Unraveling the NRAMP Gene Family: Aegilops tauschii’s Prominent Barrier Against Metal Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of NRAMP Gene Family Members and Analysis of Their Physicochemical Properties
2.2. Method for Collinearity Analysis of AetNRAMP
2.3. The Cis-Acting Element Analysis of AetNRAMP
2.4. Plant Materials and Treatment Methods
2.5. RNA Extraction and qRT-PCR Analysis
3. Results
3.1. Analysis of the Physicochemical Properties of Members of the AetNRAMP Gene Family
3.2. Phylogenetic Tree Analysis of AetNRAMP Genes in A. tauschii
3.3. Chromosomal Location Analysis of the AetNRAMP Genes in A. tauschii
3.4. Collinearity Analysis of AetNRAMP
3.5. Analysis of the Cis-Acting Elements of AetNRAMP
3.6. Expression Analysis of AetNRAMP Genes Under the Stress of Different Heavy Metal Ions in Leaves and Root
3.7. Tolerance of AetNRAMP Heterologous Expression in Yeast to Metal Ions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current Status of Agricultural Soil Pollution by Heavy Metals in China: A Meta-Analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Long, T.; Chen, Z.; Liu, J.; Cui, W.; Leng, H.; Xing, Y.; Rodriguez, L.G.; Gao, Y.; Yao, Y. Genome-Wide Identification of NRAMP Family Genes in Populus Trichocarpa and Their Roles in Transport of Heavy Metals. Tree Genet. Genomes 2023, 19, 51. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron Homeostasis in Plants and Its Crosstalk with Copper, Zinc, and Manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Bozzi, A.T.; Bane, L.B.; Weihofen, W.A.; McCabe, A.L.; Singharoy, A.; Chipot, C.J.; Schulten, K.; Gaudet, R. Conserved Methionine Dictates Substrate Preference in Nramp-Family Divalent Metal Transporters. Proc. Natl. Acad. Sci. USA 2016, 113, 10310–10315. [Google Scholar] [CrossRef] [PubMed]
- Ishida, J.K.; Caldas, D.G.G.; Oliveira, L.R.; Frederici, G.C.; Leite, L.M.P.; Mui, T.S. Genome-Wide Characterization of the NRAMP Gene Family in Phaseolus Vulgaris Provides Insights into Functional Implications during Common Bean Development. Genet. Mol. Biol. 2018, 41, 820–833. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.; Du, G.; An, X. Genome-Wide Analysis of the Nramp Gene Family in Kenaf (Hibiscus cannabinus): Identification, Expression Analysis, and Response to Cadmium Stress. Plants 2024, 13, 2514. [Google Scholar] [CrossRef]
- Mäser, P.; Thomine, S.; Schroeder, J.I.; Ward, J.M.; Hirschi, K.; Sze, H.; Talke, I.N.; Amtmann, A.; Maathuis, F.J.M.; Sanders, D.; et al. Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiol. 2001, 126, 1646–1667. [Google Scholar] [CrossRef]
- Qin, L.; Han, P.; Chen, L.; Walk, T.C.; Li, Y.; Hu, X.; Xie, L.; Liao, H.; Liao, X. Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine max L.). Front. Plant Sci. 2017, 8, 1436. [Google Scholar] [CrossRef]
- Cellier, M.F.M. Nramp: From Sequence to Structure and Mechanism of Divalent Metal Import. In Metal Transporters; Lutsenko, S., Arguello, J.M., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2012; Volume 69, pp. 249–293. ISBN 978-0-12-394390-3. [Google Scholar]
- Tian, W.; He, G.; Qin, L.; Li, D.; Meng, L.; Huang, Y.; He, T. Genome-Wide Analysis of the NRAMP Gene Family in Potato (Solanum tuberosum): Identification, Expression Analysis and Response to Five Heavy Metals Stress. Ecotoxicol. Environ. Saf. 2021, 208, 111661. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Yao, Q.; Long, D.; Fan, X.; Kang, H.; Zeng, J.; Sha, L.; Zhang, H.; Zhou, Y.; et al. Overexpression of TtNRAMP6 Enhances the Accumulation of Cd in Arabidopsis. Gene 2019, 696, 225–232. [Google Scholar] [CrossRef]
- Nevo, Y.; Nelson, N. The NRAMP Family of Metal-Ion Transporters. Biochim. Biophys. Acta 2006, 1763, 609–620. [Google Scholar] [CrossRef]
- Nakanishi-Masuno, T.; Shitan, N.; Sugiyama, A.; Takanashi, K.; Inaba, S.; Kaneko, S.; Yazaki, K. The Crotalaria juncea Metal Transporter CjNRAMP1 Has a High Fe Uptake Activity, Even in an Environment with High Cd Contamination. Int. J. Phytoremediat. 2018, 20, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Lanquar, V.; Ramos, M.S.; Lelièvre, F.; Barbier-Brygoo, H.; Krieger-Liszkay, A.; Krämer, U.; Thomine, S. Export of Vacuolar Manganese by AtNRAMP3 and AtNRAMP4 Is Required for Optimal Photosynthesis and Growth under Manganese Deficiency. Plant Physiol. 2010, 152, 1986–1999. [Google Scholar] [CrossRef]
- Meena, M.; Aamir, M.; Kumar, V.; Swapnil, P.; Upadhyay, R.S. Evaluation of Morpho-Physiological Growth Parameters of Tomato in Response to Cd Induced Toxicity and Characterization of Metal Sensitive NRAMP3 Transporter Protein. Environ. Exp. Bot. 2018, 148, 144–167. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, Y. Differential Expression of Rice Nramp Genes in Response to Pathogen Infection, Defense Signal Molecules and Metal Ions. Physiol. Mol. Plant Pathol. 2004, 65, 235–243. [Google Scholar] [CrossRef]
- Bozzi, A.T.; Gaudet, R. Molecular Mechanism of Nramp-Family Transition Metal Transport. J. Mol. Biol. 2021, 433, 166991. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, E.P.; Guerinot, M.L. Put the Metal to the Petal: Metal Uptake and Transport throughout Plants. Curr. Opin. Plant Biol. 2006, 9, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Zhiguo, E.; Tingting, L.I.; Chen, C.; Lei, W. Genome-Wide Survey and Expression Analysis of P1B-ATPases in Rice, Maize and Sorghum. Rice Sci. 2018, 25, 208–217. [Google Scholar] [CrossRef]
- Luo, M.-C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.; Zhu, T.; Wang, L.; Wang, Y.; et al. Genome Sequence of the Progenitor of the Wheat D Genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef]
- Li, A.; Geng, S.; Zhang, L.; Liu, D.; Mao, L. Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. Mol. Plant 2015, 8, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xie, Q.; Yang, Q.; Cui, J.; Tan, W.; Zhang, D.; Xiang, J.; Deng, L.; Guo, Y.; Li, M.; et al. Genome-Wide Identification and Evolutionary Analysis of the NRAMP Gene Family in the AC Genomes of Brassica Species. BMC Plant Biol. 2024, 24, 311. [Google Scholar] [CrossRef]
- Gao, H.; Xie, W.; Yang, C.; Xu, J.; Li, J.; Wang, H.; Chen, X.; Huang, C.-F. NRAMP2, a Trans-Golgi Network-Localized Manganese Transporter, Is Required for Arabidopsis Root Growth under Manganese Deficiency. New Phytol. 2018, 217, 179–193. [Google Scholar] [CrossRef]
- Yan, L.; Jin, H.; Raza, A.; Huang, Y.; Gu, D.P.; Zou, X. Natural Resistance-Associated Macrophage Proteins (NRAMPs) Are Involved in Cadmium Enrichment in Peanut (Arachis hypogaea L.) under Cadmium Stress. Plant Growth Regul. 2024, 102, 619–632. [Google Scholar] [CrossRef]
- Wei, W.; Chai, T.; Zhang, Y.; Han, L.; Xu, J.; Guan, Z. The Thlaspi Caerulescens NRAMP Homologue TcNRAMP3 Is Capable of Divalent Cation Transport. Mol. Biotechnol. 2009, 41, 15–21. [Google Scholar] [CrossRef]
- Tiwari, M.; Sharma, D.; Dwivedi, S.; Singh, M.; Tripathi, R.D.; Trivedi, P.K. Expression in Arabidopsis and Cellular Localization Reveal Involvement of Rice NRAMP, OsNRAMP 1, in Arsenic Transport and Tolerance. Plant Cell Environ. 2014, 37, 140–152. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Prasad, B.K.; Sharma, P.K.; Kumar, R. Genome Wide Analysis and Identification of Nramp Gene Family in Wheat (Triticum aestivum L.). Pharma Innov. 2022, 11, 499–504. [Google Scholar]
- Yang, Z.; Yang, F.; Liu, J.-L.; Wu, H.-T.; Yang, H.; Shi, Y.; Liu, J.; Zhang, Y.-F.; Luo, Y.-R.; Chen, K.-M. Heavy Metal Transporters: Functional Mechanisms, Regulation, and Application in Phytoremediation. Sci. Total Environ. 2022, 809, 151099. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Hameed, R.; Saeed, M.; Shahani, A.A.A.; Huang, P.; Du, D.; Zulfiqar, U.; Alamri, S.; Alfagham, A.T. Corrigendum: Investigating the Dynamic Responses of Aegilops tauschii Coss. to Salinity, Drought, and Nitrogen Stress: A Comprehensive Study of Competitive Growth and Biochemical and Molecular Pathways. Front. Plant Sci. 2024, 15, 1415974. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, Y.; Yu, M.; Zhang, J.; Xu, D.; Lu, Z.; Qiao, G.; Qiu, W.; Zhuo, R. Transporters and Ascorbate–Glutathione Metabolism for Differential Cadmium Accumulation and Tolerance in Two Contrasting Willow Genotypes. Tree Physiol. 2020, 40, 1126–1142. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A.; AL-Huqail, A.A.; Ali, B.; Alghanem, S.M.S.; Shah, A.A.; Azeem, F.; Rizwan, M.; Al-Qthanin, R.N.; Soudy, F.A. Molecular Characterization of Genes Involved in Tolerance of Cadmium in Triticum aestivum (L.) under Cd Stress. J. Hazard. Mater. 2024, 464, 132955. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.-W.; Tu, S.-H.; Feng, W.-Q.; Xu, F.; Zhu, F.; Zhang, D.-W.; Du, J.-B.; Yuan, S.; Lin, H.-H. Comparative Study of Four Rice Cultivars with Different Levels of Cadmium Tolerance. Biologia 2013, 68, 74–81. [Google Scholar] [CrossRef]
- Cailliatte, R.; Schikora, A.; Briat, J.-F.; Mari, S.; Curie, C. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions. Plant Cell 2010, 22, 904–917. [Google Scholar] [CrossRef]
- Patel, M.; Surti, M.; Ashraf, S.A.; Adnan, M. Physiological and Molecular Responses to Heavy Metal Stresses in Plants. In Harsh Environment and Plant Resilience; Husen, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 171–202. ISBN 978-3-030-65911-0. [Google Scholar]
- Tyshenko, M.G.; d’Anjou, M.; Davies, P.L.; Daugulis, A.J.; Walker, V.K. Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast. Protein Expr. Purif. 2006, 47, 152–161. [Google Scholar] [CrossRef]
Gene Name | Gene ID | No. of aa | MW a | pI b | Instability Index | Aliphatic Index | GRAVY c | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
AetNRAMP1 | AET7Gv20813500 | 517 | 56,063.07 | 8.57 | 40.97 | 122.4 | 0.614 | Cell membrane |
AetNRAMP2 | AET4Gv20632200 | 519 | 56,699.38 | 6.17 | 35.6 | 115.74 | 0.516 | |
AetNRAMP3 | AET7Gv21136400 | 548 | 59,511.96 | 8.01 | 30.26 | 117.99 | 0.552 | |
AetNRAMP4 | AET3Gv20497700 | 637 | 69,455.15 | 7.84 | 48.67 | 111.95 | 0.509 | |
AetNRAMP5 | AET4Gv20725000 | 538 | 58,277.6 | 6.28 | 32.75 | 117.81 | 0.55 | |
AetNRAMP6 | AET5Gv20208000 | 547 | 59,061.8 | 5.2 | 33.39 | 113.86 | 0.464 | |
AetNRAMP7 | AET4Gv20161900 | 546 | 59,793.72 | 5.21 | 37.44 | 108.83 | 0.447 | |
AetNRAMP8 | AET6Gv20228500 | 275 | 29,315.85 | 6.13 | 31.05 | 91.44 | 0.195 | |
AetEIN2.1 | AET5Gv20406400 | 1268 | 138,419.91 | 6.53 | 47.75 | 92.48 | −0.03 | Chloroplast |
AetEIN2.2 | AET4Gv20860100 | 558 | 60,808.14 | 6.45 | 46.66 | 119.14 | 0.647 | Cell membrane |
AetEIN2.3 | AET4Gv20859600 | 527 | 57,280.19 | 5.92 | 37.79 | 122.09 | 0.775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Yang, F.; Liang, X.; Ding, Y.; Wang, N.; Han, X. Unraveling the NRAMP Gene Family: Aegilops tauschii’s Prominent Barrier Against Metal Stress. Agronomy 2025, 15, 1919. https://doi.org/10.3390/agronomy15081919
Li H, Li Y, Yang F, Liang X, Ding Y, Wang N, Han X. Unraveling the NRAMP Gene Family: Aegilops tauschii’s Prominent Barrier Against Metal Stress. Agronomy. 2025; 15(8):1919. https://doi.org/10.3390/agronomy15081919
Chicago/Turabian StyleLi, Hongying, Yibo Li, Fuqiang Yang, Xiaolin Liang, Yifan Ding, Ning Wang, and Xiaojiao Han. 2025. "Unraveling the NRAMP Gene Family: Aegilops tauschii’s Prominent Barrier Against Metal Stress" Agronomy 15, no. 8: 1919. https://doi.org/10.3390/agronomy15081919
APA StyleLi, H., Li, Y., Yang, F., Liang, X., Ding, Y., Wang, N., & Han, X. (2025). Unraveling the NRAMP Gene Family: Aegilops tauschii’s Prominent Barrier Against Metal Stress. Agronomy, 15(8), 1919. https://doi.org/10.3390/agronomy15081919