Recent Advances in the Remediation of Degraded and Contaminated Soils: A Review of Sustainable and Applied Strategies
Abstract
1. Introduction
2. Environmental Effects of Soil Degradation/Contamination
2.1. Loss of Soil Fertility
2.2. Water Pollution
2.3. Decreased Biodiversity
2.4. Erosion
2.5. Increased Greenhouse Gas Emissions
2.6. Impact on Food Safety
3. Recent Advances in Mitigating Soil Degradation/Decontamination
4. Comparative Evaluation of Dolomite-Based Soil Conditioners and Conventional Amendments
4.1. Comparative Analysis of Amendments
4.2. Case Study: Dolomite–Sewage Sludge
- -
- Soil fertility restoration via mineral and organic nutrient input.
- -
- pH correction and nutrient balance, particularly in acidic and depleted soils.
- -
- Improved soil structure due to organic matter promoting aggregation.
- -
- Resource recycling, aligning with EU circular economy goals.
4.3. Case Study: Dolomite–Slag
4.4. Case Study: Dolomite–Zeolite
- -
- pH regulation and metal immobilization: Dolomite raises soil pH, decreasing metal solubility, while zeolite’s high cation exchange capacity adsorbs heavy metals, reducing their mobility and uptake.
- -
- Sustained environmental safety: Over two years, the treatment kept metal bioavailability low, although caution is advised regarding potential re-mobilization of metals after the liming effect diminishes.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions: Towards a Thematic Strategy for Soil Protection [COM (2002) 179 Final]. 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2002:0179:FIN:EN:PDF (accessed on 10 December 2024).
- Nunes, F.C.; Alves, L.J.; Cseko, C.; de Carvalho, N.; Gross, E.; de Soares, T.M.; Narasimha, M.; Prasad, V. Chapter 9—Soil as a complex ecological system for meeting food and nutritional security. In Climate Change and Soil Interactions, 1st ed.; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Kögel-Knabner, I. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils? Sci. Total Environ. 2015, 536, 1045–1051. [Google Scholar] [CrossRef]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 11. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Young, A. Land Resources: Now and for the Future; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Lal, R. Enhancing crop yield in the developing countries through restoration of soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2006, 17, 197–209. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Pimentel, D.; (Cornell University, Ithaca, NY, USA). Personal communication. 18 July 2013. [Google Scholar]
- Roose, E.J.; Lal, R.; Feller, C.; Barthes, B.; Stewart, B.A. (Eds.) Soil Erosion and Carbon Dynamics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture 2021—Systems at Breaking Point; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, C.S.L., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Lal, R. Soil and Climate Change; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014; pp. 361–409. [Google Scholar]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, B.; Xu, D.; Gao, L.; Yin, L.S. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef] [PubMed]
- Barsova, N.; Motuzova, G.; Kolchanova, K.; Stepanov, A.; Karpukhin, M.; Minkina, T.; Mandzhieva, S. The effect of humic substances on Cu migration in the soil profile. Chem. Ecol. 2019, 35, 86–101. [Google Scholar] [CrossRef]
- Liu, X.P.; Bi, Q.F.; Qiu, L.L.; Li, K.J.; Yang, X.R.; Lin, X.Y. Increased risk of phosphorus and metal leaching from paddy soils after excessive manure application: Insights from a mesocosm study. Sci. Total Environ. 2019, 666, 778–785. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Łyszczarz, S.; Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Environ. Geochem. Health 2020, 231, 80. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; FAO: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- Shahtahmassebi, A.R.; Song, J.; Zheng, Q.; Blackburn, G.A.; Wang, K.; Huang, L.Y.; Pan, Y.; Moore, N.; Shahtahmassebi, G.; Haghighi, R.S.; et al. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 94–112. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, biodiversity, and conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Barbero-Sierra, C.; Marques, M.J.; Ruiz-Pérez, M. The case of urban sprawl in Spain as an active and irreversible driving force for desertification. J. Arid Environ. 2013, 90, 95–102. [Google Scholar] [CrossRef]
- Charzyński, P.; Plak, A.; Hanaka, A. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environ. Sci. Pollut. Res. 2016, 24, 4801–4811. [Google Scholar] [CrossRef]
- Tóth, G. Impact of land-take on the land resource base for crop production in the European Union. Sci. Total Environ. 2012, 435, 202–214. [Google Scholar] [CrossRef]
- Chettri, B.; Singha, N.A.; Singh, A.K. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch. Microbiol. 2021, 203, 5793–5803. [Google Scholar] [CrossRef]
- Guarino, C.; Spada, V.; Sciarrillo, R. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation—Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 2017, 170, 10–16. [Google Scholar] [CrossRef]
- Kebede, G.; Tafese, T.; Abda, E.M.; Kamaraj, M.; Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021, 2021, 9823362. [Google Scholar] [CrossRef]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Popoola, L.T.; Yusuff, A.S.; Adeyi, A.A.; Omotara, O.O. Bioaugmentation and biostimulation of crude oil contaminated soil: Process parameters influence. S. Afr. J. Chem. Eng. 2022, 39, 12–18. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Bajagain, R.; Woo, S.; Jaisoo, J. Effect of consortium bioaugmentation and biostimulation on remediation efficiency and bacterial diversity of diesel-contaminated aged soil. World J. Microbiol. Biotechnol. 2021, 37, 46. [Google Scholar] [CrossRef] [PubMed]
- Morillo, E.; Madrid, F.; Lara-Moreno, A.; Villaverde, J. Soil bioremediation by cyclodextrins. A review. Int. J. Pharm. 2020, 591, 119943. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Kim, J. New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int. Biodeterior. Biodegr. 2019, 142, 58–72. [Google Scholar] [CrossRef]
- Sadovnikova, L.K.; Sredy, O.O.E.H.Z.; Vysshaya, S.; Lifshits, S.K.; Glyaznetsova, Y.; Chalaya, O.N. Self-Regeneration of Oil-Contaminated Soils in the Cryolithozone on the Example of the Territory of the Former Oil Pipeline «Talakan-Vitim». In Proceedings of the INTEREKSPO GEO-SIBIR, Novosibirsk, Russia, 3 November 2018; pp. 199–206. [Google Scholar]
- García-Carmona, M.; Romero-Freire, A.; Aragón, M.S.; Garzón, F.J.M.; Peinado, F.J.M. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. J. Environ. Manag. 2017, 191, 228–236. [Google Scholar] [CrossRef]
- Kashyap, L.; Garg, N. Arsenic toxicity in crop plants: Responses and remediation strategies. In Mechanisms of Arsenic Toxicity and Tolerance in Plants; Hasanuzzaman, M., Nahar, K., Fujita, M., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Wang, H.T.; Ding, J.; Xiong, C.; Zhu, D.; Li, G.; Jia, X.Y.; Zhu, Y.G.; Xue, X.M. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environ. Pollut. 2019, 251, 110–116. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive 2004/107/EC of the European Parliament and of the Council of 15/12/2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. J. Eur. Union L 2005, 23, 3–16. [Google Scholar]
- FAO. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: https://www.fao.org/3/i5199e/I5199E.pdf (accessed on 30 June 2025).
- Liu, Y. Landscape connectivity in Soil Erosion Research: Concepts, implication, quantification. Geogr. Res. Pap. 2016, 1, 195–202. [Google Scholar]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Daiber, A.; Landrigan, P.J. Soil and water pollution and human health: What should cardiologists worry about? Cardiovasc. Res. 2023, 119, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Lal, R. Soil Erosion Impact on Agronomic Productivity and Environment Quality. Crit. Rev. Plant Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Boardman, J.; Poesen, J. Soil Erosion in Europe; Wiley: Chichester, UK, 2006. [Google Scholar]
- Wilson, E.O. (Ed.) Biodiversity; National Academy Press: Washington, DC, USA, 1988. [Google Scholar]
- Kim, Y.; Yoo, G.; Chae, J. Impact of soil erosion on agricultural productivity: A case study in a mountainous region of South Korea. Sci. Total Environ. 2021, 794, 147842. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 11, 5266–5270. [Google Scholar] [CrossRef]
- Bardgett, R.; van der Putten, W. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Dodd, R.; Pletnyakov, P.; Noble, A. Addressing phosphorus pollution in surface waters: The role of soil erosion. Front. Environ. Sci. 2020, 8, 6. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Soil biodiversity’s response to erosion intensity and its role in maintaining ecosystem multifunctionality. Soil Biol. Biochem. 2022, 165, 108626. [Google Scholar]
- FAO; ITPS; GSBI; SCBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; FAO: Rome, Italy, 2020. [Google Scholar]
- Wall, D.H.; Bardgett, R.D.; Behan-Pelletier, V.; Herrick, J.E.; Jones, T.H.; Ritz, K.; Six, J.; Strong, D.R.; van der Putten, W.H. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter loss and restoration in agroecosystems. Front. Environ. Sci. 2020, 8, 579904. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Kyoto, Japan, 2019. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2020, 12, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Wang, S.; Li, J.; Han, Y. The role of soils in global methane cycles. J. Soils Sediments 2021, 21, 324–336. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Liu, N.; Liao, P.; Zhang, J.; Zhou, Y.; Luo, L.; Huang, H.; Zhang, L. The effectiveness of mitigation practices in reducing greenhouse gas emissions from agricultural soils in China: A meta-analysis. Sci. Total Environ. 2021, 754, 142128. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon: The Hidden Potential; FAO: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6937e/i6937e.pdf. (accessed on 30 June 2025).
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- FAO. Soil Erosion: The Greatest Challenge for Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/documents/card/en/c/ca8229en (accessed on 25 June 2025).
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018, 13, e0208250. [Google Scholar] [CrossRef]
- Silva, T.P.; Bressiani, D.; Ebling, É.D.; Reichert, J.M. Best management practices to reduce soil erosion and change water balance components in watersheds under grain and dairy production. Int. Soil Water Conserv. Res. 2024, 12, 121–136. [Google Scholar] [CrossRef]
- Lal, R. Soil Structure and Sustainability. J. Sustain. Agric. 1991, 1, 67–92. [Google Scholar] [CrossRef]
- Quinton, J.N.; Fiener, P. Soil erosion on arable land: An unresolved global environmental threat. Prog. Phys. Geogr. 2024, 48, 136–161. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 785–811. [Google Scholar] [CrossRef]
- Smith, M.R.; Myers, S.S. Impact of Anthropogenic CO2 Emissions on Global Human Nutrition. Nat. Clim. Change 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Stein, A.J. Zinc Deficiency and Child Mortality in Developing Countries. Arch. Pediatr. Adolesc. Med. 2007, 161, 150–156. [Google Scholar]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated Soil Fertility Management in Sub-Saharan Africa; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6583e/i6583e.pdf. (accessed on 30 June 2025).
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; van Drecht, G. Current and historical population and land cover. In Integrated Modelling of Global Environmental Change. An Overview of IMAGE 2.4; Bouwman, A.F., Kram, T., Klein Goldewijk, K., Eds.; Netherlands Environmental Assessment Agency: Bilthoven, The Netherlands, 2006; pp. 93–112. [Google Scholar]
- Klein Goldewijk, K.; Beusen, A.; van Drecht, G.; De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Reay, D.; Davidson, E.A.; Smith, K.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Ahlström, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scholes, R.J.; Jackson, R.B. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.D.; Bruun, T.B.; Guardiola-Claramonte, M.; Giambelluca, T.W.; Lawrence, D.; Thanh Lam, N. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Change Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Van Grinsven, H.J.M.; Rabl, A.; de Kok, T.M.; Drews, M.; Friedrich, R.; Hertel, O.; Holland, M.; Klimont, Z.; Matsuoka, Y.; Mayorga, E.; et al. Estimating the costs of nitrogen pollution in Europe and the effects of measures. Environ. Sci. Technol. 2013, 47, 3571–3579. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The Biochemistry of Environmental Heavy Metal Uptake by Plants: Implications for the Food Chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism. Sci. Total Environ. 2010, 408, 3392–3403. [Google Scholar] [CrossRef]
- Chandra, R.; Manwani, S.; Devi, P.; Singh, T.; Yadav, C.S.; Awasthi, K.K.; Bhoot, N.; Awasthi, G. Heavy metals in vegetables: A review of status, human health concerns, and management options. Environ. Sci. Pollut. Res. 2022, 30, 71940–71956. [Google Scholar] [CrossRef]
- Sharma, B.; Singh, S. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigated river in India. J. Environ. Sci. Health Part B 2014, 49, 781–788. [Google Scholar] [CrossRef]
- Panagos, P.; van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.E.H.; Nortcliff, S. Soils and food security. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 299–321. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.R.; Aktoprakligil, D.; Ozdemir, A.; Vertii, A. Turk. J. Bot. 2001, 25, 111–121. [Google Scholar]
- Nedjimi, B.; Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 316–324. [Google Scholar] [CrossRef]
- Dalvi, A.A.; Bhalerao, S.A. Response of Plants towards Heavy Metal Toxicity: An overview of Avoidance, Tolerance and Uptake Mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Fourati, E.; Wali, M.; Vogel-Mikuš, K.; Abdelly, C.; Ghnaya, T. Nickel tolerance, accumulation and subcellular distribution in the halophytes Sesuvium portulacastrum and Cakile maritima. Plant Physiol. Biochem. 2016, 108, 295–303. [Google Scholar] [CrossRef]
- Jacobs, A.; Drouet, T.; Noret, N. Field evaluation of cultural cycles for improved cadmium and zinc phytoextraction with Noccaea caerulescens. Plant Soil 2018, 430, 381–394. [Google Scholar] [CrossRef]
- Ghazaryan, K.A.; Movsesyan, H.S.; Minkina, T.M.; Sushkova, S.N.; Rajput, V.D. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environ. Geochem. Health 2021, 43, 1327–1335. [Google Scholar] [CrossRef]
- Yang, W.J.; Gu, J.F.; Zhou, H.; Huang, F.; Yuan, T.Y.; Zhang, J.Y.; Liao, B.H. Effect of three Napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization. Sci. Pollut. Res. 2020, 27, 16134–16144. [Google Scholar] [CrossRef]
- Khalid, A.; Farid, M.; Zubair, M.; Rizwan, M.; Iftikhar, U.; Ishaq, H.K.; Ali, S. Efcacy of Alternanthera bettzickiana to remediate copper and cobalt contaminated soil physiological and biochemical alterations. Int. J. Environ. Res. 2020, 14, 243–255. [Google Scholar] [CrossRef]
- Das, P.; Datta, R.; Makris, K.C.; Sarkar, D. Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ. Pollut. 2010, 158, 1980–1983. [Google Scholar] [CrossRef] [PubMed]
- Hannink, N.K.; Subramanian, M.; Rosser, S.J.; Basran, A.; Murray, J.A.; Shanks, J.V.; Bruce, N.C. Enhanced Transformation of TNT by Tobacco Plants Expressing a Bacterial Nitroreductase. Int. J. Phytorem. 2007, 9, 385–401. [Google Scholar] [CrossRef]
- Just, C.L.; Schnoor, J.L. Phytophotolysis of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Leaves of Reed Canary Grass. Environ. Sci. Technol. 2004, 38, 290–295. [Google Scholar] [CrossRef]
- Sampaio, C.J.; de Souza, J.R.; Damiao, A.O.; Bahiense, T.C.; Roque, M.R. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in a Diesel Oil-Contaminated Mangrove by Plant Growth-Promoting Rhizobacteria. Biotechnology 2019, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Q.; Elliott, D.W.; Zhang, W.-X. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111–122. [Google Scholar] [CrossRef]
- Nurmi, J.T.; Tratnyek, P.G.; Sarathy, V.; Baer, D.R.; Amonette, J.E.; Pecher, K.; Wang, C.; Linehan, J.C.; Matson, D.W.; Penn, R.L.; et al. Comparison of Nanoparticulate Fe0 Created by Borohydride Reduction of Fe2+ and Fe3+. J. Nanopart. Res. 2005, 7, 343–356. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. What Are Heavy Metals? Long-Standing Controversy over the Classification of Elements as Essential or Toxic and the Role of Plants in Their Phytoremediation. Ecotoxicol. Environ. Saf. 2018, 157, 229–237. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Huang, H.; Yang, L. Effect of dolomite application on the bioavailability and accumulation of heavy metals in vegetables. Chemosphere 2020, 256, 127119. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, B.; Zhou, Y.; Yang, Y. Use of steel slag amendment to reduce heavy metal mobility in contaminated soils: A review. Sci. Total Environ. 2022, 816, 151631. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Li, F.; Chen, J.; Wang, Y. Role of organic matter in soil heavy metal immobilization. J. Environ. Sci. 2021, 101, 12–23. [Google Scholar] [CrossRef]
- López-Aizpún, M.; Proctor, C.; Smith, S.; Hooda, P.S. Phosphate-based immobilization of lead in contaminated soils: A review. J. Environ. Manag. 2021, 288, 112416. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Zhang, L. Immobilization of lead in contaminated soils by natural and iron-modified zeolites. Chemosphere 2021, 263, 128222. [Google Scholar] [CrossRef]
- Tome, F.V.; Rodrıguez, P.B.; Lozano, J.C. Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci. Total Environ. 2008, 393, 351–357. [Google Scholar] [CrossRef]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef]
- Dhanwal, P.; Kumar, A.; Dudeja, S.; Chhokar, V.; Beniwal, V. Advanced Environmental Biotechnology; Springer: Singapore, 2017; pp. 227–241. [Google Scholar]
- Al Chami, Z.; Amer, N.; Al Bitar, L.; Cavoski, I. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int. J. Environ. Sci. Technol. 2015, 12, 3957–3970. [Google Scholar] [CrossRef]
- Monaci, F.; Trigueros, D.; Mingorance, M.D.; Rossini-Oliva, S. Phytostabilization potential of Erica australis L. and Nerium oleander L. A comparative study in the Riotinto mining area (SW Spain). Environ. Geochem. Health 2020, 42, 2345–2360. [Google Scholar] [CrossRef]
- Bacchetta, G.; Boi, M.E.; Cappai, G.; De Giudici, G.; Piredda, M.; Porceddu, M. Metal Tolerance Capability of Helichrysum microphyllum Cambess. subsp tyrrhenicum Bacch., Brullo & Giusso: A Candidate for Phytostabilization in Abandoned Mine Sites. Bull. Environ. Contam. Toxicol. 2018, 101, 758–765. [Google Scholar]
- Macaulay, B.; Rees, D. Bioremediation of oil spills: A review of challenges for research advancement. Ann. Environ. Sci. 2014, 8, 9–37. [Google Scholar]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, H.; Wang, Q.; Ge, Y.; Liu, W.; Christie, P. Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust. Chemosphere 2019, 224, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J. Mycoremediation (bioremediation with fungi)—Growing mushrooms to clean the earth. Chem. Speciat. Bioavailab. 2014, 26, 196–198. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, N.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Yadav, K.K.; Sharma, G.K.; Cabral-Pinto, M. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021, 284, 131325. [Google Scholar] [CrossRef]
- Buruiana, D.-L.; Benea, L.; Ghisman, V.; Arama, P.C.; Ghisman, G. Sewage Sludge-Based Composition with a Fertilizing Role. National OSIM Patent RO138471 (A0), 29 November 2024. [Google Scholar]
- Buruiana, D.L.; Georgescu, P.L.; Ghisman, V.; Bogatu, N.L.; Ghisman, G.; Axente, E.R.; Arama, C. Petroleum Hydrocarbon Absorption Mixture Using Dolomite. National OSIM Patent RO137696 (A0), 30 October 2023. [Google Scholar]
- Vrînceanu, N.O.; Motelică, D.M.; Dumitru, M.; Calciu, I.; Tănase, V.; Preda, M. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena 2019, 176, 336–342. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Chen, M.; Singh, S.P.; Zhou, Q.X. Phosphate-Induced Lead Immobilization from Different Lead Minerals in Soils under Varying pH Conditions. Environ. Pollut. 2008, 152, 184–192. [Google Scholar] [CrossRef]
- Laird, D.A.; Holliman, P.J.; Fleming, P.N.; Thompson, M.L.; Chintala, R. Mineral Matter Adsorption and Cation Exchange Effects on Heavy Metals and Aquatic Organic Pollutants in Smectite Clays. Clays Clay Miner. 2008, 56, 121–137. [Google Scholar]
- Jala, S.; Goyal, D. Fly Ash as a Soil Ameliorant for Improving Crop Production—A Review. Bioresour. Technol. 2006, 97, 1136–1147. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; Wiley—Interscience: New York, NY, USA, 1994; pp. 188–210. [Google Scholar]
- Mandal, T.K.; Pal, J.B.; Maitra, S.; Zaman, A. Role of green manuring for improving soil fertility and crop production under rice—Wheat cropping system: A review. Indian J. Agron. 2003, 48, 1–5. [Google Scholar]
- McFarland, C. Evaluating buffer methods for determining lime requirement on acidified agricultural soils of the Palouse. Soil Sci. Soc. Am. J. 2002, 66, 1673–1682. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.Q.Y.; Valiyaveetill, S.; Tang, B.L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Xu, R.; Liu, C.; Cui, Y.; Zhang, X.; Wang, L.; Wang, Z. Polystyrene nanoplastics-induced neurotoxicity in model organisms and implications for human health: A review. Sci. Total Environ. 2021, 797, 149090. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Anekwe, I.M.S.; Tetteh, E.K.; Amune, U.O.; Shoyiga, H.O.; Mahlangu, T.P.; Kiambi, S.L. Mycoremediation as a Potentially Promising Technology: Current Status and Prospects—A Review. Appl. Sci. 2023, 13, 4978. [Google Scholar] [CrossRef]
- Ghisman, V.; Georgescu, P.L.; Ghisman, G.; Buruiana, D.L. A New Composite Material with Environmental Implications for Sustainable Agriculture. Materials 2023, 16, 6440. [Google Scholar] [CrossRef]
- Buruiana, D.L.; Obreja, C.-D.; Herbei, E.E.; Ghisman, V. Re-Use of Silico-Manganese Slag. Sustainability 2021, 13, 11771. [Google Scholar] [CrossRef]
- Ghisman, V.; Muresan, A.C.; Buruiana, D.L.; Axente, E.R. Waste slag benefits for correction of soil acidity. Sci. Rep. 2022, 12, 16042. [Google Scholar] [CrossRef]
- Ekrami, E.; Pouresmaieli, M.; Hashemiyoon, E.S.; Noorbakhsh, N.; Mahmoudifard, M. Nanotechnology: A sustainable solution for heavy metals remediation. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100718. [Google Scholar] [CrossRef]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for environmental remediation: Materials and applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef]
- Agarwal, A.; Joshi, H. Application of nanotechnology in the remediation of contaminated groundwater: A short review. Rec. Res. Sci. Technol. 2010, 2, 51–57. [Google Scholar]
- Mueller, N.C.; Nowack, B. Nanoparticles for remediation: Solving big problems with little particles. Elements 2010, 6, 395–400. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, E.; Fang, J.; Zhao, D. Remediation of lead contaminated soil by biochar-supported nanohydroxyapatite. Ecotoxicol. Environ. Saf. 2016, 132, 224–230. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive 86/278/EEC on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Off. J. Eur. Communities 1986, L181, 6–12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31986L0278 (accessed on 28 June 2025).
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Mombelli, D.; Gattinoni, P.; Saponaro, S.; Sezenna, E. Assessment of the potential use of steel slags for the remediation of hydrocarbon contaminated soils. J. Environ. Manag. 2018, 217, 576–586. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S. Enhancement of hydrocarbon biodegradation in contaminated soils by addition of zero-valent iron and steel slags. Sustainability 2020, 12, 3598. [Google Scholar] [CrossRef]
Soil Type | Main Erosion Mechanism | Vulnerability | Recommended Control Measures |
---|---|---|---|
Sandy soils | Wind erosion | Low cohesion; easily blown away; poor nutrient and water retention [55,56] | Windbreaks, cover crops, mulching |
Silty soils | Water erosion | High erodibility on slopes; forms crusts; easily detached by raindrop impact [56,58] | Contour farming, vegetative buffer strips, reduced tillage |
Clay soils | Water erosion | Compacts easily; high runoff once structure is degraded; crust formation [57,65] | Organic matter addition, minimum tillage, cover crops |
Loamy soils | Moderate (wind and water) | Balanced texture but vulnerable when organic matter is low [55,56] | Crop rotation, conservation tillage, residue management |
Peaty soils | Water and wind erosion | Low structural strength; rapid loss when drained [58,66] | Permanent vegetation, water table management |
Volcanic soils | Water erosion | Highly porous and fragile; prone to landslides on slopes [56,65] | Terracing, reforestation, controlled grazing |
Soil Amendment | Primary Contaminants Targeted | Mechanism of Action | Soil Type Suitability | Remediation Efficacy | Known Side Effects | Cost per Ton (EUR) | Sources |
---|---|---|---|---|---|---|---|
Dolomite + Sewage Sludge | PAHs, Nutrient Deficiency | Nutrient supply, microbial stimulation, sorption | Degraded agricultural soils | High (PAH by 60–80%) | Heavy metal load from sludge; needs monitoring | 25–35 | [136] |
Dolomite + Steel Slag | Petroleum Hydrocarbons | Alkalinity, catalytic degradation, physical sorption | Industrial and hydrocarbon-contaminated soils | High (TPH >50%) | High pH can disrupt native microbiota | 20–30 | [137] |
Dolomite + Zeolite | Heavy Metals (Cd, Pb, Zn) | Ion exchange, pH buffering, adsorption | Heavy metal-contaminated soils (acidic) | High (bioavailable metals 40–70%) | May remobilize metals after liming effect diminishes | 30–40 | [138] |
Biochar | Heavy Metals, Organic Pollutants | Sorption, redox interaction, microbial support | Versatile; degraded and contaminated soils | High (depends on feedstock and activation) | Potential release of polyaromatic compounds | 100–400 | [62] |
Apatite | Heavy Metals (Pb, Zn, Cd) | Phosphate precipitation, metal immobilization | Acidic soils with high metal load | Moderate to high (depends on solubility) | P accumulation in runoff; eutrophication risk | 150–300 | [139] |
Bentonite | Heavy Metals (As, Cd) | Cation exchange, water retention, swelling | Clayey, acidic soils | Moderate (slow response) | Swelling can affect soil porosity | 60–100 | [140] |
Fly Ash | Heavy Metals, pH Correction | pH modification, metal immobilization, liming effect | Acidic and contaminated soils | Moderate (site-dependent) | Toxicity risk if not treated | 20–50 | [141] |
Humic Substances | Heavy Metals, Organic Pollutants | Chelation, complexation, metal mobility reduction | Nutrient-poor or contaminated soils | Moderate (long-term stability uncertain) | Variable quality; may introduce organics | 80–150 | [142] |
Compost | Nutrients, Pathogens | Organic enrichment, microbial stimulation | Depleted or pathogen-affected soils | Moderate (effective in nutrient cycling) | Odor, pathogen risk if not composted well | 30–70 | [59] |
Green Manure | Organic Matter Depletion | Nitrogen fixation, organic matter input | Low organic matter soils | Moderate (beneficial for fertility restoration) | Requires biomass management | 15–40 | [143] |
Lime | Soil Acidity | pH correction, reduces Al toxicity | Strongly acidic soils | High (rapid pH correction) | Over-liming may cause micronutrient deficiencies | 50–100 | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghisman, V.; Muresan, A.C.; Bogatu, N.L.; Herbei, E.E.; Buruiana, D.L. Recent Advances in the Remediation of Degraded and Contaminated Soils: A Review of Sustainable and Applied Strategies. Agronomy 2025, 15, 1920. https://doi.org/10.3390/agronomy15081920
Ghisman V, Muresan AC, Bogatu NL, Herbei EE, Buruiana DL. Recent Advances in the Remediation of Degraded and Contaminated Soils: A Review of Sustainable and Applied Strategies. Agronomy. 2025; 15(8):1920. https://doi.org/10.3390/agronomy15081920
Chicago/Turabian StyleGhisman, Viorica, Alina Crina Muresan, Nicoleta Lucica Bogatu, Elena Emanuela Herbei, and Daniela Laura Buruiana. 2025. "Recent Advances in the Remediation of Degraded and Contaminated Soils: A Review of Sustainable and Applied Strategies" Agronomy 15, no. 8: 1920. https://doi.org/10.3390/agronomy15081920
APA StyleGhisman, V., Muresan, A. C., Bogatu, N. L., Herbei, E. E., & Buruiana, D. L. (2025). Recent Advances in the Remediation of Degraded and Contaminated Soils: A Review of Sustainable and Applied Strategies. Agronomy, 15(8), 1920. https://doi.org/10.3390/agronomy15081920