Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Planting Materials, Study Sites and Experimental Design
2.2. Trial Establishment and Management
2.3. Data Collection and Exploitation
2.3.1. Root System Architecture Analysis
2.3.2. Grain Yield Parameters
2.4. Characterization of RSA Traits and Their Linkages with GY Performance
2.5. Regression Model Validation and Selection
2.6. Identifying Superior Sorghum Genotypes for Production Under CDHS
3. Results
3.1. Characterization of RSA Traitsand Their Linkages with GY Performance
3.1.1. Traits of Economic Importance at the Individual Level
3.1.2. Association of RSA Traits with GY Peformance
3.1.3. Influence of Time of Sampling and Management Regime on RSA Trait Measurements
3.1.4. Model Validation Selecting Optimal Crop Growth Stage and Management Condition for RSA Trait Measurements
3.2. Identification of Superior Sorghum Genotypes for Production Under CDHS
3.2.1. Superior Genotypes Based on the Smith–Hazel Multi-Trait Selection Index Analysis
3.2.2. Superior Genotypes Based on GY ANOVA
3.2.3. Stability in Grain Yield Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCA | Principal Component Analysis |
MLR | Multiple Linear Regression |
ANOVA | Analysis of Variance |
MTSI | Multiple Trait Selection Index |
ICRISAT | International Crops Research Institute for the Semi-Arid Tropics |
CIMMYT | International Maize and Wheat Improvement Center |
RCBD | Randomized Complete Block Design |
CDHS | Combined Drought and Heat Stress |
RSA | Root System Architecture |
RCZ | Research Council of Zimbabwe |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
VIF | Variance Inflation Factor |
PRESS | Predicted Residual Error Sum of Squares |
References
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uNi, D.; Geleta, M. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 2022, 255, 1–23. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa. J. Agron. Crop. Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Karasawa, G.; Marli, M. Current challenges in plant breeding to achieve zero hunger and overcome biotic and abiotic stresses induced by the global climate changes: A review. J. Plant Sci. Phytopathol. 2021, 5, 53–57. [Google Scholar] [CrossRef]
- Lynch, J.P. Root biology in the 21st century: Challenges and opportunities. Ann. Bot. 2021, 128, I–II. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, R.; Singhal, R.K.; Mishra, U.N.; Chauhan, J.; Javed, T.; Hussain, S.; Kumar, S.; Anuragi, H.; Lal, D.; Chen, P. Combined Abiotic Stresses: Challenges and Potential for Crop Improvement. Agronomy 2022, 12, 2795. [Google Scholar] [CrossRef]
- Palmgren, M.; Shabala, S. Adapting crops for climate change: Regaining lost abiotic stress tolerance in crops. Front. Sci. 2024, 2, 1416023. [Google Scholar] [CrossRef]
- George, T.S.; Bulgarelli, D.; Carminati, A.; Chen, Y.; Jones, D.; Kuzyakov, Y.; Schnepf, A.; Wissuwa, M.; Roose, T. Bottom-up perspective—The role of roots and rhizosphere in climate change adaptation and mitigation in agroecosystems. Plant Soil 2024, 3, 0123456789. [Google Scholar] [CrossRef]
- Dutta, C.; Sarma, R.N. Role of Root Traits and Root Phenotyping in Drought Tolerance. Int. J. Environ. Clim. Chang. 2022, 12, 2300–2309. [Google Scholar] [CrossRef]
- Kalra, A.; Goel, S.; Elias, A.A. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. Plant Genome 2024, 17, e20395. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef]
- Esmaeili, N.; Shen, G.; Zhang, H. Genetic manipulation for abiotic stress resistance traits in crops. Front. Plant Sci. 2022, 13, 1011985. [Google Scholar] [CrossRef]
- Gilliham, M.; Able, J.A.; Roy, S.J. Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J. 2017, 90, 898–917. [Google Scholar] [CrossRef]
- Keneni, G.; Bekele, E.; Imtiaz, M.; Dagne, K.; Alemaw, G. Challenges Associated with Crop Breeding for Adaptation to Drought-Prone Environments. Ethiop. J. Agric. Sci. 2017, 27, 1–24. [Google Scholar]
- Lopes, M.A. Rethinking plant breeding and seed systems in the era of exponential changes. Cienc. E Agrotecnologia 2023, 47, e0001R23. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, T.; Atienza, M.; Zhao, Y.; Nguyen, H.; Sheng, H.; Olukayode, T.; Song, H.; Panjvani, K.; Magalhaes, J.; et al. Constitutive basis of root system architecture: Uncovering a promising trait for breeding nutrient- and drought-resilient crops. aBIOTECH 2023, 4, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Mamrutha, H.M.; Krishnappa, G.; Khobra, R.; Singh, G.; Singh, G.P. Translating Physiological Tools to Augment Crop Breeding; Springer: Singapore, 2023; pp. 1–457. [Google Scholar] [CrossRef]
- Lynch, J.P.; Galindo-Castañeda, T.; Schneider, H.M.; Sidhu, J.S.; Rangarajan, H.; York, L.M. Root phenotypes for improved nitrogen capture. Plant Soil 2024, 502, 31–85. [Google Scholar] [CrossRef] [PubMed]
- Uga, Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed. Sci. 2021, 71, 3–12. [Google Scholar] [CrossRef]
- Wild, A.J.; Steiner, F.A.; Kiene, M.; Tyborski, N.; Tung, S.; Koehler, T.; Carminati, A.; Eder, B.; Groth, J.; Vahl, W.K.; et al. Unraveling root and rhizosphere traits in temperate maize landraces and modern cultivars: Implications for soil resource acquisition and drought adaptation. Plant Cell Environ. 2024, 47, 2526–2541. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; León, J.; Naz, A.A.; Ballvora, A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019. [Google Scholar] [CrossRef]
- Shoaib, M.; Banerjee, B.P.; Hayden, M.; Kant, S. Roots’ Drought Adaptive Traits in Crop Improvement. Plants 2022, 11, 2256. [Google Scholar] [CrossRef]
- Matova, P.M.; Kamutando, C.N.; Mutari, B.; Magorokosho, C.; Labuschagne, M. Adaptability and Stability Analysis of Commercial Cultivars, Experimental Hybrids and Lines under Natural Fall Armyworm Infestation in Zimbabwe Using Different Stability Models. Agronomy 2022, 12, 1724. [Google Scholar] [CrossRef]
- Seethepalli, A.; Dhakal, K.; Griffiths, M.; Guo, H.; Freschet, G.T.; York, L.M.; Cahill, J. RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB Plants 2021, 13, plab056. [Google Scholar] [CrossRef]
- Sabety, J.; Serrano, A.; Khan, A. A root system architecture measurement pipeline for apple rootstocks. Plant Phenome J. 2024, 7, e70011. [Google Scholar] [CrossRef]
- Li, G.; Qin, Y. An Exploration of the Application of Principal Component Analysis in Big Data Processing. Appl. Math. Nonlinear Sci. 2024, 9. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop. J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Xu, M.; Fralick, D.; Zheng, J.Z.; Wang, B.; Tu, X.M.; Feng, C. The differences and similarities between two-sample t-test and paired t-test. Shanghai Arch. Psychiatry 2017, 29, 184–188. [Google Scholar] [CrossRef]
- Trunfio, T.A.; Scala, A.; Giglio, C.; Rossi, G.; Borrelli, A.; Romano, M.; Improta, G. Multiple regression model to analyze the total LOS for patients undergoing laparoscopic appendectomy. BMC Med. Inform. Decis. Mak. 2022, 22, 141. [Google Scholar] [CrossRef]
- Payne, R.; Murray, D.; Harding, S.; Baird, D.; Soutar, D. Introduction to Genstat ® for Windows TM (18th Edition). 2015. Available online: http://www.genstat.co.uk/ (accessed on 23 July 2025).
- Gazal, A. Smith Hazel Selection Index for the Improvement of Maize Inbred Lines under Water Stress Conditions. Int. J. Pure Appl. Biosci. 2017, 5, 72–81. [Google Scholar] [CrossRef]
- Jahufer, M.Z.; Casler, M.D. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop. Sci. 2015, 55, 1212–1222. [Google Scholar] [CrossRef]
- Larue, T.; Lindner, H.; Srinivas, A.; Exposito-Alonso, M.; Lobet, G.; Dinneny, J.R. Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform. eLife 2022, 11, e76968. [Google Scholar] [CrossRef] [PubMed]
- Wasaya, A.; Zhang, X.; Fang, Q.; Yan, Z. Root phenotyping for drought tolerance: A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef]
- Luo, H.; Xu, H.; Chu, C.; He, F.; Fang, S. High Temperature can Change Root System Architecture and Intensify Root Interactions of Plant Seedlings. Front. Plant Sci. 2020, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.A.; Foncéka, D.; Dalton, T.J. (Eds.) Crop Adaptation and Improvement for Drought-Prone Environments; New Prairie Press: Manhattan, KS, USA, 2022. [Google Scholar]
- Asadullah; Kalhoro, S.A.; Farhad, W.; Iqbal, A.; Sultan; Waheed, A.; Rashid, M.; Shah, S.R.U. Exploring the variability of root system architecture under drought stress in heat-tolerant spring-wheat lines. Plant Soil 2024, 502, 103–119. [Google Scholar] [CrossRef]
- Paez-Garcia, A.; Motes, C.M.; Scheible, W.R.; Chen, R.; Blancaflor, E.B.; Monteros, M.J. Root traits and phenotyping strategies for plant improvement. Plants 2015, 4, 334–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Dijkstra, F.A.; Han, X.; Jiang, Y. Root nitrogen reallocation: What makes it matter? Trends Plant Sci. 2024, 29, 1077–1088. [Google Scholar] [CrossRef]
- Jin, K.; Shen, J.; Ashton, R.W.; Dodd, I.C.; Parry, M.A.J.; Whalley, W.R. How do roots elongate in a structured soil? J. Exp. Bot. 2013, 64, 4761–4777. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian information criterion: Background, derivation, and applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Hill, W.G. Selection Differential; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 6. [Google Scholar] [CrossRef]
- Ochigbo, A.E.; Igyuve, M.T.; Ojo, G. Genetic variability and heritability estimate of maize endosperms using full-sib recurrent selection scheme. Direct Res. J. Agric. Food Sci. 2021, 9, 230–235. [Google Scholar]
- Dey, P. Estimation of Phenotypic Coefficients of Variation (PCV), Genotypic Coefficients of Variation (GCV), Heritability and Genetic Gain for Yield and its Components in Rice Landraces of Odisha. Int. J. Agric. Environ. Biotechnol. 2019, 12, 181–185. [Google Scholar] [CrossRef]
- Ambrósio, M.; Daher, R.F.; Santos, R.M.; Santana, J.G.S.; Vidal, A.K.F.; Nascimento, M.R.; Leite, C.L.; de Souza, A.G.; Freitas, R.S.; Stida, W.F.; et al. Multi-trait index: Selection and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biol. 2024, 24, 525. [Google Scholar] [CrossRef]
- Hidalgo-Contreras, J.V.; Salinas-Ruiz, J.; Eskridge, K.M.; Baenziger, S.P. Incorporating molecular markers and causal structure among traits using a smith-hazel index and structural equation models. Agronomy 2021, 11, 1953. [Google Scholar] [CrossRef]
- Karthik, R.; Hanamaratti, N.G. Multivariate analysis and multitrait genotype-ideotype distance index (MGIDI) for selection of promising genotypes under drought stress in post rainy sorghum (Sorghum bicolor L. Moench). Electron. J. Plant Breed. 2025, 16, 57–69. [Google Scholar] [CrossRef]
Genotype Name | Description | Origin | Status |
---|---|---|---|
SV4 | Released grain commercial variety | Crop Breeding Institute, (Harare, Zimbabwe) | Released commercial variety [check] |
ICSV111IN | Advanced pre-release line | ICRISAT—Hyderabad, India | Pre-release line |
CHITICHI | Local variety | Chiredzi Community Seed Bank (Masvingo, Zimbabwe) | Local landrace variety [check] |
MACIA | Released grain commercial variety | Seed Company of Zimbabwe (Harare, Zimbabwe) | Released commercial variety [check] |
IESV91070DL | Advanced pre-release line | ICRISAT—Hyderabad, India | Pre-release line |
ASAREACA12-3-1 | Advanced pre-release line | ICRISAT—Hyderabad, India | Pre-release line |
Principal Component | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Eigenvalues | 7.8041 | 3.0351 | 2.4212 | 1.0611 |
Proportion variance (%) | 0.459 | 0.179 | 0.142 | 0.062 |
Cumulative variance (%) | 0.459 | 0.638 | 0.780 | 0.842 |
Number of roots | 0.314 * | −0.133 | −0.134 | 0.145 |
Number of root tips | 0.346 * | −0.057 | −0.064 | −0.011 |
Total root length | 0.333 * | −0.011 | −0.193 | −0.019 |
Root depth | 0.336 * | 0.018 | −0.009 | −0.182 |
Root width | 0.301 | −0.064 | 0.251 | 0.233 |
Width–depth ratio | −0.075 | −0.141 | 0.310 | 0.761 |
Root network area | 0.299 | 0.022 | 0.305 | −0.055 |
Root solidity | −0.117 | 0.372 | 0.199 | −0.273 |
Lower root area | 0.064 | −0.330 | 0.401 | −0.112 |
Root diameter | 0.163 | 0.421 | −0.193 | 0.101 |
Root perimeter | 0.303 | −0.057 | −0.310 | 0.084 |
Root volume | 0.023 | 0.461 | 0.284 | 0.122 |
Surface area | 0.153 | 0.398 | 0.338 | 0.034 |
Root holes | 0.254 | −0.258 | 0.250 | −0.278 |
Root angle | 0.098 | 0.237 | −0.032 | −0.079 |
Grain yield | 0.243 | 0.177 | −0.249 | 0.292 |
RSA Trait | Genotypic Variation Estimate | Category |
---|---|---|
Number root tips | 0.96 | Traits of economic importance at the individual level |
Root depth | 0.89 | |
Total root length | 0.96 | |
Number of roots | 0.89 | |
Root holes | 0.97 | Traits of economic importance in combination |
Root diameter | 0.95 | |
Root width | 0.97 | |
Lower root area | 0.82 | |
Root perimeter | 0.93 |
Source | DF | Seq SS | Contribution (%) | Adj SS | Adj MS | F Value | p Value |
---|---|---|---|---|---|---|---|
Regression | 5 | 19.1427 | 85.64 | 19.1427 | 3.8285 | 21.47 | 0.000 |
Root holes | 1 | 0.1027 | 0.46 | 2.6238 | 2.6238 | 14.72 | 0.001 |
Root diameter | 1 | 11.5769 | 51.79 | 2.0534 | 2.0534 | 11.52 | 0.003 |
Root width | 1 | 1.9519 | 8.73 | 0.6859 | 0.6859 | 3.85 | 0.065 |
Lower root Area | 1 | 0.1105 | 0.49 | 1.5517 | 1.5517 | 8.70 | 0.009 |
Root perimeter | 1 | 5.4006 | 24.16 | 5.4006 | 5.4006 | 30.29 | 0.000 |
Error | 18 | 3.2094 | 14.36 | 3.2094 | 0.1783 | ||
Total | 23 | 22.3521 | 100.00 |
Term | Coef | SE Coef | 95% CI | T Value | p Value | VIF | Tolerance |
---|---|---|---|---|---|---|---|
Constant | −1.412 | 0.358 | (−2.165, −0.660) | −3.94 | 0.001 | ||
Root holes | −0.002742 | 0.000715 | (−0.004244, −0.001240) | −3.84 | 0.001 | 4.19 | 0.24 |
Root diameter | 0.000116 | 0.000034 | (0.000044, 0.000187) | 3.39 | 0.003 | 1.93 | 0.52 |
Root width | 0.000063 | 0.000032 | (−0.000004, 0.000131) | 1.96 | 0.065 | 3.52 | 0.28 |
Lower root Area | 0.000000 | 0.000000 | (0.000000, 0.000000) | 2.95 | 0.009 | 2.56 | 0.39 |
Root perimeter | 0.000003 | 0.000000 | (0.000002, 0.000004) | 5.50 | 0.000 | 2.17 | 0.46 |
RSA Trait | Pre-Flowering (r) | Post-Flowering (r) |
---|---|---|
Number of root tips | 0.312 ns | 0.652 * |
Root depth | 0.639 * | 0.611 * |
Total root length | −0.039 ns | 0.708 * |
Number of roots | 0.271 ns | 0.614 * |
RSA Trait | WW Condition (r) | CDHS Condition (r) |
---|---|---|
Number of root tips | 0.674 * | 0.652 * |
Root depth | 0.788 * | 0.611 * |
Total root length | 0.825 * | 0.708 * |
Number of roots | 0.768 * | 0.614 * |
RSA Trait | Mean Pre-Flowering | Mean Post-Flowering | Category |
---|---|---|---|
ns Number of root tips | 603.9 | 492.3 | Traits of economic importance at the individual level |
ns Root depth | 14,645 | 13,328 | |
ns Total root length | 692,723 | 599,049 | |
ns Number of roots | 28.38 | 24.50 | |
* Root holes | 564.3 | 343.5 | Traits of economic importance in combination |
* Root diameter | 4396 | 8151 | |
* Root width | 20,729 | 16,410 | |
ns Lower Root Area | 93,846,371 | 70,910,745 | |
* Root perimeter | 612,743 | 431,615 |
RSA Trait | WW Conditions | CDHS Conditions | Category |
---|---|---|---|
ns Number of root tips | 440.2 | 492.3 | Traits of economic importance at the individual level |
ns Root depth | 12,632 | 13,328 | |
ns Total root length | 640,968 | 599,049 | |
* Number of roots | 20.33 | 24.50 | |
* Root holes | 528.1 | 343.5 | Traits of economic importance in combination |
ns Root diameter | 6931 | 8151 | |
* Root width | 12,329 | 16,410 | |
ns Lower Root Area | 70,276,230 | 70,910,745 | |
ns Root perimeter | 450,930 | 431,615 |
Management Condition | Crop Growth Stage | R2 | PRESS | R2_Predicted | AIC | BIC | Durbin–Watson Statistic |
---|---|---|---|---|---|---|---|
CDHS | Post Flowering | 85.64% | 5.96812 | 73.30% | 40.82 | 42.07 | 1.93320 |
Pre Flowering | 47.15% | 15.7983 | 29.32% | 68.04 | 70.16 | 1.91583 | |
WW | Post-flowering | 71.24% | 4.94478 | 66.35% | 33.62 | 35.96 | 1.75446 |
Genotype | Description | Genetic Worth (V1) |
---|---|---|
SV4 | Semi dwarf open-pollinated variety, 113 to 127 days to maturity, grain yield potential is 3.4 to 9.0 t/ha | 401.2685 |
ICSV111IN | An elite sorghum breeding line at advanced testing by ICRISAT in Zimbabwe, preferred by farmers for high grain yield, white color, and drought tolerance | 362.6735 |
ASAREACA12-3-1 | An elite sorghum breeding line at advanced testing by ICRISAT in Zimbabwe, high-yielding and stable variety preferred by farmers in Zimbabwe | 260.9641 |
IESV91070DL | An elite sorghum breeding line at advanced testing by ICRISAT in Zimbabwe, preferred by farmers for high grain yield, white color, and drought tolerance | 249.3526 |
Chitichi | Local landrace variety commonly grown in the south-eastern lowveld communal areas of Zimbabwe, white, and is drought-tolerant | 212.5624 |
Macia | A white open-pollinated sorghum variety, yield potential of up to 5 tons per hectare, physiological maturity is 115–120 days | 156.4162 |
Trait | Root Trait Measurement Description | Individual Index Coefficient (b) |
---|---|---|
Root diameter | The distance transform value at each skeletal pixel is the radius at that pixel and is doubled to give the diameter. | 5.0391258 |
Root width | The maximum horizontal distance the root crown grew at the time of imaging. | 1.4706810 |
Root perimeter | The sum of the Euclidean distances between the connected contour pixels in the entire segmented image of the plant root. | 0.6103781 |
GYD | Grain weight from the harvested and threshed sorghum heads per net plot after cleaning the grain. | 48.5630463 |
Trait | Xo | Xs | SD | SDperc | Sense | Goal |
---|---|---|---|---|---|---|
Root diameter | 8.150958 | 9.50875 | 1.357792 | 16.65806 | increase | 100 |
Root width | 16.409667 | 18.53550 | 2.125833 | 12.95476 | increase | 100 |
Root perimeter | 431.614500 | 607.86925 | 176.254750 | 40.83615 | increase | 100 |
GYD | 1.179250 | 1.95500 | 0.775750 | 65.78334 | increase | 100 |
Genotype Name | Grain Yield (t/ha) | Status |
---|---|---|
SV4 | 1.955 a | Released commercial variety [check] |
ICSV111 IN | 1.800 a | Pre-release breeding line |
MACIA | 1.060 b | Released commercial variety [check] |
ASARECA 12-3-1 | 0.910 bc | Pre-release breeding line |
IESV91070DL | 0.763 bc | Pre-release breeding line |
CHITICHI | 0.588 c | Local landrace variety [check] |
p value | <0.001 | |
LSD | 0.3905 | |
CV% | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magaisa, A.; Ngadze, E.; Mamphogoro, T.P.; Moyo, M.P.; Kamutando, C.N. Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions. Agronomy 2025, 15, 1815. https://doi.org/10.3390/agronomy15081815
Magaisa A, Ngadze E, Mamphogoro TP, Moyo MP, Kamutando CN. Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions. Agronomy. 2025; 15(8):1815. https://doi.org/10.3390/agronomy15081815
Chicago/Turabian StyleMagaisa, Alec, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo, and Casper N. Kamutando. 2025. "Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions" Agronomy 15, no. 8: 1815. https://doi.org/10.3390/agronomy15081815
APA StyleMagaisa, A., Ngadze, E., Mamphogoro, T. P., Moyo, M. P., & Kamutando, C. N. (2025). Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions. Agronomy, 15(8), 1815. https://doi.org/10.3390/agronomy15081815