Biol. 2021, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.L.; Cheng, J.R.; Sun, Q.; Zhang, Y.; Liu, J.G.; Li, H.M.; Zhang, Z.; Wang, P.; Cai, C.W.; et al. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. Plant Physiol. 2022, 189, 264–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Yang, Y.W.; Jin, L.M.; Ling, X.T.; Liu, T.L.; Chen, T.Z.; Ji, Y.H.; Yu, W.G.; Zhang, B.L. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol. 2018, 18, 104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Liu, T.L.; Shen, D.Y.; Wang, J.Y.; Ling, X.T.; Hu, Z.Z.; Chen, T.Z.; Hu, J.L.; Huang, J.Y.; Yu, W.G.; et al. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog. 2019, 15, e1007534. [Google Scholar] [CrossRef]
- Seo, J.S.; Diloknawarit, P.; Park, B.S.; Chua, N.H. ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression. New Phytol. 2019, 221, 2067–2079. [Google Scholar] [CrossRef]
- Seo, J.S.; Sun, H.X.; Park, B.S.; Huang, C.H.; Yeh, S.D.; Jung, C.; Chua, N.H. ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell 2017, 29, 1024–1038. [Google Scholar] [CrossRef]
- Ding, J.H.; Lu, Q.; Ouyang, Y.D.; Mao, H.L.; Zhang, P.B.; Yao, J.L.; Xu, C.G.; Li, X.H.; Xiao, J.H.; Zhang, Q.F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA 2012, 109, 2654–2659. [Google Scholar] [CrossRef]
- Cui, J.; Luan, Y.S.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J. 2017, 89, 577–589. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, J.; Wang, Q.; Li, G.B.; Tang, X.; Liu, T.H.; Feng, X.J.; Wu, F.K.; Li, M.L.; Xie, W.B.; et al. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J. Exp. Bot. 2021, 72, 2790–2806. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.F.; Zhang, F.R.; Wang, Z.Y.; Mysore, K.S.; Wen, J.Q.; Zhou, C.N. The long noncoding RNA LAL contributes to salinity tolerance by modulating LHCB1s’ expression in Medicago truncatula. Commun. Biol. 2024, 7, 289. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.C.; Zou, C.Y.; Yang, C.; Pan, G.T.; Ma, L.L.; Shen, Y. Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress. BMC Genom. 2022, 23, 50. [Google Scholar] [CrossRef]
- Guo, A.H.; Nie, H.S.; Li, H.J.; Li, B.; Cheng, C.; Jiang, K.Y.; Zhu, S.W.; Zhao, N.; Hua, J.P. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. J. Integr. Plant Biol. 2025, 67, 169–190. [Google Scholar] [CrossRef]
- Zhang, X.P.; Shen, J.; Xu, Q.J.; Dong, J.; Song, L.R.; Wang, W.; Shen, F.F. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. Plant Cell Environ. 2021, 44, 3302–3321. [Google Scholar] [CrossRef]
- Lu, Q.W.; Guo, F.Y.; Xu, Q.H.; Cang, J. LncRNA improves cold resistance of winter wheat by interacting with miR398. Funct. Plant Biol. 2020, 47, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.X.; Cui, J.; Liu, W.W.; Jiang, N.; Zhou, X.X.; Qi, H.Y.; Meng, J.; Luan, Y.S. LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR gene expression. Phytopathology 2020, 110, 873–880. [Google Scholar] [CrossRef]
- Jiang, N.; Cui, J.; Shi, Y.S.; Yang, G.L.; Zhou, X.; Hou, X.X.; Meng, J.; Luan, Y.S. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 2019, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Cui, J.; Hou, X.X.; Yang, G.L.; Xiao, Y.; Han, L.; Meng, J.; Luan, Y.S. Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. Plant J. 2020, 103, 1561–1574. [Google Scholar] [CrossRef]
- Liu, W.W.; Cui, J.; Luan, Y.S. Overexpression of lncRNA08489 enhances tomato immunity against Phytophthora infestans by decoying miR482e-3p. Biochem. Biophys. Res. Commun. 2022, 587, 36–41. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wei, H.B.; Hong, Y.H.; Yang, R.R.; Meng, J.; Luan, Y.S. The lncRNA20718-miR6022-RLPs module regulates tomato resistance to Phytophthora infestans. Plant Cell Rep. 2024, 43, 57. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.J.; Li, N.N.; Wang, H.L.; Qiu, P.; Pei, L.L.; Xu, Z.; Wang, T.Y.; Gao, E.L.; Liu, J.X.; et al. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. Plant Biotechnol. J. 2018, 16, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J. 2018, 94, 513–524. [Google Scholar] [CrossRef]
- Zhu, G.; Li, R.; Zhang, L.; Ma, L.; Li, J.; Chen, J.; Deng, Z.; Yan, S.; Li, T.; Ren, H.; et al. RNA-protein interactions reveals the pivotal role of lncRNA1840 in tomato fruit maturation. Plant J. 2024, 120, 526–539. [Google Scholar] [CrossRef]
- Yu, T.; Tzeng, D.T.W.; Li, R.; Chen, J.; Zhong, S.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Ann. Bot. 2019, 123, 469–482. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Liao, J.Y.; Li, Z.Y.; Yu, Y.; Zhang, J.P.; Li, Q.F.; Qu, L.H.; Shu, W.S.; Chen, Y.Q. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 2014, 15, 512. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Shang, X.H.; Cao, S.; Xie, X.Y.; Zeng, W.D.; Lu, L.Y.; Chen, S.B.; Yan, H.B. Comparative physiology and transcriptome analysis allows for identification of lncRNAs imparting tolerance to drought stress in autotetraploid cassava. BMC Genom. 2019, 20, 514. [Google Scholar] [CrossRef]
- Kindgren, P.; Ard, R.; Ivanov, M.; Marquardt, S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat. Commun. 2018, 9, 4561. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, H.X.; Li, J.L.; Liu, L.N.; Zhang, X.S.; Sui, N. Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Front. Bioeng. Biotechnol. 2020, 8, 331. [Google Scholar] [CrossRef]
- Zhang, X.P.; Dong, J.; Deng, F.N.; Wang, W.; Cheng, Y.Y.; Song, L.R.; Hu, M.J.; Shen, J.; Xu, Q.J.; Shen, F.F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol. 2019, 19, 459. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.J.; Jiang, Q.Y.; Sun, X.J.; Hu, Z.; Wang, L.X.; Zhang, H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct. Plant Biol. 2021, 48, 1139–1147. [Google Scholar] [CrossRef]
- Hung, F.Y.; Shih, Y.H.; Lin, P.Y.; Feng, Y.R.; Li, C.L.; Wu, K.Q. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering. Plant Physiol. 2022, 190, 532–547. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jiang, N.; Meng, J.; Yang, G.L.; Liu, W.W.; Zhou, X.X.; Ma, N.; Hou, X.X.; Luan, Y.S. LncRNA33732-RESPIRATORY BURST OXIDASE module associated with WRKY1 in tomato- Phytophthora infestans interactions. Plant J. 2019, 97, 933–946. [Google Scholar] [CrossRef]
- Kaashyap, M.; Kaur, S.; Ford, R.; Edwards, D.; Siddique, K.H.M.; Varshney, R.K.; Mantri, N. Comprehensive transcriptomic analysis of two RIL parents with contrasting salt responsiveness identifies polyadenylated and non-polyadenylated flower lncRNAs in chickpea. Plant Biotechnol. J. 2022, 20, 1402–1416. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, S.R.; Zhang, X.Y.; Ma, Y.J.; Hu, C.G.; Zhang, J.Z. Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Sci. Rep. 2017, 7, 43226. [Google Scholar] [CrossRef]
- Xu, W.Y.; Bao, W.Q.; Liu, H.M.; Chen, C.; Bai, H.K.; Huang, M.Z.; Zhu, G.P.; Zhao, H.; Guo, N.N.; Chen, Y.X.; et al. Insights into the molecular mechanisms of late flowering in Prunus sibirica by whole-genome and transcriptome analyses. Front. Plant Sci. 2021, 12, 802827. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.K.; Zhou, H.Y.; Chen, J.W.; Huang, L. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Sci. 2023, 337, 111889. [Google Scholar] [CrossRef]
- Shin, W.J.; Nam, A.H.; Kim, J.Y.; Kwak, J.S.; Song, J.T.; Seo, H.S. Intronic long noncoding RNA, RICE FLOWERING ASSOCIATED (RIFLA), regulates OsMADS56-mediated flowering in rice. Plant Sci. 2022, 320, 111278. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Lu, J.; Wang, W.N.; Fan, C.G.; Yuan, G.Z.; Sun, J.J.; Liu, J.Y.; Wang, C.Q. Rose long noncoding RNA lncWD83 promotes flowering by modulating ubiquitination of the floral repressor RcMYC2L. Plant Physiol. 2023, 193, 2573–2591. [Google Scholar]
- Bai, J.; Wang, Y.; Liu, Z.; Guo, H.; Zhang, F.; Guo, L.; Yuan, S.; Duan, W.; Li, Y.; Tan, Z.; et al. Global survey of alternative splicing and gene modules associated with fertility regulation in a thermosensitive genic male sterile wheat. J. Exp. Bot. 2022, 73, 2157–2174. [Google Scholar] [CrossRef]
- Zhang, W.R.; Wang, D.; Yin, Z.H.; Tang, L.; Pan, X.Y.; Guo, C.H. RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat. Plant J. 2024, 120, 1826–1841. [Google Scholar] [CrossRef]
- Hamid, R.; Jacob, F.; Marashi, H.; Rathod, V.; Tomar, R.S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 2020, 112, 3354–3364. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Ali, M.; Li, X.; Fu, X.; Zhang, X. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. Hortic. Res. 2024, 11, uhae046. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, H. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genom. 2015, 16, 948. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.H.; Zhao, W.H.; Gao, L.; Zhao, L.X. Genome-wide profiling of long non-coding RNAs from tomato and a comparison with mRNAs associated with the regulation of fruit ripening. BMC Plant Biol. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Liu, C.; Xu, R.Z.; Fan, Y.P.; Wang, J.Y.; Li, H.; Zhang, J.; Zhang, H.J.; Wang, J.J.; Li, D.K. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. Physiol. Mol. Biol. Plants. 2024, 30, 1475–1491. [Google Scholar] [CrossRef]
- Liu, G.S.; Fu, D.Q.; Duan, X.W.; Zhou, J.H.; Chang, H.; Xu, R.R.; Wang, B.B.; Wang, Y.X. Integrated metabolome, transcriptome and long non-coding RNA analysis reveals potential molecular mechanisms of sweet cherry fruit ripening. Int. J. Mol. Sci. 2024, 25, 9860. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Zhang, X.G.; Traore, S.M.; Xin, Z.Y.; Ning, L.; Li, K.; Zhao, K.K.; Li, Z.F.; He, G.H.; Yin, D.M. Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC Plant Biol. 2020, 20, 192. [Google Scholar] [CrossRef] [PubMed]
- Lamin-Samu, A.T.; Zhuo, S.B.; Ali, M.; Lu, G. Long non-coding RNA transcriptome landscape of anthers at different developmental stages in response to drought stress in tomato. Genomics 2022, 114, 110383. [Google Scholar] [CrossRef]
- Wang, M.J.; Yuan, D.J.; Tu, L.L.; Gao, W.H.; He, Y.H.; Hu, H.Y.; Wang, P.C.; Liu, N.; Lindsey, K.; Zhang, X.H. Long noncoding RNAs and their proposed functions in fiber development of cotton (Gossypium spp.). New Phytol. 2015, 207, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Canovi, C.; Stojkovič, K.; Benítez, A.A.; Delhomme, N.; Egertsdotter, U.; Street, N.R. A resource of identified and annotated lincRNAs expressed during somatic embryogenesis development in Norway spruce. Physiol. Plant. 2024, 176, e14537. [Google Scholar] [CrossRef]
- Voogd, C.; Brian, L.A.; Wu, R.; Wang, T.; Allan, A.C.; Varkonyi-Gasic, E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytol. 2022, 233, 2111–2126. [Google Scholar] [CrossRef]
- Lu, Z.G.; Wang, X.W.; Lin, X.Y.; Mostafa, S.; Bao, H.Y.; Ren, S.X.; Cui, J.W.; Jin, B. Genome-wide identification and characterization of long non-coding RNAs associated with floral scent formation in jasmine (Jasminum sambac). Biomolecules 2023, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Jia, Z.Q.; Tao, L.; Li, Q.X.; Zhang, Y.Y.; Feng, L.L.; Yang, K.; Yang, D.; Zhao, X. Research progress in plants adaptability towards adversity stress. World For. Res. 2018, 31, 13–18. [Google Scholar]
- Lu, X.K.; Chen, X.G.; Mu, M.; Wang, J.J.; Wang, X.G.; Wang, D.L.; Yin, Z.J.; Fan, W.L.; Wang, S.; Guo, L.X.; et al. Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS ONE 2016, 11, e0156723. [Google Scholar] [CrossRef]
- Suksamran, R.; Saithong, T.; Thammarongtham, C.; Kalapanulak, S. Genomic and transcriptomic analysis identified novel putative cassava lncRNAs involved in cold and drought stress. Genes 2020, 11, 366. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhong, Y.Q.; Qi, X. LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation. BMC Plant Biol. 2021, 21, 410. [Google Scholar] [CrossRef]
- Zou, C.L.; Zhao, S.S.; Yang, B.H.; Chai, W.T.; Zhu, L.X.; Zhang, C.L.; Gai, Z.J. Genome-wide characterization of drought-responsive long non-coding RNAs in sorghum (Sorghum bicolor). Plant Physiol. Biochem. 2024, 214, 108908. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.X.; Li, H.B.; Huang, X.E.; Zhao, Y.G.; Ouyang, L.J.; Wei, M.K.; Wang, C.; Wang, J.X.; Lu, G.Y. Elucidating the regulatory role of long non-coding RNAs in drought stress response during seed germination in leaf mustard. PeerJ 2024, 12, e17661. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wu, F.; Yan, Z.Z.; Li, J.; Ma, T.T.; Zhang, Y.F.; Zhao, Y.F.; Wang, Y.R.; Zhang, J.Y. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC Plant Biol. 2019, 19, 23. [Google Scholar] [CrossRef]
- Li, S.X.; Yu, X.; Lei, N.; Cheng, Z.H.; Zhao, P.J.; He, Y.K.; Wang, W.Q.; Peng, M. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci. Rep. 2017, 7, 45981. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Chen, X.; Shu, N.; Wang, J.; Wang, D.; Wang, S.; Fan, W.; Guo, L.; Guo, X.; et al. Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. BMC Genom. 2017, 18, 297. [Google Scholar] [CrossRef]
- Wu, N.; Yang, J.; Wang, G.N.; Ke, H.F.; Zhang, Y.; Liu, Z.W.; Ma, Z.Y.; Wang, X.F. Novel insights into water-deficit-responsive mRNAs and lncRNAs during fiber development in Gossypium hirsutum. BMC Plant Biol. 2022, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zheng, H.X.; Sui, N. Regulation mechanism of long non-coding RNA in plant response to stress. Biochem. Biophys. Res. Commun. 2018, 503, 402–407. [Google Scholar] [CrossRef]
- Chen, R.; Li, M.; Zhang, H.Y.; Duan, L.; Sun, X.J.; Jiang, Q.Y.; Zhang, H.; Hu, Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genom. 2019, 20, 730. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Cui, J.; Dai, C.H.; Liu, T.J.; Cheng, D.Y.; Luo, C.F. Whole-transcriptome RNA sequencing reveals the global molecular responses and ceRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to salt stress in sugar beet (Beta vulgaris). Int. J. Mol. Sci. 2020, 22, 289. [Google Scholar] [CrossRef]
- Deng, F.N.; Zhang, X.P.; Wang, W.; Yuan, R.; Shen, F.F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol. 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Medina, C.A.; Samac, D.A.; Yu, L.X. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci. Rep. 2021, 11, 17203. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Mu, H.; Zhao, B.; Song, X.; Fan, H.; Wang, B.; Yuan, F. Global analysis of key post-transcriptional regulation in early leaf development of Limonium bicolor identifies a long non-coding RNA that promotes salt gland development and salt resistance. J. Exp. Bot. 2024, 75, 5091–5110. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.C.; Bai, X.T.; Luo, W.C.; Feng, Y.N.; Shao, X.; Bai, Q.X.; Sun, S.J.; Long, Q.M.; Wan, D.S. Genome-wide identification of long noncoding RNAs and their responses to salt stress in two closely related poplars. Front. Genet. 2019, 10, 777. [Google Scholar] [CrossRef]
- Unver, T.; Tombuloglu, H. Barley long non-coding RNAs (lncRNA) responsive to excess boron. Genomics 2020, 112, 1947–1955. [Google Scholar] [CrossRef]
- Franco-Zorrilla, J.M.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J.A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2007, 39, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Hong, X.; Zhao, X.Q.; Zhang, W.; He, X.; Ma, W.Y.; Teng, W.; Tong, Y.P. Knock out of the PHOSPHATE 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Sci. Rep. 2016, 6, 29850. [Google Scholar] [CrossRef]
- Cheng, S.L.H.; Xu, H.; Ng, J.H.T.; Chua, N.H. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency. Nat. Plants 2023, 9, 1598–1606. [Google Scholar] [CrossRef]
- Qiu, C.W.; Richmond, M.; Ma, Y.; Zhang, S.; Liu, W.; Feng, X.; Ahmed, I.M.; Wu, F.B. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. J. Hazard. Mater. 2024, 465, 133251. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.S.; Sun, D.; Yang, Z.M. A long non-coding RNA associated with H3K7me3 methylation negatively regulates OsZIP16 transcription under cadmium stress. Gene 2024, 901, 148173. [Google Scholar] [CrossRef]
- Feng, X.; Chen, X.Y.; Meng, Q.; Song, Z.Y.; Zeng, J.B.; He, X.Y.; Wu, F.B.; Ma, W.J.; Liu, W.X. Comparative long non-coding transcriptome analysis of three contrasting barley varieties in response to aluminum stress. Int. J. Mol. Sci. 2024, 25, 9181. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Priyam, P.; Yadav, G.; Yadav, A.; Jain, R.; Sunderam, S.; Sharma, M.K.; Kaur, I.; Dhaka, N. Identification of lncRNAs regulating seed traits in Brassica juncea and development of a comprehensive seed omics database. Funct. Integr. Genom. 2024, 24, 189. [Google Scholar] [CrossRef]
- Dadras, N.; Hasanpur, K.; Razeghi, J.; Kianianmomeni, A. Different transcription of novel, functional long non-coding RNA genes by UV-B in green algae, Volvox carteri. Int. Microbiol. 2024, 27, 213–225. [Google Scholar] [CrossRef]
- Rosli, H.G.; Sirvent, E.; Bekier, F.N.; Ramos, R.N.; Pombo, M.A. Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge. Sci. Rep. 2021, 11, 24523. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Fang, H.C.; Liu, X.; Dong, Y.H.; Wang, Q.P.; Yang, K.Q. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). BMC Genom. 2021, 22, 15. [Google Scholar] [CrossRef]
- Wang, Z.P.; Liu, Y.F.; Li, L.; Li, D.W.; Zhang, Q.; Guo, Y.T.; Wang, S.B.; Zhong, C.H.; Huang, H.W. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes. Sci. Rep. 2017, 7, 4910. [Google Scholar] [CrossRef] [PubMed]
- Kwenda, S.; Birch, P.R.J.; Moleleki, L.N. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection. BMC Genom. 2016, 17, 614. [Google Scholar] [CrossRef]
- Bedre, R.; Kavuri, N.R.; Ramasamy, M.; Irigoyen, S.; Nelson, A.; Rajkumar, M.S.; Mandadi, K. Long intergenic non-coding RNAs modulate proximal protein-coding gene expression and tolerance to Candidatus Liberibacter spp. in potatoes. Commun. Biol. 2024, 7, 1095. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Stephen, S.; Taylor, J.; Helliwell, C.A.; Wang, M.B. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 2014, 201, 574–584. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, F.; Tian, N.; Mensah, R.A.; Sun, X.; Liu, J.; Wu, J.; Wang, B.; Li, D.; Lai, Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci. Rep. 2021, 11, 16363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Su, T.B.; Li, P.R.; Xin, X.Y.; Cao, Y.Y.; Wang, W.H.; Zhao, X.Y.; Zhang, D.S.; Yu, Y.J.; Li, D.Y.; et al. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. Hortic. Res. 2021, 8, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.Y.; Wang, C.Y.; Xu, Z.Y.; Wang, Y.J.; Liu, X.L.; Kang, Z.S.; Ji, W.Q. Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.). Mol. Biol. Rep. 2013, 40, 6245–6253. [Google Scholar] [CrossRef]
- Zhu, H.F.; Li, X.F.; Xi, D.D.; Zhai, W.; Zhang, Z.H.; Zhu, Y.Y. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS ONE 2019, 14, e0224927. [Google Scholar] [CrossRef]
- Bhatia, G.; Upadhyay, S.K.; Upadhyay, A.; Singh, K. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection. BMC Plant Biol. 2021, 21, 265. [Google Scholar] [CrossRef]
- Kan, J.; Liu, T.; Ma, N.; Li, H.; Li, X.; Wang, J.; Zhang, B.; Chang, Y.; Lin, J. Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata. PLoS ONE 2017, 12, e0184988. [Google Scholar] [CrossRef]
- Zamora-Ballesteros, C.; Martín-García, J.; Suárez-Vega, A.; Diez, J.J. Genome-wide identification and characterization of Fusarium circinatum-responsive lncRNAs in Pinus radiata. BMC Genom. 2022, 23, 194. [Google Scholar] [CrossRef]
- Jain, P.; Sharma, V.; Dubey, H.; Singh, P.K.; Kapoor, R.; Kumari, M.; Singh, J.; Pawar, D.V.; Bisht, D.; Solanke, A.U.; et al. Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae. Bioinformation 2017, 13, 249–255. [Google Scholar] [CrossRef]
- Wang, L.L.; Jin, J.J.; Li, L.H.; Qu, S.H. Long non-coding RNAs responsive to blast fungus infection in rice. Rice 2020, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xue, J.; Zhang, L.L.; Jiang, L.Q.; Li, C. Unveiling the roles of lncRNA MOIRAs in rice blast disease resistance. Genes 2024, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Yu, W.G.; Yang, Y.W.; Li, X.; Chen, T.Z.; Liu, T.L.; Ma, N.; Yang, X.; Liu, R.Y.; Zhang, B.L. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 2015, 5, 16946. [Google Scholar] [CrossRef]
- Glushkevich, A.; Spechenkova, N.; Fesenko, I.; Knyazev, A.; Samarskaya, V.; Kalinina, N.O.; Taliansky, M.; Love, A.J. Transcriptomic reprogramming, alternative splicing and RNA methylation in potato (Solanum tuberosum L.) plants in response to potato virus Y Infection. Plants 2022, 11, 635. [Google Scholar] [CrossRef]
- Lee, G.; DiBiase, C.N.; Liu, B.; Li, T.; McCoy, A.G.; Chilvers, M.I.; Sun, L.J.; Wang, D.C.; Lin, F.; Zhao, M.X. Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana. Plant Genome 2024, 17, 20487. [Google Scholar] [CrossRef]
- Li, R.; Jin, J.J.; Xu, J.; Wang, L.L.; Li, J.C.; Lou, Y.G.; Baldwin, L.T. Long non-coding RNAs associate with jasmonate-mediated plant defense against herbivores. Plant Cell Environ. 2021, 44, 982–994. [Google Scholar] [CrossRef]
- Rahman, M.M.; Omoto, C.; Kim, J. Genome-wide exploration of long non-coding RNAs of Helicoverpa armigera in response to pyrethroid snsecticide resistance. Insects 2024, 15, 146. [Google Scholar] [CrossRef]
- Ozdemir, S.; Zadegan, S.B.; Sultana, M.S.; Coffey, N.; Rice, J.H.; Hewezi, T. Regulation and functions of long non-coding RNAs during Meloidogyne incognita parasitism of tomato. Mol. Plant-Microbe Interact. 2024, 38, 72–83. [Google Scholar] [CrossRef]
- Bai, Y.X.; He, J.Q.; Yao, Y.H.; An, L.K.; Cui, Y.M.; Li, X.; Yao, X.H.; Xiao, S.S.; Wu, K.L. Identification and functional analysis of long non-coding RNA (lncRNA) and metabolites response to mowing in hulless barley (Hordeum vulgare L. var. nudum hook. f.). BMC Plant Biol. 2024, 24, 666. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bharadwaj, C.; Sahu, S.; Shiv, A.; Shrivastava, A.K.; Reddy, S.P.P.; Soren, K.R.; Patil, B.S.; Pal, M.; Soni, A.; et al. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea (Cicer arietinum L.). Physiol. Mol. Biol. Plants 2021, 27, 2605–2619. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Conrad, L.J.; Patel, R.; Anderson, S.; Li, C.; Pereira, A.; Sundaresan, V. Reproductive long intergenic noncoding RNAs exhibit male gamete specificity and polycomb repressive complex 2-mediated repression. Plant Physiol. 2018, 177, 1198–1217. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, D.Y.; Zhang, D.L.; Yin, D.D.; Zhao, Y.; Ji, C.J.; Zhao, X.F.; Li, X.B.; He, Q.; Chen, R.S.; et al. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol. 2018, 218, 774–788. [Google Scholar] [CrossRef]
- Xu, W.B.; Guo, Q.H.; Liu, P.; Dai, S.; Wu, C.A.; Yang, G.D.; Huang, J.G.; Zhang, S.Z.; Song, J.M.; Zheng, C.C.; et al. A long non-coding RNA functions as a competitive endogenous RNA to modulate TaNAC018 by acting as a decoy for tae-miR6206. Plant Mol. Biol. 2024, 114, 36. [Google Scholar] [CrossRef]
- Poloni, J.F.; Oliveira, F.H.S.; Feltes, B.C. Localization is the key to action: Regulatory peculiarities of lncRNAs. Front. Genet. 2024, 15, 1478352. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Szcześniak, M.W.; Rosikiewicz, W.; Makałowska, I. CANTATAdb: A collection of plant long non-coding RNAs. Plant Cell Physiol. 2016, 57, e8. [Google Scholar] [CrossRef]
- Szcześniak, M.W.; Bryzghalov, O.; Ciomborowska-Basheer, J.; Makałowska, I. CANTATAdb 2.0: Expanding the collection of plant long noncoding RNAs. Methods Mol. Biol. 2019, 1933, 415–429. [Google Scholar]
- Szcześniak, M.W.; Wanowska, E. CANTATAdb 3.0: An updated repository of plant long non-coding RNAs. Plant Cell Physiol. 2024, 65, 1486–1493. [Google Scholar] [CrossRef]
- Jin, J.; Liu, J.; Wang, H.; Wong, L.; Chua, N.H. PLncDB: Plant long non-coding RNA database. Bioinformatics 2013, 29, 1068–1071. [Google Scholar] [CrossRef]
- Jin, J.J.; Lu, P.; Xu, Y.L.; Li, Z.F.; Yu, S.Z.; Liu, J.; Wang, H.; Chua, N.H.; Cao, P.J. PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Res. 2021, 49, D1489–D1495. [Google Scholar] [CrossRef]
- Amaral, P.P.; Clark, M.B.; Gascoigne, D.K.; Dinger, M.E.; Mattick, J.S. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res. 2011, 39, D146–D151. [Google Scholar] [CrossRef]
- Quek, X.C.; Thomson, D.W.; Maag, J.L.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2.0: Expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015, 43, D168–D173. [Google Scholar] [CrossRef]
- Xuan, H.D.; Zhang, L.Z.; Liu, X.S.; Han, G.M.; Li, J.; Li, X.; Liu, A.G.; Liao, M.Z.; Zhang, S.H. PLNlncRbase: A resource for experimentally identified lncRNAs in plants. Gene 2015, 573, 328–332. [Google Scholar] [CrossRef]
- Paytuví, G.A.; Hermoso, P.A.; Anzar, M.L.I.; Sanseverino, W.; Aiese, C.R. GREENC: A Wiki-based database of plant lncRNAs. Nucleic Acids Res. 2016, 44, D1161–D1166. [Google Scholar]
- Jiang, L.; Yang, J.; He, R.; Zhu, Y.; Wang, D. Protocol for detecting lncRNA-protein interactions in vitro by tRSA RNA pull-down assay. STAR Protoc. 2024, 5, 102818. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; He, R.; Zhang, Y.; Zhang, P.; Zhu, Y.; Wang, D. Protocol for detecting lncRNA-protein interaction in vivo using the yeast three-hybrid assay. STAR Protoc. 2024, 5, 102856. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Chua, N.H. Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants. Methods Mol. Biol. 2019, 1933, 297–303. [Google Scholar] [PubMed]
- Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 2011, 44, 667–678. [Google Scholar] [CrossRef] [PubMed]
Name | No. of lncRNAs | Plant Species | Link | Reference |
---|---|---|---|---|
CANTATAdb | 45,117 | 10 | http://yeti.amu.edu.pl/CANATA/, URL (accessed on 10 August 2025) | [134] |
CANTATAdb 2.0 | 239,631 | 39 | http://yeti.amu.edu.pl/CANTATA/ URL (accessed on 10 August 2025) | [135] |
CANTATAdb 3.0 | 571,688 | 108 | http://yeti.amu.edu.pl/CANTATA/ http://cantata.amu.edu.pl URL (accessed on 10 August 2025) | [136] |
PLncDB | 16,227 | Arabidopsis | - | [137] |
PLncDB V2.0 | 246,372 | 80 | http://plncdb.tobaccodb.org/ URL (accessed on 10 August 2025) | [138] |
lncRNAdb | 287 | 60 | http://www.lncrnadb.org/ URL (accessed on 10 August 2025) | [139] |
lncRNAdb v2.0 | 283 | 71 | https://rnacentral.org/ URL (accessed on 10 August 2025) | [140] |
PLNlncRbase | 1187 | 43 | http://bioinformatics.ahau.edu.cn/PLNlncRbase URL (accessed on 10 August 2025) | [141] |
GreeNC | 120,000 | 37 | - | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Dai, X.; Chen, J.; Li, R. Plant Long Non-Coding RNAs: Multilevel Regulators of Development, Stress Adaptation, and Crop Improvement. Agronomy 2025, 15, 1950. https://doi.org/10.3390/agronomy15081950
Bao X, Dai X, Chen J, Li R. Plant Long Non-Coding RNAs: Multilevel Regulators of Development, Stress Adaptation, and Crop Improvement. Agronomy. 2025; 15(8):1950. https://doi.org/10.3390/agronomy15081950
Chicago/Turabian StyleBao, Xiyue, Xiaofeng Dai, Jieyin Chen, and Ran Li. 2025. "Plant Long Non-Coding RNAs: Multilevel Regulators of Development, Stress Adaptation, and Crop Improvement" Agronomy 15, no. 8: 1950. https://doi.org/10.3390/agronomy15081950
APA StyleBao, X., Dai, X., Chen, J., & Li, R. (2025). Plant Long Non-Coding RNAs: Multilevel Regulators of Development, Stress Adaptation, and Crop Improvement. Agronomy, 15(8), 1950. https://doi.org/10.3390/agronomy15081950