Comparative Analysis of Yield and Grain-Filling Characteristics of Conventional Rice with Different Panicle Types in Response to Nitrogen Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Observations
2.2.1. Tiller Dynamics
2.2.2. Grain-Filling Determination
2.2.3. Determination of Enzymes
2.2.4. Grain Yield
2.3. Data Analysis
3. Results
3.1. Yield
3.2. Differences in Yield Formation
3.2.1. Tillering Dynamics of Rice Populations
3.2.2. Characteristics of Rice Panicles
3.2.3. Dynamic Characteristics of GF
3.3. Related Enzyme Activity
3.3.1. Nitrogen Metabolizing Enzyme Activity in Leaves
3.3.2. α-Amylase and SPS Activity in the Stem
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | The final weight of a kernel |
B | Initial parameter |
CV | Coefficient of variation |
D | The whole active grain-filling stage |
Fd-GOGAT | Ferredoxin-dependent glutamate synthase |
GF | Grain filling |
GPB | Grains per branch |
GRmax | Maximum grain-filling rate |
GRmean | Mean grain-filling rate within the whole filling stages |
I | Percentage of Wmax to A |
K | Growth rate parameter |
MGR | The mean grain-filling rate |
N | Nitrogen fertilizer |
N1 | Shape parameter |
NADH | Nicotinamide adenine dinucleotide |
NB | Number of branches |
NR | Nitrate reductase |
R0 | Initial grain-filling |
R2 | The determination coefficient of the equation |
RGC | The ratio of grain-filling material contributing to the A value |
SPS | Sucrose phosphate synthase |
SSR | Seed-setting rate |
T99 | Effective grain-filling time |
TG | Total grain |
Tmax | The time reaching the maximum grain-filling rate |
Wmax | Weight of a kernel at the time of maximum grain-filling rate |
References
- Wang, J.; Chen, W.; Peng, J.; Liu, Y.; Liang, K.; Li, C.; Fu, Y.; Hu, X.; Hu, R.; Li, M.; et al. Yield performance and source-sink-flow characteristics of a super-large-panicle rice line of DS23 in South China. Guangdong Agric. Sci. 2023, 50, 150–159. [Google Scholar]
- Pan, Y.; Huang, D.; Wang, Z.; Wang, Z.; Li, H.; Zhou, D.; Chen, Y.; Zhao, L.; Gong, R.; Zhou, S. Analysis on the characteristics of approved conventional rice varieties in Guangdong Province in the past 40 years. China Rice 2023, 29, 74–79. [Google Scholar]
- Gu, Z.; Gong, J.; Zhu, Z.; Li, Z.; Feng, Q.; Wang, C.; Zhao, Y.; Zhan, Q.; Zhou, C.; Wang, A.; et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat. Genet. 2023, 55, 1745–1756. [Google Scholar] [CrossRef]
- Mohapatra, P.; Patel, R.; Sahu, S. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Funct. Plant Biol. 1993, 20, 231. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Grain-filling problem in ‘super’ rice. J. Exp. Bot. 2009, 61, 1–5. [Google Scholar] [CrossRef]
- Xiong, J.; Ding, C.; Wei, G.; Ding, Y.; Wang, S. Characteristic of dry-matter accumulation and nitrogen-uptake of super-high-yielding early rice in China. Agron. J. 2013, 105, 1142–1150. [Google Scholar] [CrossRef]
- Chen, J.; Cao, F.; Li, H.; Shan, S.; Tao, Z.; Lei, T.; Liu, Y.; Xiao, Z.; Zou, Y.; Huang, M.; et al. Genotypic variation in the grain photosynthetic contribution to grain filling in rice. J. Plant Physiol. 2020, 253, 153269. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Xie, Y.; Qiao, Z.; Liu, X.; Wu, X.; Zhao, B.; Yang, J. Variation in carbohydrate and protein accumulation between spikelets at different positions within a rice panicle during grain filling. Chin. J. Rice Sci. 2011, 25, 297–306. [Google Scholar]
- Zhao, X.; Liu, F. Research Advances in Starch Biosynthesis of Rice Grain at Grain-filling Stage and Its Nitrogen-regulated Effects. Hybrid Rice 2021, 36, 1–7. [Google Scholar]
- Shaw, B.; Sekhar, S.; Panda, B.; Sahu, G.; Chandra, T.; Parida, A. Biochemical and molecular processes contributing to grain filling and yield in rice. Plant Physiol. Biochem. 2022, 179, 120–133. [Google Scholar] [CrossRef]
- Panda, B.; Sekhar, S.; Dash, S.; Behera, L.; Shaw, B. Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice. BMC Plant Biol. 2018, 18, 89. [Google Scholar] [CrossRef]
- Sahu, G.; Panda, B.; Dash, S.; Chandra, T.; Shaw, B. Cell cycle events and expression of cell cycle regulators are determining factors in differential grain filling in rice spikelets based on their spatial location on compact panicles. Funct. Plant Biol. 2021, 48, 268–285. [Google Scholar] [CrossRef]
- Yang, J. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron. Sin. 2010, 36, 2011–2019. [Google Scholar]
- Zhang, Z.; Li, Z.; Chen, J.; Li, Q.; Chen, L.; Chen, H.; Huang, J.; Lin, W. Effects of nitrogen management on protein expression of flag leaves during grain-filling period in large panicle rice (Oryza sativa L.). Acta Agron. Sin. 2011, 37, 842–854. [Google Scholar] [CrossRef]
- Liang, Z.; Bao, A.; Li, H.; Cai, H. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biologia 2015, 70, 1340–1350. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J. Exp. Bot. 2001, 52, 2169–2179. [Google Scholar] [CrossRef]
- Li, G.; Cui, K. The effect of nitrogen on leaf sucrose phosphate synthase and its relationships with assimilate accumulation and yield in rice. Plant Physiol. J. 2018, 54, 1195–1204. [Google Scholar]
- Zhou, L.; Liu, Q.; Tian, J.; Zhu, M.; Cheng, S.; Che, Y.; Wang, Z.; Xing, Z.; Hu, Y.; Liu, G.; et al. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agron. Sin. 2020, 46, 772–786. [Google Scholar]
- Zhu, J.; Li, A.; Zhang, J.; Sun, C.; Tang, G.; Chen, L.; Hu, J.; Zhou, N.; Wang, S.; Zhou, Y.; et al. Effects of nitrogen application after abrupt drought-flood alternation on rice root nitrogen uptake and rhizosphere soil microbial diversity. Environ. Exp. Bot. 2022, 201, 105007. [Google Scholar] [CrossRef]
- Gong, J.; Xing, Z.; Hu, Y.; Zhang, H.; Dai, Q.; Huo, Z.; Xu, K.; Wei, H.; Gao, H. Difference of characteristics of photosynthesis, matter production and translocation between indica and japonica super rice. Acta Agron. Sin. 2014, 40, 497–510. [Google Scholar] [CrossRef]
- Liu, K.; Huang, J.; Zhou, S.; Zhang, W.; Zhang, H.; Gu, J.; Liu, L.; Yang, J. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism. Acta Agron. Sin. 2021, 48, 2028–2040. [Google Scholar]
- Xu, L.; Yuan, S.; Wang, X.; Yu, X.; Peng, S. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food Energy Secur. 2021, 10, 341–350. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Shi, Q.; He, H.; Ke, J.; You, C.; Zhu, D.; Wu, L. Appropriate fertilizer-N application rate for high yield and premium quality of pot-seedling transplanted indica-japonica hybrid rice and conventional japonica rice. Trans. Chin. Soc. Agric. Eng. 2020, 36, 110–118. [Google Scholar]
- Hu, Y.; Qian, H.; Cao, W.; Xing, Z.; Zhang, H.; Dai, Q.; Huo, Z.; Xu, K.; We, H.; Guo, B. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin. J. Rice Sci. 2016, 30, 493–506. [Google Scholar]
- Zhang, Z.; Chu, G.; Liu, L.; Wang, Z.; Wang, X.; Zhang, H.; Yang, J.; Zhang, J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res. 2013, 150, 9–18. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Y.; Zou, Y. Grain-filling characteristics in super rice with different panicle types. Acta Agron. Sin. 2016, 42, 1516–1529. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Feng, J.; Shao, Z.; Huang, Y.; Hou, W.; Gao, Q. Nitrogen and potassium interactions optimized asynchronous spikelet filling and increased grain yield of japonica rice. Peerj 2023, 11, 14710. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, L.; Xiong, Y.; Chen, K.; Yang, Z.; Sun, Y.; Lv, X.; Ma, J. Effect of Nitrogen Fertilizer Topdressing for Panicle Differentiation on Grain Filling of Hybrid indica Rice and Its Relationship with the Activities of Key Enzymes for Starch Synthesis. Chin. J. Rice Sci. 2024, 38, 48–56. [Google Scholar]
- Wei, H.; Zhang, X.; Zhu, W.; Geng, X.; Ma, W.; Zuo, B.; Meng, T.; Gao, P.; Chen, Y.; Xu, K.; et al. Effects of salinity stress on grain-filling characteristics and yield of rice. Acta Agron. Sin. 2024, 50, 734–746. [Google Scholar]
- Lemoine, R.; Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Won, P.; Kanno, N.; Banayo, N.; Bueno, C.; Cruz, P.; Kato, Y. Source-sink relationships in short-duration and hybrid rice cultivars in tropical Asia. Field Crops Res. 2022, 282, 108485. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, H.; Dai, Q.; Li, H.; Huo, Z.; Xu, K.; Tang, J. Effects of nitrogen amount applied and planting density on nitrate reductase activity of rice during middle-late growth stages. Plant Physiol. J. 2005, 41, 41–44. [Google Scholar]
- Zhu, P.; Yang, S.; Ma, J.; Li, S.; Chen, Y. Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agron. Sin. 2008, 34, 2003–2009. [Google Scholar] [CrossRef]
- Li, G.; Zhou, C.; Guo, B.; Wei, H.; Huo, Z.; Dai, Q.; Zhang, H.; Xu, K. Sucrose phloem loading and its relationship with grain yield formation in rice. Plant Physiol. J. 2019, 55, 891–901. [Google Scholar]
- Li, G.; Zhang, G.; Cui, K. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiol. J. 2019, 55, 329–341. [Google Scholar]
Year | Variety | Treatment | No. of Panicles (104 ha−1) | Spikelets Per Panicle | Total Spikelets (104 ha−1) | Seed-Setting Rate (%) | 1000-Grain Weight (g) | Harvested Yield (t ha−1) |
---|---|---|---|---|---|---|---|---|
2023 | Nangeng 46 | T1 | 322.05 b | 111.68 b | 35,967.19 c | 93.09 a | 27.92 a | 9.20 b |
T2 | 326.10 b | 119.77 a | 39,056.26 b | 93.06 a | 27.82 a | 9.66 a | ||
T3 | 344.78 a | 120.00 a | 41,373.95 a | 92.17 a | 27.75 a | 9.91 a | ||
CV (%) | 3.66 | 4.04 | 6.99 | 0.57 | 0.31 | 3.74 | ||
Yangchan 3501 | T1 | 237.17 b | 171.05 c | 40,567.07 c | 88.46 a | 27.81 a | 9.67 c | |
T2 | 248.06 a | 177.14 b | 43,939.22 b | 87.79 ab | 27.33 b | 10.22 b | ||
T3 | 253.50 a | 187.68 a | 47,577.45 a | 85.87 b | 27.48 ab | 10.91 a | ||
CV (%) | 3.38 | 4.71 | 7.97 | 1.54 | 0.87 | 6.02 | ||
2022 | Nangeng 46 | T1 | 320.25 b | 115.14 b | 36,873.59 b | 88.59 a | 27.81 a | 8.70 b |
T2 | 329.03 b | 123.71 a | 40,702.86 a | 86.56 a | 27.34 b | 9.29 a | ||
T3 | 351.45 a | 120.08 ab | 42,202.12 a | 85.67 a | 27.33 b | 9.57 a | ||
CV (%) | 4.82 | 3.59 | 6.87 | 1.73 | 1.00 | 4.86 | ||
Yangchan 3501 | T1 | 241.85 a | 166.71 b | 40,319.23 b | 86.46 a | 27.58 a | 9.25 b | |
T2 | 253.43 a | 170.87 b | 43,301.46 ab | 83.78 ab | 27.55 a | 9.61 ab | ||
T3 | 256.58 a | 179.13 a | 45,959.00 a | 82.37 b | 27.48 a | 10.16 a | ||
CV (%) | 3.09 | 3.67 | 6.54 | 2.47 | 0.18 | 4.70 |
Year | Variety | Treatment | Transplanting (104 ha−1) | Middle Tillering Stage (104 ha−1) | Joining (104 ha−1) | Booting Stage (104 ha−1) | Heading Stage (104 ha−1) | Milky Stage (104 ha−1) | Waxy Stage (104 ha−1) | Ratio of Productive Tillers to Total Tillers (%) |
---|---|---|---|---|---|---|---|---|---|---|
2023 | Nangeng 46 | T1 | 112.73 a | 338.93 c | 415.80 c | 385.28 c | 364.20 c | 352.35 b | 331.95 b | 77.45 a |
T2 | 112.95 a | 378.23 b | 451.50 b | 397.19 b | 376.35 b | 362.55 ab | 344.93 ab | 72.24 ab | ||
T3 | 112.65 a | 424.88 a | 513.30 a | 416.05 a | 398.70 a | 384.83 a | 363.13 a | 67.18 b | ||
CV (%) | 0.14 | 11.30 | 10.72 | 3.88 | 4.61 | 4.53 | 4.52 | 7.11 | ||
Yangchan 3501 | T1 | 112.05 a | 248.85 c | 330.00 c | 293.03 b | 275.10 c | 258.68 c | 245.18 b | 71.87 a | |
T2 | 112.13 a | 265.58 b | 353.33 b | 306.30 ab | 288.90 b | 275.63 b | 266.25 a | 70.21 a | ||
T3 | 112.43 a | 276.60 a | 373.13 a | 319.80 a | 303.08 a | 285.30 a | 263.25 a | 67.94 b | ||
CV (%) | 0.18 | 5.30 | 6.13 | 4.37 | 4.84 | 4.93 | 4.42 | 2.82 | ||
2022 | Nangeng 46 | T1 | 112.80 a | 354.53 c | 425.40 c | 391.43 b | 373.43 b | 348.45 c | 334.28 b | 75.29 a |
T2 | 112.88 a | 401.10 b | 461.18 b | 409.50 ab | 384.45 b | 363.75 b | 347.70 ab | 71.36 ab | ||
T3 | 110.33 a | 438.38 a | 528.76 a | 436.05 a | 402.68 a | 380.93 a | 365.70 a | 66.47 b | ||
CV (%) | 1.30 | 10.56 | 11.13 | 5.44 | 3.82 | 4.46 | 4.52 | 6.22 | ||
Yangchan 3501 | T1 | 111.83 a | 254.63 b | 331.43 b | 297.90 c | 282.68 c | 266.09 c | 248.93 b | 72.97 a | |
T2 | 111.68 a | 272.85 a | 353.33 a | 312.68 b | 296.25 b | 280.43 b | 266.40 a | 71.74 a | ||
T3 | 112.13 a | 274.58 a | 368.40 a | 325.88 a | 309.38 a | 293.10 a | 274.28 a | 69.65 a | ||
CV (%) | 0.20 | 4.13 | 5.30 | 4.48 | 4.51 | 4.83 | 4.93 | 2.35 |
Year | Variety | Treatment | Primary Branches | Secondary Branches | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NB | GPB | TG | SSR (%) | NB | GPB | TG | SSR (%) | |||
2023 | Nangeng 46 | T1 | 12.24 a | 5.27 b | 64.51 b | 96.30 a | 18.64 a | 2.53 a | 47.18 a | 88.71 a |
T2 | 12.62 a | 5.56 a | 70.17 a | 96.38 a | 19.26 a | 2.58 a | 49.60 a | 88.35 a | ||
T3 | 12.36 a | 5.58 a | 68.91 a | 96.60 a | 20.11 a | 2.54 a | 51.10 a | 86.18 b | ||
CV (%) | 1.57 | 3.14 | 4.38 | 0.16 | 3.81 | 0.93 | 4.01 | 1.56 | ||
Yangchan 3501 | T1 | 15.66 c | 5.23 a | 81.87 c | 90.88 a | 29.38 b | 3.04 a | 89.18 b | 86.23 a | |
T2 | 16.33 b | 5.25 a | 85.65 b | 91.08 a | 29.94 b | 3.06 a | 91.48 b | 84.72 a | ||
T3 | 16.79 a | 5.33 a | 89.49 a | 91.45 a | 32.30 a | 3.04 a | 98.19 a | 80.77 b | ||
CV (%) | 3.51 | 1.02 | 4.45 | 0.32 | 5.06 | 0.34 | 5.04 | 3.36 | ||
2022 | Nangeng 46 | T1 | 12.29 a | 5.22 b | 64.15 b | 92.37 a | 19.35 a | 2.64 a | 50.99 a | 83.82 a |
T2 | 12.70 a | 5.60 a | 71.09 a | 92.46 a | 19.70 a | 2.67 a | 52.61 a | 78.58 b | ||
T3 | 12.41 a | 5.56 a | 68.97 a | 92.61 a | 19.33 a | 2.65 a | 51.11 a | 76.28 b | ||
CV (%) | 1.67 | 3.82 | 5.22 | 0.13 | 1.09 | 0.68 | 1.76 | 4.86 | ||
Yangchan 3501 | T1 | 15.37 c | 5.25 a | 80.62 c | 87.42 a | 29.33 a | 2.94 a | 86.09 b | 85.56 a | |
T2 | 16.04 b | 5.20 a | 83.30 b | 87.68 a | 29.48 a | 2.97 a | 87.56 ab | 80.07 ab | ||
T3 | 16.76 a | 5.28 a | 88.38 a | 87.65 a | 29.95 a | 3.03 a | 90.74 a | 77.21 b | ||
CV (%) | 4.31 | 0.77 | 4.69 | 0.16 | 1.08 | 1.61 | 2.70 | 5.24 |
Items | Parameters | Nangeng 46 | Yangchan 3501 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Superior Grain | Inferior Grain | Superior Grain | Inferior Grain | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||
Parameters of the Richards equation | A | 21.3199 | 21.2374 | 21.0886 | 18.9672 | 20.0804 | 19.6029 | 21.0141 | 20.9260 | 21.1011 | 17.3411 | 18.4149 | 18.0013 |
B | 0.0469 | 1.3494 | 3.2427 | 1477.5000 | 654.9941 | 1722.5000 | 0.8057 | 1.7759 | 1.8721 | 482.3312 | 159.2927 | 399.8321 | |
K | 0.1188 | 0.1434 | 0.1643 | 0.2033 | 0.1921 | 0.2065 | 0.1305 | 0.1487 | 0.1536 | 0.1796 | 0.1614 | 0.1760 | |
N1 | 0.0100 | 0.2004 | 0.3560 | 1.7188 | 1.6703 | 1.7890 | 0.1385 | 0.2413 | 0.2436 | 1.3456 | 1.1831 | 1.3322 | |
R2 | 0.9975 | 0.9978 | 0.9970 | 0.9993 | 0.9988 | 0.9992 | 0.9972 | 0.9976 | 0.9965 | 0.9986 | 0.9978 | 0.9989 | |
Grain-filling parameters | R0 | 11.88 | 0.72 | 0.46 | 0.12 | 0.12 | 0.12 | 0.94 | 0.62 | 0.63 | 0.13 | 0.14 | 0.13 |
Tmax | 13.01 | 13.30 | 13.45 | 33.23 | 31.09 | 33.27 | 13.49 | 13.42 | 13.28 | 32.75 | 30.38 | 32.41 | |
Wmax | 7.88 | 8.54 | 8.96 | 10.60 | 11.15 | 11.05 | 8.24 | 8.54 | 8.62 | 9.20 | 9.52 | 9.53 | |
GRmax | 0.93 | 1.02 | 1.09 | 0.79 | 0.80 | 0.82 | 0.94 | 1.02 | 1.06 | 0.70 | 0.70 | 0.72 | |
I | 36.97 | 40.19 | 42.51 | 55.88 | 55.54 | 56.36 | 39.20 | 40.83 | 40.86 | 53.07 | 51.69 | 52.96 | |
GRmean | 0.63 | 0.69 | 0.74 | 0.52 | 0.53 | 0.53 | 0.64 | 0.69 | 0.72 | 0.47 | 0.47 | 0.48 | |
D | 33.84 | 30.69 | 28.68 | 36.58 | 38.21 | 36.70 | 32.77 | 30.15 | 29.21 | 37.26 | 39.44 | 37.87 | |
T99 | 51.73 | 45.37 | 41.43 | 55.82 | 54.99 | 55.50 | 48.74 | 44.35 | 43.22 | 58.33 | 58.84 | 58.51 |
Items | Parameters | Nangeng 46 | Yangchan 3501 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Superior Grain | Inferior Grain | Superior Grain | Inferior Grain | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||
Early stage of grain filling | D | 4.87 | 6.00 | 6.71 | 25.84 | 23.32 | 25.91 | 5.66 | 6.27 | 6.35 | 24.89 | 21.90 | 24.41 |
GF | 1.59 | 2.23 | 2.71 | 5.38 | 5.61 | 5.68 | 2.00 | 2.33 | 2.35 | 4.31 | 4.26 | 4.44 | |
MGR | 0.33 | 0.37 | 0.40 | 0.21 | 0.24 | 0.22 | 0.35 | 0.37 | 0.37 | 0.17 | 0.19 | 0.18 | |
RGC | 7.46 | 10.50 | 12.83 | 28.35 | 27.92 | 28.97 | 9.53 | 11.12 | 11.16 | 24.83 | 23.15 | 24.69 | |
Middle stage of grain filling | D | 16.28 | 14.60 | 13.48 | 14.79 | 15.53 | 14.72 | 15.66 | 14.30 | 13.86 | 15.72 | 16.96 | 16.00 |
GF | 13.00 | 12.90 | 12.72 | 10.33 | 10.98 | 10.62 | 12.79 | 12.69 | 12.80 | 9.74 | 10.48 | 10.12 | |
MGR | 0.80 | 0.88 | 0.94 | 0.70 | 0.71 | 0.72 | 0.82 | 0.89 | 0.92 | 0.62 | 0.62 | 0.63 | |
RGC | 60.96 | 60.74 | 60.33 | 54.48 | 54.70 | 54.17 | 60.85 | 60.65 | 60.64 | 56.16 | 56.90 | 56.22 | |
Late stage of grain filling | D | 30.58 | 24.77 | 21.25 | 15.19 | 16.14 | 14.87 | 27.41 | 23.78 | 23.01 | 17.72 | 19.99 | 18.10 |
GF | 6.52 | 5.90 | 5.45 | 3.07 | 3.29 | 3.11 | 6.01 | 5.70 | 5.74 | 3.12 | 3.49 | 3.26 | |
MGR | 0.21 | 0.24 | 0.26 | 0.20 | 0.20 | 0.21 | 0.22 | 0.24 | 0.25 | 0.18 | 0.17 | 0.18 | |
RGC | 30.58 | 27.76 | 25.84 | 16.17 | 16.39 | 15.86 | 28.62 | 27.23 | 27.20 | 18.01 | 18.95 | 18.08 |
Variety | Treatment | 15 Days After Flowering | 30 Days After Flowering | ||
---|---|---|---|---|---|
Fd-GOGAT | NR | Fd-GOGAT | NR | ||
Nangeng 46 | T1 | 46.64 b | 425.98 c | 37.12 b | 128.92 b |
T2 | 47.52 b | 478.41 b | 42.58 ab | 279.54 a | |
T3 | 54.14 a | 518.36 a | 48.23 a | 323.10 a | |
CV (%) | 8.29 | 9.77 | 13.03 | 41.78 | |
Yangchan 3501 | T1 | 46.98 c | 467.26 c | 40.75 c | 156.71 c |
T2 | 52.73 b | 502.42 b | 45.87 b | 314.46 b | |
T3 | 62.12 a | 546.14 a | 54.85 a | 364.44 a | |
CV (%) | 14.17 | 7.82 | 15.14 | 38.93 |
Variety | Treatment | 15 Days After Flowering | 30 Days After Flowering | ||
---|---|---|---|---|---|
α-Amylase | SPS | α-Amylase | SPS | ||
Nangeng 46 | T1 | 16.22 a | 621.08 a | 17.21 a | 406.31 a |
T2 | 15.30 b | 544.77 b | 16.60 a | 361.87 b | |
T3 | 14.61 c | 469.96 c | 15.34 b | 310.13 c | |
CV (%) | 5.25 | 13.86 | 5.84 | 13.39 | |
Yangchan 3501 | T1 | 16.74 a | 542.03 a | 17.25 a | 354.48 a |
T2 | 16.30 b | 525.96 b | 16.68 b | 328.25 a | |
T3 | 15.56 c | 487.68 c | 15.89 c | 279.19 b | |
CV (%) | 3.68 | 5.38 | 4.1 | 11.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Sun, T.; Zhang, Y.; Shi, Q.; Zhou, Y.; Xiong, Q.; Hu, J.; Wang, S.; Zhu, J. Comparative Analysis of Yield and Grain-Filling Characteristics of Conventional Rice with Different Panicle Types in Response to Nitrogen Fertilization. Agronomy 2025, 15, 1858. https://doi.org/10.3390/agronomy15081858
Zhou N, Sun T, Zhang Y, Shi Q, Zhou Y, Xiong Q, Hu J, Wang S, Zhu J. Comparative Analysis of Yield and Grain-Filling Characteristics of Conventional Rice with Different Panicle Types in Response to Nitrogen Fertilization. Agronomy. 2025; 15(8):1858. https://doi.org/10.3390/agronomy15081858
Chicago/Turabian StyleZhou, Nianbing, Tong Sun, Yanhong Zhang, Qiang Shi, Yu Zhou, Qiangqiang Xiong, Jinlong Hu, Shuai Wang, and Jinyan Zhu. 2025. "Comparative Analysis of Yield and Grain-Filling Characteristics of Conventional Rice with Different Panicle Types in Response to Nitrogen Fertilization" Agronomy 15, no. 8: 1858. https://doi.org/10.3390/agronomy15081858
APA StyleZhou, N., Sun, T., Zhang, Y., Shi, Q., Zhou, Y., Xiong, Q., Hu, J., Wang, S., & Zhu, J. (2025). Comparative Analysis of Yield and Grain-Filling Characteristics of Conventional Rice with Different Panicle Types in Response to Nitrogen Fertilization. Agronomy, 15(8), 1858. https://doi.org/10.3390/agronomy15081858