Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Soybean Materials
2.2. Evaluation of Seed Submergence Tolerance
2.3. QTL Mapping
2.4. Chromosome Segment Insertion Analysis
2.5. Candidate Gene Screening and SNP Analysis
2.6. RNA-Seq Analysis
2.7. qRT-PCR Validation
2.8. Subcellular Localization
2.9. Haplotype Analysis
3. Results
3.1. Superior Seed Submergence Tolerance in Cultivated Variety SN14 Compared to Wild Variety ZYD00006
3.2. QTL Mapping for Seed Submergence Tolerance in a Soybean CSSL Population
3.3. Candidate Interval Identification Based on Chromosome Segment Insertion
3.4. High-Throughput RNA Sequencing of Waterlogging-Tolerant Varieties Suinong14 and ZYD00006
3.5. Identification of Candidate Genes Based on Resequencing
3.6. qPCR Validation and Functional Analysis of Glyma.05G160800
3.7. Haplotype Analysis of Glyma.05G160800 and Its Association with Waterlogging Tolerance Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Wang, Y.; Song, C.; Zhou, J.; Qiu, L.; Huang, H.; Wang, Y. A single origin and moderate bottleneck during domestication of soybean (Glycine max): Implications from microsatellites and nucleotide seq. Ann. Bot. 2010, 106, 505–514. [Google Scholar] [CrossRef]
- Voesenek, L.; Bailey-Serres, J. Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 2013, 16, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Safira, S.; Damanik, R.I. Effect of waterlogging, GA3 and BAP on the growth and production of several soybeans’ varieties Glycine max L. Merril plant. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; Volume 1413, p. 012026. [Google Scholar]
- VanToai, T.T.; Martin, S.K.S.; Chase, K.; Boru, G.; Schnipke, V.; Schmitthenner, A.F.; Lark, K.G. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci. 2001, 41, 1247–1252. [Google Scholar] [CrossRef]
- Akman, M.; Kleine, R.; van Tienderen, P.H.; Schranz, E.M. Identification of the submergence tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. J. Hered. 2017, 108, 308–317. [Google Scholar] [CrossRef]
- He, Y.; Sun, S.; Zhao, J.; Huang, Z.; Peng, L.; Huang, C.; Tang, Z.; Huang, Q.; Wang, Z. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nat. Commun. 2023, 14, 2296. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, S.; Wang, S.; Li, W.X.; Du, H.; Xu, Y. Identification of major QTL for waterlogging tolerance in maize using genome-wide association study and bulked sample analysis. J. Appl. Genet. 2021, 62, 405–418. [Google Scholar] [CrossRef]
- Liang, K.; Zhao, C.; Wang, J.; Zheng, X.; Yu, F.; Qiu, F. Genetic variations in ZmEREB179 are associated with waterlogging tolerance in maize. J. Genet. Genom. 2025, 52, 367–378. [Google Scholar] [CrossRef]
- Hattori, Y.; Nagai, K.; Mori, H.; Kitano, H.; Matsuoka, M.; Ashikari, M. Mapping of three QTLs that regulate internode elongation in deepwater rice. Breed. Sci. 2008, 58, 39–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Dong, H.; Li, C. Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. Crop J. 2021, 9, 257–270. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Zhu, W.; Zhang, B.; Huang, Q.; Su, X. Waterlogging tolerance and woodproperties of transgenic Populus aibax gianduiosa expressing Vitreoscilla hemoglobin gene (Vgb). J. For. Res. 2021, 32, 831–839. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Y.; Shabala, S.; Koutoulis, A.; Shabala, L.; Johnson, P.; Hu, H.; Zhou, M. A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor. Appl. Genet. 2017, 130, 1559–1568. [Google Scholar] [CrossRef]
- Wei, X.; Xu, H.; Rong, W.; Ye, X.; Zhang, Z. Constitutive expression of a stabilized transcription factorgroup Vll ethylene response factor enhances waterloggingtolerance in wheat without penalizing grain yield. Plant Cell Environ. 2019, 42, 1471–1485. [Google Scholar] [CrossRef]
- Yu, F.; Liang, K.; Fang, T.; Zhao, H.; Han, X.; Cai, M.; Qiu, F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 2019, 17, 2286–2298. [Google Scholar] [CrossRef]
- Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J.; et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442, 705–708. [Google Scholar] [CrossRef]
- Reyna, N.; Cornelious, B.; Shannon, J.G.; Sneller, C.H. Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci. 2003, 43, 2077–2082. [Google Scholar] [CrossRef]
- Meng, F.; Zhu, Z.; Wang, J.; Chen, X.; Ning, K.; Xu, H.; Chen, M. The bZIP gene family in the halophyte Limonium bicolor: Identification, expression analysis, and regulation of salt stress tolerance. Environ. Exp. Bot. 2024, 226, 105896. [Google Scholar] [CrossRef]
- Yue, L.; Pei, X.; Kong, F.; Zhao, L.; Lin, X. Divergence of functions andexpression patterns of soybean bZlP transcription factors. Front. Plant Sci. 2023, 14, 1150363. [Google Scholar] [CrossRef] [PubMed]
- Tougou, M.; Hashiguchi, A.; Yukawa, K.; Nanjo, Y.; Hiraga, S.; Nakamura, T.; Nishizawa, K.; Komatsu, S. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnol. 2012, 29, 301–305. [Google Scholar] [CrossRef]
- Li, N.; Xu, R.; Li, Y. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [Google Scholar] [CrossRef]
- Islam, M.S.; Lee, J.D.; Song, Q.; Jo, H.; Kim, Y. Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations. Int. J. Mol. Sci. 2025, 26, 1152. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Yu, Y.; Yang, H.; Xu, L.; Dong, W.; Du, H.; Cui, W.; Zhang, H. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor. Appl. Genet. 2014, 127, 2127–2137. [Google Scholar] [CrossRef]
- Watanabe, S.; Tajuddin, T.; Yamanaka, N.; Hayashi, M.; Harada, K. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed. Sci. 2004, 54, 399–407. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Li, W.; Gu, Y.; Lai, Y.; Bi, Y.; He, C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J. Exp. Bot. 2018, 69, 5089–5104. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; He, Q.; Xiang, S.; Tian, D.; Zhao, T.; Gai, J. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiol. Mol. Biol. Plants 2017, 23, 877–889. [Google Scholar] [CrossRef]
- Wen, Z.; Ding, Y.; Zhao, T.; Gai, J. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor. Appl. Genet. 2009, 119, 371–381. [Google Scholar] [CrossRef]
- Qiu, L.J.; Chen, P.Y.; Liu, Z.X.; Li, Y.H.; Guan, R.X.; Wang, L.H.; Chang, R.Z. The worldwide utilization of the Chinese soybean germplasm collection. Plant Genet. Resour. 2011, 9, 109–122. [Google Scholar] [CrossRef]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Wang, X.J.; et al. Soybean genetic resourcescontributing to sustainable protein production. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pang, S.; Lu, Z.; Jin, B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 2020, 9, 1515. [Google Scholar] [CrossRef] [PubMed]
- Bashir, W.; Anwar, S.; Zhao, Q.; Hussain, I.; Xie, F. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicol. Environ. Saf. 2019, 175, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Alam, A.; Mehar, I.; Noor, M.; Al-Dossary, O.; Alsubaie, B.; Al-Mssallem, M.Q.; Al-Khayri, J.M. Genome-wide identification and characterization of the WRKY gene family and their associated regulatory elements in Fortunella hindsii. Evol. Bioinform. 2025, 21, 11769343241312740. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Li, S.; Zhang, L.; Zou, C.; Yu, D. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2012, 1819, 120–128. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, C.; Guo, F.; Sun, Q.; Yu, J.; Dong, T.; Wang, X.; Song, W.; Li, Z.; Meng, X.; et al. A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato. BMC Plant Biol. 2022, 22, 616. [Google Scholar] [CrossRef]
- Xu, D.; Dong, X.; Yan, Q.; Chang, J.; Zhang, X.; Li, F.; Wei, F.; Xia, Z. Sulfur Dioxide Enhances Tobacco Resistance to Black Shank Disease via the Jasmonic Acid Pathway. J. Plant Growth Regul. 2025, 44, 284–294. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, X.; Fu, Y.; Wang, H.; Yu, C.; Chu, J.; Jiang, B.; Zhu, J. Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L. BMC Plant Biol. 2023, 23, 327. [Google Scholar]
- Du, P.; Wang, Q.; Yuan, D.Y.; Chen, S.S.; Su, Y.N.; Li, L.; Chen, S.; He, X.-J. WRKY transcription factors and OBERON histone-binding proteins form complexes to balance plant growth and stress tolerance. EMBO J. 2023, 42, e113639. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Dai, W.; Zhang, C.; Wang, Y.; Wu, M.; Zhao, Y.; Ma, Q.; Xian, Y.; Cheng, B. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 2017, 246, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Yokotani, N.; Shikata, M.; Ichikawa, H.; Mitsuda, N.; Ohme-Takagi, M.; Minami, E.; Nishizawa, Y. OsWRKY24, a blast-disease responsive transcription factor, positively regulates rice disease resistance. J. Gen. Plant Pathol. 2018, 84, 85–91. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Zhu, Y.; Chen, S.; Du, Y.; Deng, L.; Liu, L.; Li, X.; Chen, W.; Xu, Z.; et al. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. J. Integr. Plant Biol. 2024, 66, 1385–1407. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, S.; Ye, N.; Jiang, M.; Cao, J.; Zhang, J. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Yang, Z.; Qin, F. Genetic dissection of drought resistance in maize. Chin. Bull. Bot. 2024, 59, 883–902. [Google Scholar]
- Luo, X.; Bai, X.; Sun, X.; Zhu, D.; Liu, B.; Ji, W.; Cai, H.; Cao, L.; Wu, J.; Zhu, Y. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J. Exp. Bot. 2013, 64, 2155–2169. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Wang, C.T.; Yu, T.F.; Wang, D.M.; Li, M.; Zhao, D.; Li, J.D.; Fu, Z.S.; Xu, X.Y.; Song, X.Y. Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci. Rep. 2021, 11, 4024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Li, M.; Jia, H.; Wei, F.; Xia, Z.; Zhang, X.; Chang, J.; Wang, Z. Overexpression of the WRKY transcription factor gene NtWRKY65 enhances salt tolerance in tobacco (Nicotiana tabacum). BMC Plant Biol. 2024, 24, 326. [Google Scholar] [CrossRef] [PubMed]
Trait | Year | Parents | CSSL Population (n = 207) | |||
---|---|---|---|---|---|---|
ZYD00006 | Suinong14 | Mean ± SD | Kurtosis | Skewness | ||
RSL | 2023 | 0.36 | 0.62 | 0.5 | 0.74 | 0.37 |
2024 | 0.37 | 0.63 | 0.58 | 0.58 | 0.061 |
Trait | Year | Chr/LG | QTLs | Position (Mb) | LOD | R2 | ADD | Previous Research Reports |
---|---|---|---|---|---|---|---|---|
RSL | 2023 | Chr05 | qRSL22-05 | 34.6 | 3.2 | 4.5 | −0.06 | |
Chr13 | qRSL22-13 | 10.7 | 1.7 | 3.1 | 0.33 | |||
Chr18 | qRSL22-18 | 45.3 | 2.5 | 8.7 | −0.03 | |||
Chr20 | qRSL22-20 | 5.4 | 4.6 | 2.8 | 0.41 | [22] | ||
2024 | Chr03 | qEL23-03 | 36.2 | 2.4 | 4.1 | 0.27 | ||
Chr05 | qEL23-05 | 33.8 | 3.5 | 3.6 | 0.04 | |||
Chr09 | qEL23-09 | 59.2 | 2.2 | 3.7 | 0.75 | [23] | ||
Chr17 | qEL23-17 | 15.4 | 5.8 | 1.9 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, L.; Jin, Y.; Wang, S.; Ma, S.; Yu, L.; Tang, C.; Ye, Y.; Li, M.; Zhou, W.; et al. Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis. Agronomy 2025, 15, 1916. https://doi.org/10.3390/agronomy15081916
Sun Y, Chen L, Jin Y, Wang S, Ma S, Yu L, Tang C, Ye Y, Li M, Zhou W, et al. Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis. Agronomy. 2025; 15(8):1916. https://doi.org/10.3390/agronomy15081916
Chicago/Turabian StyleSun, Yiran, Lin Chen, Yuxin Jin, Shukun Wang, Shengnan Ma, Lin Yu, Chunshuang Tang, Yuying Ye, Mingxuan Li, Wenhui Zhou, and et al. 2025. "Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis" Agronomy 15, no. 8: 1916. https://doi.org/10.3390/agronomy15081916
APA StyleSun, Y., Chen, L., Jin, Y., Wang, S., Ma, S., Yu, L., Tang, C., Ye, Y., Li, M., Zhou, W., Chen, E., Kong, X., Fu, J., Wang, J., Chen, Q., & Yang, M. (2025). Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis. Agronomy, 15(8), 1916. https://doi.org/10.3390/agronomy15081916