Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Source
- (1)
- Outlier detection and removal were performed by applying physical-based thresholds to each key variable to ensure data reliability. Specifically, 2 m air temperatures were excluded if they exceeded 50 °C or fell below −50 °C (i.e., outside the range of 223–323 K). Soil temperatures at 0–10 cm and 10–40 cm were removed if greater than 333 K or lower than 223 K. Negative values were eliminated from variables such as wind speed, precipitation rate, evapotranspiration, and soil moisture. Shortwave radiation values above 1400 W·m−2 were identified as extreme and excluded. Soil moisture values—both surface (0–10 cm) and sub-surface (10–40 cm)—as well as root-zone moisture, were considered invalid if they implied a volumetric water content greater than 0.6 m3/m3. These outlier filters ensured the physical consistency and quality of the input data before subsequent analysis.
- (2)
- To ensure consistency across variables, all GLDAS data were standardized as follows: Precipitation flux and actual evapotranspiration (kg·m−2·s−1) were converted to mm/day by multiplying by 86,400. Potential evapotranspiration (W·m−2) was transformed to mm/day using a factor of 0.0352. Soil moisture and root-zone moisture (kg·m−2) were treated as equivalent to mm. Soil and air temperatures (K) were converted to °C using °C = K − 273.15. Downward shortwave radiation (W·m−2) was scaled to MJ·m−2·day−1 by multiplying by 0.0864. Wind speed (m·s−1) was retained without conversion. This process ensured unit compatibility for subsequent analysis and visualization.
- (3)
- Administrative boundary masking: The administrative boundary shapefile of the study area was imported into ArcGIS(v10.7). The “Clip” tool was applied to spatially constrain the interpolated GLDAS data, retaining only valid grid cells and sampling points within the study region.
- (4)
- Data completeness filtering: For each grid cell, the completeness of data during the spring sowing period over the 25-year span was evaluated. Cells with less than 90% annual completeness were excluded to ensure temporal continuity and consistency in time-series analysis.
- (5)
- Variable derivation and point sampling: Daily sequences were retained for all valid latitude–longitude grid points. Based on these, key hydro-meteorological indicators such as evapotranspiration deficit and hydrothermal coordination index (D value) were calculated. Sampling points were spatially matched with the study area shapefile to extract valid sites located within the region.
- (6)
- Spatial interpolation analysis: Using ArcGIS(v10.7) spatial analysis tools, the inverse distance weighting (IDW) method was applied to generate continuous spatial distribution maps for each variable. These outputs support the subsequent spatial heterogeneity analysis and data visualization.
2.3. Construction of the Indicator System
2.3.1. Logic for Defining Single-Factor Suitability Indices
- (1)
- Precipitation Suitability Index (PSI).
- (2)
- Air Temperature Suitability Index (TSI).
- (3)
- Wind Speed Suitability Index (WSI).
- (4)
- Soil Temperature Suitability Index (SSI)
- (5)
- Evapotranspiration Balance Index (ETBI)
- (6)
- Radiation Suitability Index (RSI)
- (7)
- Soil Moisture Suitability Index (SMSI)
2.3.2. The Construction of a Composite Index
- (1)
- Spring Sowing Hydrothermal Suitability Index (SSH_SI)
- (2)
- Meteorological Sub-index (MI)
- (3)
- Hydrological–Thermal Sub-index (WHI)
- (4)
- Meteorological–Hydrothermal Coupling Coordination Degree (D)
- (5)
- Spring Sowing Window Days (SWD)
- (6)
- Risk Index Identification
2.4. Research Methods
2.4.1. Trend Analysis
2.4.2. Wavelet Analysis
2.4.3. Center of Gravity Migration
3. Results
3.1. Temporal Variation Characteristics of Indicators
3.2. Spatial Variation Characteristics of Indicators
3.3. Risk Index Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lobell, D.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Y. Trends of China’s agricultural climatic resources and their impacts on production. Acta Meteorol. Sin. 2002, 60, 766–774. [Google Scholar]
- Wang, Y.; Liu, B.; Tan, L. Climatic suitability of spring maize planted in the “sickle-bend” area of China. Clim. Res. 2018, 75, 93–108. [Google Scholar]
- Mekonnen, T.; Ceronio, G.; Labuschagne, M. Influence of planting window on yield stability of maize genotypes in semi-arid areas. S. Afr. J. Bot. 2023, 163, 511–522. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, X.; Zhao, D.; Cheng, Y. Analysis on Water and Heat Condition of the Spring sowing Time in Song-shan Area. Inner Mongolia Meteorol. 2012, 2, 25–27. [Google Scholar]
- Ma, J.; Sun, Y.; Xu, Y. Climatic conditions during the spring sowing period in Haiyang City. Climate Change Res. Express 2016, 5, 169–175. [Google Scholar]
- Chisanga, C.; Phiri, E.; Chinene, V. Evaluating APSIM- and DSSAT-CERES-Maize models under rain-fed conditions using Zambian cultivars. Nitrogen 2021, 2, 392–414. [Google Scholar] [CrossRef]
- Akinseye, F.; Ajeigbe, H.; Kamara, A.; Omotayo, A.; Tofa, A.; Whitbread, A. Establishing optimal planting windows for contrasting sorghum cultivars across North-eastern Nigeria: A modelling approach. Agronomy 2023, 13, 727. [Google Scholar] [CrossRef]
- Caian, M. PREPCLIM: Identifying maize ideotypes, optimal sowing dates and N-fertilization under climate change. In Proceedings of the EMS Annual Meetings, Bratislava, Slovakia, 3–8 September 2023. Paper EMS2023-668. [Google Scholar]
- Ning, X.; Zhang, L.; Qin, Y.; Liu, K. Temporal-spatial Distribution of Suitable Areas for Major Food Crops in China Over 60 Years. Adv. Earth Sci. 2019, 34, 191–201. [Google Scholar]
- Wang, Z. Evaluation model of meteorological suitability for field crops sowing in Inner Mongolia. J. North. Agric. 2020, 48, 121–125. [Google Scholar]
- Ma, S.; Wang, Q.; Yu, H.; Xu, L.P.; Zhang, T.; Ji, L. Relationship between corn emergence speed and hydrothermal conditions in Northeast China. Chin. J. Ecol. 2013, 32, 2049–2055. [Google Scholar]
- Wang, P.; Li, X.; Wang, Q.; Ji, Y.; Ji, S.; Zhao, H. Analysis and Prediction of Temperature and Humidity of Soil in Spring Sowing—Hetao Irrigation District of Inner Mongolia. Soils 2016, 47, 1314–1324. [Google Scholar]
- Niu, D.; Tang, H.Y. Soil-temperature indicators for spring-maize sowing. Chin. Agric. Sci. Bull. 2019, 35, 79–85. [Google Scholar]
- Ruja, A.; Toma, I.; Bulai, A.; Agapie, A.L.; Negruț, G.; Suhai, K.; Gorinoiu, G. Impact of climate changes on autumn- and spring-oat production. Life Sci. Sustain. Dev. 2021, 2, 73–81. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Z.; Qin, Y.; Tian, H.; Xie, Z.; Rong, P. Phasic and periodic change of drought under greenhouse effect. Int. J. Clim. Change Strateg. Manag. 2025, 17, 147–173. [Google Scholar] [CrossRef]
- Fan, L.; Xing, Z.; De Lannoy, G.; Frappart, F.; Peng, J.; Zeng, J.; Wigneron, J. Evaluation of satellite and reanalysis soil-moisture estimates in Jiangsu croplands. Remote Sens. Environ. 2022, 282, 113283. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Xiao, C.; Ai, W. Evaluation of high-resolution meteorological forcing datasets for crop models over China. Atmosphere 2020, 11, 1011. [Google Scholar] [CrossRef]
- Fan, Y.; Xing, Z.; De Lannoy, G.; Frappart, F.; Peng, J.; Zeng, J.; Wigneron, J.P. Integrated risk-assessment framework for climate-smart agriculture. Sci. Total Environ. 2022, 814, 152557. [Google Scholar]
- Ma, Y.Z. Hydrothermal characteristics during spring sowing in Jianchang, Liaoning. Anhui Agric. Sci. 2011, 39, 8426–8428. [Google Scholar]
- Cheng, L.; Qian, S.; Zheng, C.L.; Li, S.; Song, Y.B. Spring-2014 climate impacts on Chinese agriculture. Chin. J. Agrometeorol. 2014, 35, 355–357. [Google Scholar]
- Wang, X.; Li, J.; Chao, H.; Li, J.; Zhang, H.; Ma, X. Soil-moisture variation during spring sowing in western Liaoning. Agric. Res. Arid Areas 2014, 32, 250–255. [Google Scholar]
- Kawakita, S.; Ishikawa, N.; Takahashi, H.; Okuno, R.; Moriya, K. Interactions of cultivar and sowing date alter wheat phenology under warming. Agron. J. 2021, 113, 4982–4992. [Google Scholar] [CrossRef]
- Mamassi, A.; Lang, M.; Tychon, B.; Lahlou, M.; Wellens, J.; El Gharous, M.; Marrou, H. A Comparison of Empirical and Mechanistic Models for Wheat Yield Prediction at Field Level in Moroccan Rainfed Areas. In Silico Plants 2024, 6, diad020. [Google Scholar] [CrossRef]
- Tooley, B.; Mallory, E.B.; Porter, G.A.; Hoogenboom, G. Potato—Grain system response to climate change using DSSAT. Agric. For. Meteorol. 2021, 307, 108452. [Google Scholar] [CrossRef]
- Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M. Sensitivity of cereal yield to sowing date in a large-area crop-modelling system. Agric. For. Meteorol. 2004, 124, 127–139. [Google Scholar]
- Feleke, H.G.; Savage, M.J.; Tesfaye, K. Calibration and validation of APSIM-Maize, DSSAT-CERES-Maize and AquaCrop in Ethiopian tropics. S. Afr. J. Plant Soil 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Chisanga, C.B.; Phiri, E.; Chinene, V.R.N.; Chabala, L.M. Projecting maize yield under local-scale climate scenarios using crop models. Food Energy Secur. 2020, 9, e231. [Google Scholar] [CrossRef]
- Li, M. Impacts of climate change on agricultural temperature thresholds in China. Adv. Earth Sci. 2006, 21, 70–76. [Google Scholar]
- Wang, G.; Wang, J.; Sun, W.; Huang, M.; Zhang, J.; Huang, X.; Zhang, W. Drought characteristics during spring sowing along the Great Wall based on the MCI. Agronomy 2024, 14, 2195. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, T.; Peng, J.; Zhang, L. Spatiotemporal assessment of agricultural drought in China using GLDAS data. Agric. Water Manag. 2021, 248, 106766. [Google Scholar]
- Wang, E.; Martel, R.; Gosselin, P.; Calderhead, A.I. GLDAS soil-moisture data for drought monitoring in Canada. J. Hydrol. 2016, 534, 562–573. [Google Scholar]
- McNally, A.; Shukla, S.; Husak, G.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land-data assimilation system for sub-Saharan Africa. Sci. Data 2015, 2, 150063. [Google Scholar]
- Huang, X.; Han, S.; Shi, C. Multiscale assessment of reanalysis temperature datasets for Chinese agriculture. Agriculture 2021, 11, 1292. [Google Scholar] [CrossRef]
- Xu, Y.; Han, S.; Shi, C.; Tao, R.; Zhang, J.; Zhang, Y.; Zheng, W. Comparative analysis of near-surface temperature reanalyses in Inner Mongolia. Sustainability 2023, 15, 13046. [Google Scholar] [CrossRef]
- Han, S.; Liu, B.; Shi, C.; Liu, Y.; Qiu, M.; Sun, S. Evaluation of CLDAS and GLDAS near-surface temperature datasets. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Xu, X.; Yu, F.; Pedrycz, W.; Du, X. Multi-source fuzzy comprehensive evaluation. Appl. Soft Comput. 2023, 135, 110042. [Google Scholar] [CrossRef]
- Yang, Z.D.; Zhou, Q.W.; Wang, W.; Mi, C.H. Grading cropland soil-fertility damage via fuzzy evaluation. J. Agro-Environ. Sci. 2023, 42, 2780–2786. [Google Scholar]
- Li, J. Determining weights of grain-yield factors using the entropy-weight method. Anhui Agric. Sci. 2012, 40, 6851–6854. [Google Scholar]
- Chen, C.; Zhang, H. Green-development level of Mianyang agriculture via entropy-weight method. Sustainability 2023, 15, 7589. [Google Scholar] [CrossRef]
- Gan, L.; Shi, H.; Hu, Y.; Lev, B.; Lan, H. Coupling coordination degree for city—Industry integration in Sichuan. Sustain. Cities Soc. 2020, 58, 102136. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X.; Zhang, Y.; Penttinen, P.; Wang, Z.; Ling, J.; Lan, T.; Ou, D.; Li, Y. Analysis on Coupling Coordination Degree for Cropland and Livestock from 2000 to 2020 in China. Agriculture 2023, 13, 1304. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Z.; Cheng, G. Ecological-environmental sensitivity in western China’s fragile zones. Acta Geogr. Sin. 2002, 57, 481–489. [Google Scholar]
- Singh, R.; Murty, H.; Gupta, S.; Dikshit, A. Composite sustainability-performance index for the steel industry. Ecol. Indic. 2007, 7, 565–588. [Google Scholar] [CrossRef]
- Vivekanandan, N. Rainfall trend analysis using Mann-Kendall and Sen’s slope. J. Civ. Eng. 2024, 14, 18. [Google Scholar]
- Yi, H.; Ouyang, P.; Yu, T.; Zou, T. Morlet wavelet transform via generalized discrete Fourier transform. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950030. [Google Scholar] [CrossRef]
- Büssow, R. Algorithm for the continuous Morlet wavelet transform. Mech. Syst. Signal Process. 2007, 21, 2970–2979. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. Practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Wang, X.; Liu, P.; Geng, M.; Wang, M.; Lu, J. Drivers of land-use change in Wuwei City, Gansu. Chin. Environ. Sci. 2023, 43, 6583–6591. [Google Scholar]
- Dong, Y.; Dai, A. Out-of-phase decadal drought change over Northeast China in early spring and late summer. J. Geophys. Res. Atmos. 2020, 125, e2020JD034048. [Google Scholar]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Hayashi, Y.; Grassl, H.; Fu, C. Variability in climatology and agriculture linked to the EASM and ENSO. Clim. Res. 2004, 28, 23–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X. Agricultural drought prediction in China via drought propagation. Agric. Water Manag. 2021, 255, 107028. [Google Scholar] [CrossRef]
- Dai, A. Influence of the Inter-decadal Pacific Oscillation on U.S. precipitation (1923–2010). Clim. Dyn. 2013, 41, 633–646. [Google Scholar] [CrossRef]
- Zhai, P.; Pan, X. Change in Extreme Temperature and Precipitation over Northern China During the Second Half of the 20th Century. Acta Geogr. Sin. 2003, 58, 1–10. [Google Scholar]
- Ren, S.; Yi, S.; Peichl, M.; Wang, X. Vegetation-phenology responses to climate change in Inner Mongolia (2000–2016). Remote Sens. 2018, 10, 17. [Google Scholar] [CrossRef]
- Shanxi Climate Center. Agrometeorological Forecast Bulletin: The Optimal Sowing Window for Spring Maize in Shanxi in 2024 Is 5–10 Days Earlier Than Normal. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2024. Available online: http://www.moa.gov.cn/ztzl/2024cg/xmtg_29657/202404/t20240415_6453552.htm (accessed on 29 July 2025).
- Wang, W.; Li, J.; Hu, C.; Liu, D.; Li, R. Fine-scale meteorological drought assessment during spring sowing period in Liaoning Province. J. Arid Land Resour. Environ. 2021, 35, 71–78. [Google Scholar]
- Song, Y.; Li, Y.; Ren, X.; Lin, X. Spatiotemporal distribution characteristics of maize climatic suitability in western Liaoning from 1956 to 2010. Chin. J. Eco-Agric. 2016, 24, 306–315. [Google Scholar]
- Li, X.; Zhang, Y.; Han, L.; Li, Y.; Wang, C. Impacts of spring meteorological conditions on agricultural production in 2018. Chin. J. Agrometeorol. 2022, 39, 490–492. [Google Scholar]
- Wang, W. Impacts of spring meteorological conditions on agricultural production in 2019. Chin. J. Agrometeorol. 2019, 40, 474–476. [Google Scholar]
- He, L.; Li, Y.; Qian, Y. Impacts of spring meteorological conditions on agricultural production in 2020. Chin. J. Agrometeorol. 2020, 41, 470–472. [Google Scholar]
- Tan, F.; Zhao, X.; Zheng, C.; Song, Y. Impacts of spring meteorological conditions on agricultural production in 2021. Chin. J. Agrometeorol. 2021, 42, 616–619. [Google Scholar]
- Wang, C.; Zheng, C.; Zhang, Y.; Zhang, L.; Qian, Y. Impacts of spring meteorological conditions on agricultural production in 2022. Chin. J. Agrometeorol. 2022, 43, 670–673. [Google Scholar]
- Liu, T.; Li, Y.; Zhao, X.; Han, L. Impacts of spring meteorological conditions on agricultural production in 2023. Chin. J. Agrometeorol. 2023, 44, 750–752. [Google Scholar]
- Wu, M.; Zhao, Y.; Li, Y.; He, Y.; Zhang, L. Impacts of spring meteorological conditions on agricultural production in 2024. Chin. J. Agrometeorol. 2024, 45, 938–941. [Google Scholar]
Indicators | Time | Migration Distance (km) | Migration Velocity (km/year) | Migration Bearing |
---|---|---|---|---|
SWD | 2000–2005 | 26.25 | 5.25 | West-southwest |
2005–2010 | 10.3 | 2.06 | West | |
2010–2015 | 9.01 | 1.8 | South | |
2015–2020 | 5.35 | 1.07 | North-northwest | |
2020–2024 | 9.53 | 2.38 | West-southwest | |
SSH_SI | 2000–2005 | 111.58 | 22.32 | North-northeast |
2005–2010 | 29.58 | 5.92 | East-northeast | |
2010–2015 | 16.37 | 3.27 | South-southwest | |
2015–2020 | 11.12 | 2.22 | West | |
2020–2024 | 21.81 | 5.45 | Southwest | |
D Value | 2000–2005 | 196.84 | 39.37 | West-southwest |
2005–2010 | 31.86 | 6.37 | West-southwest | |
2010–2015 | 35.65 | 7.13 | South-southeast | |
2015–2020 | 65.09 | 13.02 | South-southwest | |
2020–2024 | 79.79 | 19.95 | Southwest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, J.; Huang, M.; Zhang, J.; Huang, X.; Zhang, W. Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China. Agronomy 2025, 15, 1930. https://doi.org/10.3390/agronomy15081930
Wang G, Wang J, Huang M, Zhang J, Huang X, Zhang W. Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China. Agronomy. 2025; 15(8):1930. https://doi.org/10.3390/agronomy15081930
Chicago/Turabian StyleWang, Guofang, Juanling Wang, Mingjing Huang, Jiancheng Zhang, Xuefang Huang, and Wuping Zhang. 2025. "Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China" Agronomy 15, no. 8: 1930. https://doi.org/10.3390/agronomy15081930
APA StyleWang, G., Wang, J., Huang, M., Zhang, J., Huang, X., & Zhang, W. (2025). Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China. Agronomy, 15(8), 1930. https://doi.org/10.3390/agronomy15081930