Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Cupin Genes in Rice
2.2. Physicochemical Property Analysis
2.3. Chromosomal Localization of Cupin Genes in Rice
2.4. Phylogenetic Analysis, Gene Structure, and Conserved Motif Analysis of CUPIN Genes in Rice
2.5. Collinearity Analysis and Gene Duplication of Cupin Genes in Rice
2.6. Analysis of Cis-Acting Elements in Rice Cupin Gene Promoters
2.7. Plant Materials and Stress Treatment
2.8. RNA Extraction and qRT-PCR Analysis
2.9. Expression Patterns of Cupin Family Genes in Rice
2.10. Yeast Transgene Validation
2.11. Data Processing
3. Results
3.1. Genome-Wide Identification of Cupin Genes in Rice
3.2. Phylogenetic Analysis of Cupin Genes in Rice
3.3. Physicochemical Property of Cupin Proteins in Rice
3.4. Gene Structure, Conserved Domain, and Motifs of Cupin Genes in Rice
3.5. Gene Duplication and Synteny Analysis of Cupin Genes in Rice
3.6. Promoter Region Cis-Acting Regulatory Elements Analysis
3.7. Spatial Expression Profiles of OsCupin Genes
3.8. Expression Pattern Analysis of OsCupin Genes Under Different Hormones
3.9. Expression Pattern Analysis of OsCupin Genes Under Abiotic Stress
3.10. Response of pYES2 Overexpression Yeast to Abiotic Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunwell, J.M. Cupins: A New Superfamily of Functionally Diverse Proteins That Include Germins and Plant Storage Proteins. Biotechnol. Genet. Eng. Rev. 1998, 15, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Khuri, S.; Bakker, F.T.; Dunwell, J.M. Phylogeny, Function, and Evolution of the Cupins, a Structurally Conserved, Functionally Diverse Superfamily of Proteins. Mol. Biol. Evol. 2001, 18, 593–605. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Z.; Zhang, S.; Zhang, X.; Xue, X.; Chen, Y.; Zhang, Z.; Lai, Z.; Lin, Y. Genome-Wide Analysis of the GLP Gene Family and Overexpression of GLP1-5-1 to Promote Lignin Accumulation during Early Somatic Embryo Development in Dimocarpus Longan. BMC Genom. 2023, 24, 138. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Wang, X.; Qiao, J.; Wang, H. Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica Napus. Int. J. Mol. Sci. 2024, 25, 11518. [Google Scholar] [CrossRef]
- Wendler, W.M.; Kremmer, E.; Förster, R.; Winnacker, E.L. Identification of Pirin, a Novel Highly Conserved Nuclear Protein. J. Biol. Chem. 1997, 272, 8482–8489. [Google Scholar] [CrossRef]
- Pochapsky, T.C.; Pochapsky, S.S.; Ju, T.; Mo, H.; Al-Mjeni, F.; Maroney, M.J. Modeling and Experiment Yields the Structure of Acireductone Dioxygenase from Klebsiella Pneumoniae. Nat. Struct. Biol. 2002, 9, 966–972. [Google Scholar] [CrossRef]
- Jiang, B.; Zhong, Z.; Gu, L.; Zhang, X.; Wei, J.; Ye, C.; Lin, G.; Qu, G.; Xiang, X.; Wen, C.; et al. Light-Induced LLPS of the CRY2/SPA1/FIO1 Complex Regulating mRNA Methylation and Chlorophyll Homeostasis in Arabidopsis. Nat. Plants 2023, 9, 2042–2058. [Google Scholar] [CrossRef]
- Banerjee, J.; Maiti, M.K. Functional Role of Rice Germin-like Protein1 in Regulation of Plant Height and Disease Resistance. Biochem. Biophys. Res. Commun. 2010, 394, 178–183. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Zhu, F.; Li, H.; Li, L.; Yang, Q.; Chi, X.; Yu, S.; Liang, X. Characterization of Peanut Germin-like Proteins, AhGLPs in Plant Development and Defense. PLoS ONE 2013, 8, e61722. [Google Scholar] [CrossRef] [PubMed]
- Leitner, A.; Jensen-Jarolim, E.; Grimm, R.; Wüthrich, B.; Ebner, H.; Scheiner, O.; Kraft, D.; Ebner, C. Allergens in Pepper and Paprika. Immunologic Investigation of the Celery-Birch-Mugwort-Spice Syndrome. Allergy 1998, 53, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Akhtar, W.; Rehman, S.; Naqvi, S.M.S.; Mahmood, T. Functional Characterization of the Rice Root Germin-like Protein Gene-1 (OsRGLP1) Promoter in Nicotiana Tabacum. 3 Biotech 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, I.; Mila, I.; Bouzayen, M.; Jayasankar, S. Regulation of Two Germin-like Protein Genes during Plum Fruit Development. J. Exp. Bot. 2010, 61, 1761–1770. [Google Scholar] [CrossRef]
- Bruno, L.; Spadafora, N.D.; Iaria, D.; Chiappetta, A.; Bitonti, M.B. Developmental Stimuli and Stress Factors Affect Expression of ClGLP1, an Emerging Allergen-Related Gene in Citrus Limon. Plant Physiol. Biochem. 2014, 79, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Rasheed, A.; Mahmood, T. Functional Characterization of Germin and Germin-like Protein Genes in Various Plant Species Using Transgenic Approaches. Biotechnol. Lett. 2016, 38, 1405–1421. [Google Scholar] [CrossRef]
- Lapik, Y.R.; Kaufman, L.S. The Arabidopsis Cupin Domain Protein AtPirin1 Interacts with the G Protein Alpha-Subunit GPA1 and Regulates Seed Germination and Early Seedling Development. Plant Cell 2003, 15, 1578–1590. [Google Scholar] [CrossRef]
- Sung, B.M.; Carvalho, G.G.; Wairich, A.; Cesarino, I. Searching for Novel Transcriptional Regulators of Lignin Deposition Within the PIRIN Family in the Model C4 Grass Setaria Viridis. Tropical Plant Biol. 2021, 14, 93–105. [Google Scholar] [CrossRef]
- Warpeha, K.M.; Upadhyay, S.; Yeh, J.; Adamiak, J.; Hawkins, S.I.; Lapik, Y.R.; Anderson, M.B.; Kaufman, L.S. The GCR1, GPA1, PRN1, NF-Y Signal Chain Mediates Both Blue Light and Abscisic Acid Responses in Arabidopsis. Plant Physiol. 2007, 143, 1590–1600. [Google Scholar] [CrossRef]
- Zhang, B.; Sztojka, B.; Escamez, S.; Vanholme, R.; Hedenström, M.; Wang, Y.; Turumtay, H.; Gorzsás, A.; Boerjan, W.; Tuominen, H. PIRIN2 Suppresses S-Type Lignin Accumulation in a Noncell-Autonomous Manner in Arabidopsis Xylem Elements. New Phytol. 2020, 225, 1923–1935. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Feussner, K.; Zierer, W.; Rabinovych, V.; Klebl, F.; Feussner, I.; Sauer, N. Phloem-Specific Expression of Yang Cycle Genes and Identification of Novel Yang Cycle Enzymes in Plantago and Arabidopsis. Plant Cell 2011, 23, 1904–1919. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.J.; Wang, H.X.; Jiang, K.; Perovic, I.; Deshpande, A.; Pochapsky, T.C.; Temple, B.R.S.; Hicks, S.N.; Harden, T.K.; Jones, A.M. Acireductone Dioxygenase 1 (ARD1) Is an Effector of the Heterotrimeric G Protein Beta Subunit in Arabidopsis. J. Biol. Chem. 2011, 286, 30107–30118. [Google Scholar] [CrossRef]
- Sauter, M.; Lorbiecke, R.; Ouyang, B.; Pochapsky, T.C.; Rzewuski, G. The Immediate-Early Ethylene Response Gene OsARD1 Encodes an Acireductone Dioxygenase Involved in Recycling of the Ethylene Precursor S-Adenosylmethionine. Plant J. 2005, 44, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Xiong, W.; Yin, C.; Xie, X.; Jin, Y.-J.; Zhang, S.; Yang, B.; Ye, G.; Chen, S.; Luan, W.-J. Overexpression of OsARD1 Improves Submergence, Drought, and Salt Tolerances of Seedling Through the Enhancement of Ethylene Synthesis in Rice. Front. Plant Sci. 2019, 10, 1088. [Google Scholar] [CrossRef]
- Aghdasi, M.; Fazli, F.; Bagherieh-Najjar, M.B. Analyses of Arabidopsis trr14 T-DNA Insertion Mutants Reveal an Essential Role in Seed Germination. Plant Mol. Biol. Rep. 2012, 30, 319–329. [Google Scholar] [CrossRef]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Datta, D.R.; Anisuzzaman, M.; Ikbal, M.F. Advanced Breeding Strategies and Future Perspectives of Salinity Tolerance in Rice. Agronomy 2021, 11, 1631. [Google Scholar] [CrossRef]
- Sakata, K.; Antonio, B.A.; Mukai, Y.; Nagasaki, H.; Sakai, Y.; Makino, K.; Sasaki, T. INE: A Rice Genome Database with an Integrated Map View. Nucleic Acids Res. 2000, 28, 97–101. [Google Scholar] [CrossRef]
- International Rice Genome Sequencing Project. The Map-Based Sequence of the Rice Genome. Nature 2005, 436, 793–800. [Google Scholar] [CrossRef]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare Reference Genome Using next Generation Sequence and Optical Map Data. Rice 2013, 6, 4. [Google Scholar] [CrossRef]
- Shang, L.; He, W.; Wang, T.; Yang, Y.; Xu, Q.; Zhao, X.; Yang, L.; Zhang, H.; Li, X.; Lv, Y.; et al. A Complete Assembly of the Rice Nipponbare Reference Genome. Mol. Plant 2023, 16, 1232–1236. [Google Scholar] [CrossRef]
- Basu, S.; Roychoudhury, A. Expression Profiling of Abiotic Stress-Inducible Genes in Response to Multiple Stresses in Rice (Oryza sativa L.) Varieties with Contrasting Level of Stress. Tolerance. Biomed. Res. Int. 2014, 2014, 706890. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, Y.; Liu, Z.; Cheng, H.; Xue, Y. HemI: A Toolkit for Illustrating Heatmaps. PLoS ONE 2014, 9, e111988. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Song, X.; Yue, W.; Liu, L.; Ge, F.; Wang, J. Identification and Functional Characterization of Abiotic Stress Tolerance-Related PLATZ Transcription Factor Family in Barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2024, 25, 10191. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.; Freitas, R.; Rajasekhar, B.T.; Teixeira, A.R.; Ferreira, R.B. The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad. PLoS ONE 2010, 5, e8542. [Google Scholar] [CrossRef] [PubMed]
- Dunwell, J.M.; Culham, A.; Carter, C.E.; Sosa-Aguirre, C.R.; Goodenough, P.W. Evolution of Functional Diversity in the Cupin Superfamily. Trends Biochem. Sci. 2001, 26, 740–746. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Chen, C.; Shen, Z. Genome-Wide Characterization and Expression Analysis of the Germin-Like Protein Family in Rice and Arabidopsis. Int. J. Mol. Sci. 2016, 17, 1622. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Zou, C.; Lehti-Shiu, M.D.; Shinozaki, K.; Shiu, S.-H. Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli. Plant Physiol. 2008, 148, 993–1003. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene Duplication and Evolution in Recurring Polyploidization-Diploidization Cycles in Plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
- Yamahara, T.; Shiono, T.; Suzuki, T.; Tanaka, K.; Takio, S.; Sato, K.; Yamazaki, S.; Satoh, T. Isolation of a Germin-like Protein with Manganese Superoxide Dismutase Activity from Cells of a Moss, Barbula Unguiculata. J. Biol. Chem. 1999, 274, 33274–33278. [Google Scholar] [CrossRef]
- Membré, N.; Bernier, F.; Staiger, D.; Berna, A. Arabidopsis Thaliana Germin-like Proteins: Common and Specific Features Point to a Variety of Functions. Planta 2000, 211, 345–354. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Wang, S.; Liu, F. Expression Analysis of ThGLP, a New Germin-like Protein Gene, in Tamarix Hispida. J. For. Res. 2010, 21, 323–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xiao, M.; Shang, W.; Wang, X.; Gao, H.; Zheng, W.; Ma, Z. Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.). Agronomy 2025, 15, 1925. https://doi.org/10.3390/agronomy15081925
Chen H, Xiao M, Shang W, Wang X, Gao H, Zheng W, Ma Z. Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.). Agronomy. 2025; 15(8):1925. https://doi.org/10.3390/agronomy15081925
Chicago/Turabian StyleChen, Hongwei, Mingze Xiao, Wenqi Shang, Xianju Wang, Hong Gao, Wenjing Zheng, and Zuobin Ma. 2025. "Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.)" Agronomy 15, no. 8: 1925. https://doi.org/10.3390/agronomy15081925
APA StyleChen, H., Xiao, M., Shang, W., Wang, X., Gao, H., Zheng, W., & Ma, Z. (2025). Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.). Agronomy, 15(8), 1925. https://doi.org/10.3390/agronomy15081925