Trichoderma harzianum DQ002 Enhances Oriental Melon Resistance Against Fusarium oxysporum f.sp. melonis by Regulating Soil Microbial Communities in the Rhizosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experiment Design
2.3. Plant and Soil Sample
2.4. Soil Enzymatic Activity and Physical and Chemical Properties
2.5. Soil DNA Extraction
2.6. 16S rRNA and ITS Gene Amplicon Sequencing
2.7. Bioinformatics and Statistical Analysis
3. Results
3.1. The Effect of T. harzianum on the Growth of Melons and the Disease Incidence of Melon Fusarium Wilt
3.2. The Effect of T. harzianum on the Soil Microenvironment
3.3. Microbial Community Diversity and Structure in the Melon Rhizosphere Soil
3.3.1. Alpha-Diversity of the Soil Microbial Community
3.3.2. Relative Abundance of Soil Microbial Communities
3.4. Correlation Between Soil Microbial Community and Environmental Factors
3.5. Functional Predictions of Soil Microbial Communities in Rhizosphere Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, G.; Lian, Q.; Zhang, Z.; Fu, Q.; He, Y.; Ma, S.; Ruggieri, V.; Monforte, A.J.; Wang, P.; Julca, I. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef]
- He, D.; Yao, X.; Zhang, P.; Liu, W.; Huang, J.; Sun, H.; Wang, N.; Zhang, X.; Wang, H.; Zhang, H. Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots. Microbiol. Spectr. 2023, 11, e01786-23. [Google Scholar] [CrossRef]
- Jing, J.; Cong, W.-F.; Bezemer, T.M. Legacies at work: Plant–soil–microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022, 27, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Meng, X.; Li, T.; Raza, W.; Liu, D.; Shen, Q. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: Possible role of increasing nutrient availabilities. Microorganisms 2020, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Nie, J.; Wu, X.; Zhang, Y.; Li, X.; Wu, X.; Yin, K.; Jin, Y. Oriental melon roots metabolites changing response to the pathogen of Fusarium oxysporum f. sp. melonis mediated by Trichoderma harzianum. Front. Sustain. Food Syst. 2024, 8, 1354468. [Google Scholar] [CrossRef]
- Wang, S.; Yang, L.; Su, M.; Ma, X.; Sun, Y.; Yang, M.; Zhao, P.; Shen, J.; Zhang, F.; Goulding, K. Increasing the agricultural, environmental and economic benefits of farming based on suitable crop rotations and optimum fertilizer applications. Field Crops Res. 2019, 240, 78–85. [Google Scholar] [CrossRef]
- Aslam, A.; Zhao, S.; Azam, M.; Lü, X.; He, N.; Li, B.; Dou, J.; Zhu, H.; Liu, W. Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. PeerJ 2020, 8, e8259. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Liu, Z.; Li, Y.; Li, M.; Meng, Q.; Yang, Z.; Luo, Y.; Zhang, Q.; Yan, M. Trichoderma harzianum prevents red kidney bean root rot by increasing plant antioxidant enzyme activity and regulating the rhizosphere microbial community. Front. Microbiol. 2024, 15, 1348680. [Google Scholar] [CrossRef]
- Ding, M.; Dai, H.; He, Y.; Liang, T.; Zhai, Z.; Zhang, S.; Hu, B.; Cai, H.; Dai, B.; Xu, Y.; et al. Continuous cropping system altered soil microbial communities and nutrient cycles. Front. Microbiol. 2024, 15, 1374550. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Bai, B.; Liu, C.; Zhang, C.Z.; He, X.; Wang, H.; Peng, W.; Zheng, C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J. Adv. Res. 2022, 49, 81–102. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhao, Q.; Li, W.; Gao, L.; Liu, G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front. Microbiol. 2023, 14, 1146210. [Google Scholar] [CrossRef]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Hu, J.; Li, H.; Zhao, Z.; Wu, Y.; Li, J.; Zhou, Y.; Yang, K.; Yang, H. Trichoderma harzianum inoculation promotes sweet sorghum growth in the saline soil by modulating rhizosphere available nutrients and bacterial community. Front. Plant Sci. 2023, 14, 1258131. [Google Scholar] [CrossRef] [PubMed]
- Hontoria, C.; García-González, I.; Quemada, M.; Roldán, A.; Alguacil, M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total Environ. 2019, 660, 913–922. [Google Scholar] [CrossRef]
- Naylor, D.; McClure, R.; Jansson, J. Trends in microbial community composition and function by soil depth. Microorganisms 2022, 10, 540. [Google Scholar] [CrossRef]
- Gu, X.; Yang, N.; Zhao, Y.; Liu, W.; Li, T. Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields. BMC Microbiol. 2022, 22, 189. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.-Y.; Jiang, Y.-J.; He, X.-Y.; Qiu, Y.-H.; Ren, L.-H.; Fu, J.-W. Effect of continuous cropping of hot pepper on soil bacterial community. Acta Microbiol. Sin. 2023, 63, 297–318. [Google Scholar] [CrossRef]
- Zhou, F.; Li, X.; Tang, L. Growth Promotion and Stress Resistance of Synthetic Microbial Community: A Review. Soils 2023, 55, 1170–1175. [Google Scholar] [CrossRef]
- Mao, T.; Jiang, X. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application. Sci. Rep. 2021, 11, 21585. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Hao, X.; Wang, Z.; Wang, Z.; Liu, S.; Tao, C.; Wang, D.; Wang, B.; Shen, Z. Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production. Npj Biofilms Microbiomes 2023, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Van Hee, S.; Segurado Luchsinger, A.E.; Cusumano, A.; Masschelein, J.; Jacquemyn, H.; Lievens, B. The plant-beneficial fungus Trichoderma harzianum T22 modulates plant metabolism and negatively affects Nezara viridula. BMC Plant Biol. 2025, 25, 615. [Google Scholar] [CrossRef]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. The Trichoderma harzianum Kelch Protein ThKEL1 Plays a Key Role in Root Colonization and the Induction of Systemic Defense in Brassicaceae Plants. Front. Plant Sci. 2019, 10, 1478. [Google Scholar] [CrossRef]
- Lian, H.; Li, R.; Ma, G.; Zhao, Z.; Zhang, T.; Li, M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci. Rep. 2023, 13, 17606. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, L.; Deng, Y.; Zhi, X.; Jiang, Y.-H.; Tu, Q.; Xie, J.; Van Nostrand, J.D.; He, Z.; Yang, Y. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 2011, 5, 1303–1313. [Google Scholar] [CrossRef]
- Crowther, T.W.; Maynard, D.S.; Leff, J.W.; Oldfield, E.E.; McCulley, R.L.; Fierer, N.; Bradford, M.A. Predicting the responsiveness of soil biodiversity to deforestation: A cross-biome study. Glob. Change Biol. 2014, 20, 2983–2994. [Google Scholar] [CrossRef]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–270. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.-J.; Weber, N.; Schuster, S.C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef]
- Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015, 3, e1029. [Google Scholar] [CrossRef]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef]
- Zgadzaj, R.; Garrido-Oter, R.; Jensen, D.B.; Koprivova, A.; Schulze-Lefert, P.; Radutoiu, S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc. Natl. Acad. Sci. USA 2016, 113, E7996–E8005. [Google Scholar] [CrossRef]
- Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80, 7562–7570. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 2019, 672295. [Google Scholar] [CrossRef]
- Silva, G.R.; de Pina Cavalcanti, F.; Melo, R.M.; Cintra, E.; Lima, E.M.; Hamann, P.R.V.; do Vale, L.H.; Ulhoa, C.J.; Almeida, F.; Noronha, E.F. Extracellular vesicles from the mycoparasitic fungus Trichoderma harzianum. Antonie Leeuwenhoek 2024, 117, 64. [Google Scholar] [CrossRef] [PubMed]
- Carillo, P.; Woo, S.; Comite, E.; El Nakhel, C.; Rouphael, Y.; Fusco, G.; Vinale, F. Application of Trichoderma harzianum, 6-pentyl-α-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants 2020, 9, 771. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zou, C.; Jiang, Y.; Yu, X.; Ye, X. Effects of reduced phosphate fertilizer and increased Trichoderma application on the growth, yield, and quality of pepper. Plants 2023, 12, 2998. [Google Scholar] [CrossRef]
- Lombardi, N.; Salzano, A.M.; Troise, A.D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Caira, S.; Lorito, M.; d’Errico, G. Effect of Trichoderma bioactive metabolite treatments on the production, quality, and protein profile of strawberry fruits. J. Agric. Food Chem. 2020, 68, 7246–7258. [Google Scholar] [CrossRef]
- Illescas, M.; Rubio, M.B.; Hernandez-Ruiz, V.; Moran-Diez, M.E.; Martinez de Alba, A.E.; Nicolás, C.; Monte, E.; Hermosa, R. Effect of inorganic N top dressing and Trichoderma harzianum seed-inoculation on crop yield and the shaping of root microbial communities of wheat plants cultivated under high basal N fertilization. Front. Plant Sci. 2020, 11, 575861. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, Y.; Xia, Y.; Miao, Y.; Shao, J.; Xuan, W.; Liu, Y.; Xun, W.; Yan, Q.; Shen, Q. Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling. Cell Rep. 2024, 43, 114030. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Huang, H.; Jing, J.; Zhao, H.; Wang, L.; Long, X.-E. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl. Microbiol. Biotechnol. 2018, 102, 5717–5729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, S.; Liu, X.; Ren, X.; Wang, S.; Gao, Z. The effects of Trichoderma viride T23 on rhizosphere soil microbial communities and the metabolomics of muskmelon under continuous cropping. Agronomy 2023, 13, 1092. [Google Scholar] [CrossRef]
- Li, J.; Philp, J.; Li, J.; Wei, Y.; Li, H.; Yang, K.; Ryder, M.; Toh, R.; Zhou, Y.; Denton, M.D. Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community. Microorganisms 2020, 8, 1325. [Google Scholar] [CrossRef]
- Rahman, M.; Borah, S.M.; Borah, P.K.; Bora, P.; Sarmah, B.K.; Lal, M.K.; Tiwari, R.K.; Kumar, R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. Front. Plant Sci. 2023, 14, 1141506. [Google Scholar] [CrossRef]
- Fu, J.; Xiao, Y.; Wang, Y.-f.; Liu, Z.-h.; Yang, K. Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Sci. Rep. 2021, 11, 11152. [Google Scholar] [CrossRef] [PubMed]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef]
- Fan, K.; Delgado-Baquerizo, M.; Guo, X.; Wang, D.; Zhu, Y.-g.; Chu, H. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021, 15, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yu, J.; Hou, D.; Yue, H.; Zhang, D.; Li, Y.; Lyu, J.; Jin, L.; Jin, N. Response of soil microbial community diversity to continuous cucumber cropping in facilities along the Yellow River irrigation area. PLoS ONE 2023, 18, e0289772. [Google Scholar] [CrossRef]
- Mahapatra, S.; Yadav, R.; Ramakrishna, W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 2022, 132, 3543–3562. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, Z.; Sun, H.; Guo, H.; Song, Y.; Zhang, H.; Ruan, Y.; Xu, Q.; Huang, Q.; Shen, Q. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects. Microbiome 2024, 12, 101. [Google Scholar] [CrossRef]
- Pal, G.; Saxena, S.; Kumar, K.; Verma, A.; Sahu, P.K.; Pandey, A.; White, J.F.; Verma, S.K. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol. Res. 2022, 265, 127201. [Google Scholar] [CrossRef]
- Todorović, I.; Moënne-Loccoz, Y.; Raičević, V.; Jovičić-Petrović, J.; Muller, D. Microbial diversity in soils suppressive to Fusarium diseases. Front. Plant Sci. 2023, 14, 1228749. [Google Scholar] [CrossRef]
- Jiao, S.; Chu, H.; Zhang, B.; Wei, X.; Chen, W.; Wei, G. Linking soil fungi to bacterial community assembly in arid ecosystems. Imeta 2022, 1, e2. [Google Scholar] [CrossRef]
- Gao, Z.; Li, P.; Li, C.; Tang, R.; Wang, M.; Chen, J.; Yang, Y.; He, Z.; Xiao, Z.; Ma, Y. Identification, functional annotation, and isolation of phosphorus-solubilizing bacteria in the rhizosphere soil of Swida wilsoniana (Wanger) Sojak. Appl. Soil Ecol. 2024, 194, 105207. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Guan, Y.; Liu, Z.; Pan, X.; Zhang, Y.; Zhang, Y.; Wang, Q. Trichoderma spp. promotes ginseng biomass by influencing the soil microbial community. Front. Microbiol. 2024, 15, 1283492. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Hai, D.; Li, J.; Jiang, D.; Cheng, J.; Fu, Y.; Xiao, X.; Yin, H.; Lin, Y.; Chen, T.; Li, B. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat. Commun. 2024, 15, 4748. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-K.; Wang, P.-H.; Lee, M.-H. Endophytic bacterium Lysobacter firmicutimachus strain 5-7 is a promising biocontrol agent against rice seedling disease caused by Pythium arrhenomanes in nursery trays. Plant Dis. 2023, 107, 1075–1086. [Google Scholar] [CrossRef]
- Kang, B.; Bowatte, S.; Hou, F. Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China. J. Arid. Environ. 2021, 184, 104316. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Zhang, M.; Yang, Q.; Feng, B. Broomcorn millet (Panicum miliaceum L.) tolerates soil salinity by regulating salt-tolerance mechanism and reshaping rhizosphere microorganisms. Plant Soil 2023, 492, 261–284. [Google Scholar] [CrossRef]
- Shao, B.; Xie, Y.-G.; Zhang, L.; Ruan, Y.; Liang, B.; Zhang, R.; Xu, X.; Wang, W.; Lin, Z.; Pei, X. Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle. Nat. Commun. 2025, 16, 1202. [Google Scholar] [CrossRef]
- Waigi, M.G.; Kang, F.; Goikavi, C.; Ling, W.; Gao, Y. Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: A review. Int. Biodeterior. Biodegrad. 2015, 104, 333–349. [Google Scholar] [CrossRef]
- Wang, F.; Wei, Y.; Yan, T.; Wang, C.; Chao, Y.; Jia, M.; An, L.; Sheng, H. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance. Front. Plant Sci. 2022, 13, 1002772. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, X.; Cao, Z.; Zhao, K.; Wang, S.; Chen, M.; Hu, X. Growth-promoting S phingomonas paucimobilis ZJSH 1 associated with D endrobium officinale through phytohormone production and nitrogen fixation. Microb. Biotechnol. 2014, 7, 611–620. [Google Scholar] [CrossRef]
- Ma, Q.; Hill, P.W.; Chadwick, D.R.; Wu, L.; Jones, D.L. Competition for S-containing amino acids between rhizosphere microorganisms and plant roots: The role of cysteine in plant S acquisition. Biol. Fertil. Soils 2021, 57, 825–836. [Google Scholar] [CrossRef]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; García-Caparrós, P.; Ali, O.M.; Latef, A.A.H.A. Influence of glycine betaine (natural and synthetic) on growth, metabolism and yield production of drought-stressed maize (Zea mays L.) plants. Plants 2021, 10, 2540. [Google Scholar] [CrossRef]
- Kawade, K.; Tabeta, H.; Ferjani, A.; Hirai, M.Y. The roles of functional amino acids in plant growth and development. Plant Cell Physiol. 2023, 64, 1482–1493. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhu, M.; Li, Q.; Wang, X.; Wan, J.; Zhang, Y. Glycine Betaine-Mediated Root Priming Improves Water Stress Tolerance in Wheat (Triticum aestivum L.). Agriculture 2021, 11, 1127. [Google Scholar] [CrossRef]
- Xiao, P.; Qu, J.; Wang, Y.; Fang, T.; Xiao, W.; Wang, Y.; Zhang, Y.; Khan, M.; Chen, Q.; Xu, X. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. Plant Physiol. 2024, 196, 634–650. [Google Scholar] [CrossRef]
- Li, Q.; Xiang, P.; Zhang, T.; Wu, Q.; Bao, Z.; Tu, W.; Li, L.; Zhao, C. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. Sci. Total Environ. 2022, 821, 153479. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, K.; Shen, D.; Chou, S.H.; Gomelsky, M.; Qian, G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ. Microbiol. 2021, 23, 5704–5715. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef] [PubMed]
Sample | Chao1 | Observed | Pielou | Shannon | Simpson | Coverage (%) |
---|---|---|---|---|---|---|
CK-10 | 1569.2 ± 26.6 b | 1439.6 ± 11.5 b | 0.9 ± 0.0 a | 9.5 ± 0.0 b | 0.9 ± 0.0 a | 98.6 |
MM-10 | 1724.2 ± 18.2 a | 1584.3 ± 5.5 a | 0.9 ± 0.0 a | 9.6 ± 0.0 a | 0.9 ± 0.0 a | 98.5 |
CK-20 | 1603.6 ± 4.1 b | 1512.8 ± 16.2 a | 0.9 ± 0.0 a | 9.6 ± 0.0 b | 0.9 ± 0.0 a | 98.1 |
MM-20 | 1638.5 ± 0.3 a | 1534.8 ± 12.0 a | 0.9 ± 0.0 a | 9.7 ± 0.0 a | 0.9 ± 0.0 a | 98.4 |
CK-30 | 1737.9 ± 3.1 b | 1643.1 ± 14.5 b | 0.9 ± 0.0 a | 9.7 ± 0.0 a | 0.9 ± 0.0 a | 98.4 |
MM-30 | 1881.5 ± 5.5 a | 1692.2 ± 5.4 a | 0.9 ± 0.0 b | 9.7 ± 0.0 a | 0.9 ± 0.0 a | 98.1 |
CK-40 | 2028.4 ± 13.4 a | 1761.6 ± 8.2 a | 0.9 ± 0.0 a | 9.8 ± 0.0 a | 0.9 ± 0.0 a | 98.0 |
MM-40 | 1927.4 ± 19.1 b | 1755.9 ± 12.5 a | 0.9 ± 0.0 a | 9.8 ± 0.0 a | 0.9 ± 0.0 a | 98.2 |
CK-50 | 1752.0 ± 11.9 a | 1659.2 ± 11.6 a | 0.9 ± 0.0 a | 10.0 ± 0.0 a | 0.9 ± 0.0 a | 98.6 |
MM-50 | 1551.6 ± 17.8 b | 1427.7 ± 8.3 b | 0.9 ± 0.0 a | 9.8 ± 0.0 b | 0.9 ± 0.0 a | 99.0 |
CK-60 | 1756.3 ± 15.9 a | 1680.0 ± 9.9 a | 0.9 ± 0.0 a | 10.0 ± 0.0 a | 0.9 ± 0.0 a | 98.5 |
MM-60 | 1736.2 ± 7.3 a | 1660.6 ± 14.6 a | 0.9 ± 0.0 a | 9.9 ± 0.0 a | 0.9 ± 0.0 a | 98.6 |
Sample | Chao1 | Observed | Pielou | Shannon | Simpson | Coverage (%) |
---|---|---|---|---|---|---|
CK-10 | 357.2 ± 9.2 a | 356.6 ± 9.3 a | 0.6 ± 0.0 a | 5.6 ± 0.2 a | 0.9 ± 0.0 a | 99.9 |
MM-10 | 232.1 ± 9.2 b | 224.7 ± 5.4 b | 0.2 ± 0.0 b | 1.7 ± 0.1 b | 0.3 ± 0.0 b | 99.9 |
CK-20 | 378.1 ± 7.2 a | 377.0 ± 7.4 a | 0.7 ± 0.0 a | 6.0 ± 0.1 a | 0.9 ± 0.0 a | 99.9 |
MM-20 | 250.1 ± 8.7 b | 260.5 ± 14.4 b | 0.3 ± 0.0 b | 2.9 ± 0.2 b | 0.5 ± 0.0 b | 99.9 |
CK-30 | 361.0 ± 10.1 a | 373.2 ± 5.6 a | 0.5 ± 0.0 a | 5.5 ± 0.2 a | 0.9 ± 0.0 a | 99.9 |
MM-30 | 238.1 ± 3.2 b | 237.5 ± 3.2 b a | 0.4 ± 0.0 b | 3.0 ± 0.1 b | 0.6 ± 0.0 b | 99.9 |
CK-40 | 289.9 ± 4.1 a | 288.4 ± 3.3 a | 0.6 ± 0.0 a | 4.9 ± 0.1 a | 0.9 ± 0.0 a | 99.9 |
MM-40 | 233.8 ± 5.5 b | 233.0 ± 5.8 b | 0.4 ± 0.0 b | 3.2 ± 0.1 b | 0.6 ± 0.0 b | 99.9 |
CK-50 | 402.5 ± 5.9 a | 391.2 ± 7.3 a | 0.6 ± 0.0 a | 6.0 ± 0.1 a | 0.9 ± 0.0 a | 99.9 |
MM-50 | 260.9 ± 7.5 b | 254.5 ± 6.5 b | 0.4 ± 0.0 b | 3.2 ± 0.0 b | 0.6 ± 0.0 b | 99.9 |
CK-60 | 372.1 ± 11.9 a | 376.7 ± 0.1 a | 0.6 ± 0.0 a | 5.4 ± 0.0 a | 0.9 ± 0.0 a | 99.9 |
MM-60 | 249.9 ± 2.9 b | 245.8 ± 5.4 b | 0.3 ± 0.0 b | 3.0 ± 0.1 b | 0.6 ± 0.0 b | 99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, C.; Zhang, Y.; Yue, X.; Zhong, Y.; Yang, T.; Jin, Y.; Geng, X. Trichoderma harzianum DQ002 Enhances Oriental Melon Resistance Against Fusarium oxysporum f.sp. melonis by Regulating Soil Microbial Communities in the Rhizosphere. Agronomy 2025, 15, 1931. https://doi.org/10.3390/agronomy15081931
Xie Y, Li C, Zhang Y, Yue X, Zhong Y, Yang T, Jin Y, Geng X. Trichoderma harzianum DQ002 Enhances Oriental Melon Resistance Against Fusarium oxysporum f.sp. melonis by Regulating Soil Microbial Communities in the Rhizosphere. Agronomy. 2025; 15(8):1931. https://doi.org/10.3390/agronomy15081931
Chicago/Turabian StyleXie, Yihan, Chunxia Li, Yuting Zhang, Xiaoqian Yue, Yuanyi Zhong, Ting Yang, Yazhong Jin, and Xueqing Geng. 2025. "Trichoderma harzianum DQ002 Enhances Oriental Melon Resistance Against Fusarium oxysporum f.sp. melonis by Regulating Soil Microbial Communities in the Rhizosphere" Agronomy 15, no. 8: 1931. https://doi.org/10.3390/agronomy15081931
APA StyleXie, Y., Li, C., Zhang, Y., Yue, X., Zhong, Y., Yang, T., Jin, Y., & Geng, X. (2025). Trichoderma harzianum DQ002 Enhances Oriental Melon Resistance Against Fusarium oxysporum f.sp. melonis by Regulating Soil Microbial Communities in the Rhizosphere. Agronomy, 15(8), 1931. https://doi.org/10.3390/agronomy15081931