Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Potting Experiment in Greenhouse
- Low nitrogen (LN): No nitrogen application
- Normal nitrogen (NN): Three-stage fertilization:
- Day 30: 15N-labeled urea (15N-CH4N2O; 10.14% atomic abundance, 48% N content; Shanghai Institute of Chemical Technology, China) applied at 0.05 g/plant
- Days 40 and 50: Conventional urea (CO(NH2)2; ≥46.0% total N; Kunlun Brand, China National Petroleum Co. Ltd., Daqing, China) applied at 1 g/plant per application (total 2 g/plant)
2.3. Measurements of Traits
- Initial fluorescence (F0)
- Maximum fluorescence (Fₘ)
- Variable fluorescence (Fᵥ = Fₘ − F0)
- PSII excitation energy capture efficiency (Fₘ/F0)
- PSII potential activity (Fᵥ/F0)
- Maximum quantum yield of PSII (Fᵥ/Fₘ)
- Plant material was homogenized using a laboratory grinder
- Ground samples were sieved through a 60-mesh screen
- Processed samples were stored in airtight plastic bags prior to analysis
- A Vario Macro Cube Elemental Analyzer coupled with
- A Delta V or MAT253 Continuous Flow Isotope Ratio Mass Spectrometer (IRMS)
- N2 generation in the elemental analyzer’s redox tube at 1000 °C
- Gas separation via adsorption/desorption chromatography
- Isotopic ratio determination by IRMS
- Total nitrogen content (%)
- δ15N values (‰)
- 15N:14N ratios (R15N/14N)
- 15N atomic percentage (AT%)
- Absolute 15N abundance (mg 15N/g DW)
2.4. Data Analysis
- Scenario 1: Integrated analysis incorporating low-nitrogen tolerance coefficient (LNindex) for 13 traits, and measured values of nitrogen isotope parameters.
- Scenario 2: Evaluation based on genotypic values (BLUPs) for 13 traits, and measured values of nitrogen isotope parameters.
- Scenario 3: Assessment using genotype means for 13 traits, and measured values of nitrogen isotope parameters.
3. Results
3.1. Mean Comparison Between LN and NN Experiment
3.2. Mixed-Model Analysis
3.3. Correlation Analysis
3.4. Loadings and Factor Description for MGIDI
3.5. Genotype Ranking Based on MGIDI Analysis with Means, LNindex, and BLUPs
3.6. Strengths and Weaknesses View of Selected Genotypes
4. Discussion
4.1. Methodological Advancements in Trait Integration
4.2. Trait Relationships and Biological Implications
4.3. Heritability and Genetic Architecture
4.4. Validation of Selected Genotypes
4.5. Practical Applications and Breeding Implications
4.6. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | Nitrogen |
LN | Low nitrogen |
NN | Normal nitrogen |
LNindex | LN tolerance coefficient |
H2 | Height in the end of growing season |
HS | Height increase |
BD2 | Base diameter in the end of growing season |
BDS | Base diameter increase |
FW | Fresh weight |
DW | Dry weight |
LL | Leaf length |
LW | Leaf width |
LA | Leaf area |
PER | Leaf perimeter |
Fm/Fo | Efficiency of PSII in capturing excitation energy |
Fv/Fm | Maximum photosynthetic efficiency of PSII |
Fv/Fo | Potential PSII activity |
Ncont | Elemental N content (%) |
δ15N | δ15N value (‰) |
R15N:14N | 15N:14N ratios |
AT15N | Atom percent (AT%) of 15N (%) |
15Nabund | Absolute abundance of 15N. |
BLUP | Best linear unbiased prediction |
REML | Restricted maximum likelihood |
LMM | Linear mixed model |
LRT | Likelihood ratio test |
MGIDI | Multi-trait genotype-ideotype distance index |
SD | Selection differential |
SI | Selection intensity |
GEI | Genotype-by-environment interaction |
References
- FAO. Synthesis of Country Progress Reports Received, Prepared for the 26th Session of the International Poplar and Other Fast-Growing Trees Sustaining People and the Environment; FAO: Rome, Italy, 2021. [Google Scholar]
- Kutsokon, N.K.; Jose, S.; Holzmueller, E. A global analysis of temperature effects on populus plantation production potential. Am. J. Plant Sci. 2015, 6, 23–33. [Google Scholar] [CrossRef]
- Eckenwalder, J.E. Natural intersectional hybridization between north American species of Populus (salicaceae) in sections Aigeiros and Tacamahaca. II. Taxonomy. Can. J. Bot. 1984, 62, 325–335. [Google Scholar] [CrossRef]
- Bisoffi, S.; Gullberg, U. Poplar breeding and selection strategies. In Biology of Populus and Its Implications for Management and Conservation; Stettler, R.F., Branshaw, H.D., Heilman, P.E., Hinckley, T.M., Eds.; National Reasearch Council of Canada: Ottawa, ON, Canada, 1996; Part I, Chapter 6; pp. 139–158. [Google Scholar]
- Ren, J.; Ji, X.; Wang, C.; Hu, J.; Nervo, G.; Li, J. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P. nigra. Forests 2020, 11, 1319. [Google Scholar] [CrossRef]
- Pliura, A.; Suchockas, V.; Sarsekova, D.; Gudynaitė, V. Genotypic variation and heritability of growth and adaptive traits, and adaptation of young poplar hybrids at northern margins of natural distribution of Populus nigra in Europe. Biomass Bioenergy 2014, 70, 513–529. [Google Scholar] [CrossRef]
- FAO. Combating Desertification in the Korqin Sandy Lands Through Integrated Afforestation. 2014. Available online: http://www.fao.org/3/AD115E/AD115E00.htm (accessed on 12 March 2023).
- Rennenberg, H.; Wildhagen, H.; Ehlting, B. Nitrogen nutrition of poplar trees. Plant Biol. 2010, 12, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Mamashita, T.; Larocque, G.R.; DesRochers, A.; Beaulieu, J.; Thomas, B.R.; Mosseler, A.; Major, J.; Sidders, D. Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows. Biomass Bioenergy 2015, 81, 88–97. [Google Scholar] [CrossRef]
- Chen, C.; Chu, Y.; Huang, Q.; Zhang, W.; Ding, C.; Zhang, J.; Li, B.; Zhang, T.; Li, Z.; Su, X. Morphological, physiological, and transcriptional responses to low nitrogen stress in populus deltoides marsh. clones with contrasting nitrogen use efficiency. BMC Genom. 2021, 22, 697. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chu, Y.; Huang, Q.; Ding, C.; Zhang, W.; Li, B.; Zhang, J.; Su, X. Morphological and physiological plasticity response to low nitrogen stress in black cottonwood (Populus deltoides Marsh.). J. For. Res. 2022, 33, 51–62. [Google Scholar] [CrossRef]
- Cánovas, F.M.; Cañas, R.A.; De La Torre, F.N.; Pascual, M.B.; Castro-Rodríguez, V.; Avila, C. Nitrogen metabolism and biomass production in forest trees. Front. Plant Sci. 2018, 9, 1449. [Google Scholar] [CrossRef] [PubMed]
- Novaes, E.; Osorio, L.; Drost, D.R.; Miles, B.L.; Boaventura-Novaes, C.R.D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; et al. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol. 2009, 182, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-T.; Xie, Y.-Z.; Chen, X.-F.; Zhang, J.; Chen, H.-H.; Ye, X.; Guo, J.; Yang, L.-T.; Chen, L.-S. Growth, mineral nutrients, photosynthesis and related physiological parameters of Citrus in response to nitrogen deficiency. Agronomy 2021, 11, 1859. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Muharam, F.M.; Bronson, K.F.; Maas, S.J.; Ritchie, G.L. Inter-relationships of cotton plant height, canopy width, ground cover and plant nitrogen status indicators. Field Crops Res. 2014, 169, 58–69. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Van Rees, K.C.J. Early nitrogen fertilization effects on 13 years of growth of 4 hybrid poplars in Saskatchewan, Canada. For. Ecol. Manag. 2018, 419–420, 110–122. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Ling, F.; Jia, D.; Cui, J.; Zhang, Z.; Xu, C.; Yu, L.; Guan, C.; Wang, Y.; Zhang, M.; et al. Effects of low nitrogen on seedling growth, photosynthetic characteristics and antioxidant system of rice varieties with different nitrogen efficiencies. Sci. Rep. 2023, 13, 19780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; He, K.; Feng, Z.; Li, Y.; Chang, L.; Zhang, X.; Xu, S.; Liu, J.; Xue, J. Evaluation of yield-based low nitrogen tolerance indices for screening maize (Zea mays L.) inbred lines. Agronomy 2019, 9, 240. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Xu, Z.; Zhang, H.; Sun, G.; Zhang, H.; Yang, C.; Liu, G. Effects of different nitrogen forms and concentrations on seedling growth traits and physiological characteristics of Populus simonii × P. nigra. J. For. Res. 2022, 33, 1593–1606. [Google Scholar] [CrossRef]
- Ararisa, K.; Mohammed, W.; Tesso, T.; Tesso, B.; Liben, F. Yield -based evaluation of low nitrogen tolerance indices for screening of [Sorghum bicolor (L.) Moench] genotypes. Discov. Agric. 2024, 2, 26. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.-J. Growth performance, photosynthesis, and root characteristics are associated with nitrogen use efficiency in six poplar species. Environ. Exp. Bot. 2019, 164, 40–51. [Google Scholar] [CrossRef]
- Kalcsits, L.A.; Guy, R.D. Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L. Plant Cell Environ. 2016, 39, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Shi, F.; Li, W.; Zhong, M.; Li, C.; Chen, S. Comprehensive screening of low nitrogen tolerant maize based on multiple traits at the seedling stage. PeerJ 2022, 10, e14218. [Google Scholar] [CrossRef] [PubMed]
- Sheta, M.H.; Hasham, M.M.A.; Ghanem, K.Z.; Bayomy, H.M.; El-Sheshtawy, A.-N.A.; El-Serafy, R.S.; Naif, E. Screening of wheat genotypes for water stress tolerance using soil–water relationships and multivariate statistical approaches. Agronomy 2024, 14, 1029. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, M.; Hossain, A.; Rohman, M.; Uddin, N.; Haque, S.; Tahery, M.H.; Hasanuzzaman, M. Multi-trait index-based selection of drought tolerant wheat: Physiological and biochemical profiling. Plants 2024, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Olivoto, T.; Lúcio, A.D.C.; Da Silva, J.A.G.; Sari, B.G.; Diel, M.I. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Prunier, J.G.; Colyn, M.; Legendre, X.; Nimon, K.F.; Flamand, M.C. Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Mol. Ecol. 2015, 24, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Azrai, M.; Aqil, M.; Andayani, N.N.; Efendi, R.; Suarni; Suwardi; Jihad, M.; Zainuddin, B.; Salim; Bahtiar; et al. Optimizing ensembles machine learning, genetic algorithms, and multivariate modeling for enhanced prediction of maize yield and stress tolerance index. Front. Sustain. Food Syst. 2024, 8, 1334421. [Google Scholar] [CrossRef]
- Salami, M.; Tan, H.; Alizadeh, B.; Heidari, B. Photosynthetic performance, pigments and biochemicals influence seed yield in rapeseed under water deficit conditions: MGIDI index helps screening drought-tolerant genotypes. Field Crops Res. 2025, 322, 109733. [Google Scholar] [CrossRef]
- Mokarroma, N.; Uddin, M.R.; Ahmed, I.M.; Talukder, A.M.R.; Ahsan, A.F.M.S.; Alam, Z. Multivariate analysis for identifying drought-tolerant barley (Hordeum vulgare L.) genotypes using stress indices. Data Brief 2025, 59, 111452. [Google Scholar] [CrossRef] [PubMed]
- Olivoto, T.; Nardino, M.; Meira, D.; Meier, C.; Follmann, D.N.; De Souza, V.Q.; Konflanz, V.A.; Baretta, D. Multi-trait selection for mean performance and stability in maize. Agron. J. 2021, 113, 3968–3974. [Google Scholar] [CrossRef]
- Olivoto, T.; Diel, M.I.; Schmidt, D.; Lúcio, A.D. MGIDI: A powerful tool to analyze plant multivariate data. Plant Methods 2022, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Debnath, P.; Chakma, K.; Bhuiyan, M.S.U.; Thapa, R.; Pan, R.; Akhter, D. A novel multi trait genotype ideotype distance index (MGIDI) for genotype selection in plant breeding: Application, prospects, and limitations. Crop Des. 2024, 3, 100074. [Google Scholar] [CrossRef]
- Silva, C.M.E.; Mezzomo, H.C.; Ribeiro, J.P.O.; Freitas, D.S.D.; Nardino, M. Multi-trait selection of wheat lines under drought-stress condition. Bragantia 2023, 82, e20220254. [Google Scholar] [CrossRef]
- Singamsetti, A.; Zaidi, P.H.; Seetharam, K.; Vinayan, M.T.; Olivoto, T.; Mahato, A.; Madankar, K.; Kumar, M.; Shikha, K. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Front. Plant Sci. 2023, 14, 1147424. [Google Scholar] [CrossRef] [PubMed]
- Roka, P.; Adhikari, B.N.; Shrestha, S.; Roka, D.; Adhikari, A.; Dawadi, D.R. Genetic Parameters Estimation and Identification of Promising Rice Genotypes Grown in Normal Irrigation Condition Using MGIDI Index. Res. Sq. 2024. (preprint). [Google Scholar] [CrossRef]
- Habib, M.A.; Azam, M.G.; Haque, A.; Hassan, L.; Khatun, S.; Nayak, S.; Abdullah, H.M.; Ullah, R.; Ali, E.A.; Hossain, N.; et al. Climate-smart rice (Oryza sativa L.) genotypes identification using stability analysis, multi-trait selection index, and genotype-environment interaction at different irrigation regimes with adaptation to universal warming. Sci. Rep. 2024, 14, 13836. [Google Scholar] [CrossRef] [PubMed]
- Annor, B.; Badu-Apraku, B. Selection of extra-early white quality protein maize (Zea mays L.) inbred lines for drought and low soil nitrogen resilient hybrid production. Front. Sustain. Food Syst. 2024, 7, 1238776. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, M.; Hossain, A.; Rohman, M.; Uddin, N.; Haque, S.; Ahmed, J.U.; Hossain, A.; Hassan, M.M.; Mostofa, M.G. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 2021, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashkar, I. Multivariate analysis techniques and tolerance indices for detecting bread wheat genotypes of drought tolerance. Diversity 2024, 16, 489. [Google Scholar] [CrossRef]
- Nardino, M.; Perin, E.C.; Aranha, B.C.; Carpes, S.T.; Fontoura, B.H.; De Sousa, D.J.P.; Freitas, D.S.D. Understanding drought response mechanisms in wheat and multi-trait selection. PLoS ONE 2022, 17, e0266368. [Google Scholar] [CrossRef] [PubMed]
- Pour-Aboughadareh, A.; Sanjani, S.; Nikkhah-Chamanabad, H.; Mehrvar, M.R.; Asadi, A.; Amini, A. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull. Natl. Res. Cent. 2021, 45, 117. [Google Scholar] [CrossRef]
- Ghazvini, H.; Pour-Aboughadareh, A.; Jasemi, S.S.; Chaichi, M.; Tajali, H.; Bocianowski, J. A framework for selection of high-yielding and drought-tolerant genotypes of barley: Applying yield-based indices and multi-index selection models. J. Crop Health 2024, 76, 601–616. [Google Scholar] [CrossRef]
- Akram, S.; Saleem, Y.; Khan, A.R.; Wadood, A.; Hameed, A.; Sajjad, S. Identification of Drought-Tolerant Tomato Genotypes Using Multi-trait Index at Early Growth Stage. J. Soil Sci. Plant Nutr. 2024, 24, 2456–2468. [Google Scholar] [CrossRef]
- Jyothsna, J.; Pandey, S.K.; Nair, R.; Mehta, A.K. Identification of drought tolerant fenugreek mutants at seedling stage through multi-trait genotype-ideotype distance index (MGIDI). J. Adv. Biol. Biotechnol. 2024, 27, 876–884. [Google Scholar] [CrossRef]
- Niu, J.; Wang, T.; Cao, M.; Huang, Q.; Li, J. Screening of poplar varieties with low-nitrogen tolerance based on FAI-BLUP multiple trait selection index. For. Res. 2025, 38, 61–72. [Google Scholar] [CrossRef]
- Wang, T.; Niu, J.; Cao, M.; Liu, C.; Li, J. Genetic variation and selection of seedling traits in the progeny of Populus simonigra × P. nigra under low nitrogen condition. Sci. Silvae Sin. 2025, 61, 142–151. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Luo, J.; Cao, X.; Qu, L.; Gai, Y.; Jiang, X.; Liu, T.; Bai, H.; Janz, D.; et al. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing populus species. J. Exp. Bot. 2012, 63, 6173–6185. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gong, X.; Wang, H.; Dang, K.; Deng, X.; Feng, B. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol. Biochem. 2020, 151, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Olivoto, T.; Lúcio, A.D. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Gudynaitė-Franckevičienė, V.; Pliūra, A. The impact of different environmental conditions during vegetative propagation on growth, survival, and biochemical characteristics in populus hybrids in clonal field trial. Forests 2021, 12, 892. [Google Scholar] [CrossRef]
- Zhang, C.X.; Meng, S.; Li, M.J.; Zhao, Z. Transcriptomic insight into nitrogen uptake and metabolism of Populus simonii in response to drought and low nitrogen stresses. Tree Physiol. 2018, 38, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, J.; Peñuelas, J.; Sardans, J.; Collins, S.L.; Yu, K.; Song, C.; Ye, J.-S. Water limitation drives species loss in grassland communities after nitrogen addition and warming. Proc. R. Soc. B. 2024, 291, 20240642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiang, X.; Zhang, M.; Cao, D.; Du, C.; Zhang, L.; Hu, J. Combining GS-assisted GWAS and transcriptome analysis to mine candidate genes for nitrogen utilization efficiency in Populus cathayana. BMC Plant Biol. 2023, 23, 182. [Google Scholar] [CrossRef] [PubMed]
Genetic Parameters | H2 | BD2 | HS | BDS | FW | DW | LA | LL | LW | PER | Fm/Fo | Fv/Fo | Fv/Fm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenotypic variance | 119 | 1.02 | 27.2 | 0.254 | 3.24 | 0.848 | 67 | 2.98 | 1.34 | 428 | 0.0895 | 0.0895 | 0.000287 |
Heritability | 0.62 | 0.487 | 0.268 | 0.133 | 0.611 | 0.624 | 0.676 | 0.74 | 0.724 | 0.723 | 0.0265 | 0.0265 | 0.0068 |
GEIr2 | 0.152 | 0.245 | 0.42 | 0.458 | 0.758 | 0.769 | 0.2 | 0.101 | 0.162 | 0.184 | 0.456 | 0.456 | 0.481 |
h2mg | 0.867 | 0.771 | 0.532 | 0.335 | 0.871 | 0.877 | 0.86 | 0.921 | 0.889 | 0.879 | 0.0892 | 0.0892 | 0.0234 |
Accuracy | 0.931 | 0.878 | 0.729 | 0.579 | 30.2 | 30.9 | 0.927 | 0.96 | 0.943 | 0.938 | 0.299 | 0.299 | 0.153 |
CVg (%) | 13.8 | 12.6 | 12.3 | 12 | 1.25 | 1.29 | 29.9 | 28.5 | 18.8 | 32.2 | 1.06 | 1.36 | 0.18 |
CVr (%) | 8.40 | 9.36 | 13.3 | 21.1 | 3.24 | 0.848 | 12.8 | 13.2 | 7.45 | 11.6 | 4.70 | 6.01 | 1.56 |
Factors | Trait Means | LNindex | BLUPs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FA1 | FA2 | FA3 | FA4 | FA5 | FA1 | FA2 | FA3 | FA4 | FA5 | FA1 | FA2 | FA3 | FA4 | FA5 | |
H2 | −0.891 | 0.0555 | 0.135 | 0.135 | −0.0635 | 0.79 | 0.0277 | 0.159 | 0.0721 | −0.416 | −0.923 | 0.0452 | −0.106 | 0.112 | 0.0562 |
HS | −0.508 | −0.198 | −0.234 | 0.26 | 0.128 | 0.547 | −0.148 | 0.211 | 0.294 | −0.0541 | −0.58 | −0.27 | 0.161 | 0.252 | 0.0251 |
BD2 | −0.855 | 0.041 | 0.192 | 0.186 | −0.063 | 0.793 | 0.172 | 0.00614 | −0.222 | −0.0881 | −0.872 | 0.134 | −0.126 | 0.255 | 0.00138 |
BDS | −0.73 | 0.0392 | −0.0489 | −0.185 | −0.0526 | 0.825 | 0.00354 | 0.0415 | −0.0802 | 0.0908 | −0.778 | 0.0638 | 0.1 | −0.0507 | 0.0779 |
FW | −0.889 | 0.116 | 0.168 | 0.107 | −0.0675 | −0.0991 | 0.0093 | −0.991 | 0.0184 | −0.0444 | −0.15 | −0.0287 | −0.955 | −0.0737 | −0.0883 |
DW | −0.89 | 0.0989 | 0.181 | 0.0909 | −0.0728 | −0.0913 | 0.00377 | −0.989 | 0.00385 | −0.0348 | −0.00353 | 0.00489 | −0.468 | 0.0865 | 0.234 |
LA | −0.0387 | −0.0909 | −0.00562 | 0.813 | −0.0271 | 0.245 | −0.0618 | −0.00959 | −0.152 | −0.884 | −0.107 | −0.132 | 0.0725 | 0.8 | −0.0243 |
LL | −0.0803 | −0.0549 | −0.0437 | 0.843 | −0.118 | 0.246 | 0.153 | −0.014 | −0.289 | −0.618 | −0.0826 | 0.000572 | 0.0244 | 0.864 | 0.0791 |
LW | −0.0444 | 0.116 | 0.0144 | 0.837 | −0.00414 | 0.013 | 0.0244 | −0.0787 | 0.0505 | −0.798 | −0.123 | 0.134 | −0.136 | 0.82 | 0.00228 |
PER | −0.17 | −0.0962 | 0.154 | 0.756 | 0.122 | 0.195 | −0.134 | −0.0463 | 0.05 | −0.875 | −0.22 | −0.159 | 0.0543 | 0.715 | −0.0969 |
Fm/Fo | −0.124 | −0.0201 | 0.987 | 0.0299 | 0.0192 | 0.752 | 0.139 | 0.0398 | −0.0416 | −0.409 | −0.858 | 0.174 | −0.25 | 0.149 | 0.0177 |
Fv/Fo | −0.125 | −0.0198 | 0.987 | 0.031 | 0.0192 | 0.741 | 0.129 | 0.0419 | −0.0311 | −0.44 | −0.866 | 0.156 | −0.262 | 0.129 | 0.0259 |
Fv/Fm | −0.124 | −0.0274 | 0.985 | 0.0392 | 0.0235 | −0.0939 | 0.00922 | −0.99 | 0.0171 | −0.0503 | −0.15 | −0.0287 | −0.955 | −0.0737 | −0.0883 |
δ15N | 0.0612 | −0.995 | 0.0184 | 0.0441 | −0.0157 | −0.0746 | −0.992 | 0.00774 | 0.0434 | 0.00082 | 0.0943 | −0.989 | −0.0158 | 0.0493 | 0.0171 |
N content | 0.0867 | 0.373 | 0.0325 | −0.0292 | 0.916 | 0.0907 | 0.314 | 0.0353 | −0.898 | −0.103 | 0.0521 | 0.369 | 0.0309 | 0.0242 | −0.912 |
R15N:14N | 0.0605 | −0.995 | 0.0193 | 0.0428 | −0.0168 | −0.075 | −0.992 | 0.00649 | 0.0443 | 0.00092 | 0.0936 | −0.989 | −0.0175 | 0.0476 | 0.0179 |
AT%15N | 0.0615 | −0.995 | 0.0189 | 0.0452 | −0.0149 | −0.0737 | −0.992 | 0.00665 | 0.0424 | 0.0025 | 0.0946 | −0.989 | −0.0169 | 0.05 | 0.016 |
15N abundance | 0.159 | −0.516 | 0.04 | −0.0136 | 0.827 | 0.00723 | −0.569 | 0.0455 | −0.789 | −0.104 | 0.159 | −0.513 | 0.0261 | 0.0427 | −0.823 |
Eigenvalues | 4.86 | 3.60 | 2.79 | 2.30 | 1.50 | 5.15 | 3.46 | 3.14 | 1.71 | 1.48 | 5.11 | 3.58 | 2.43 | 1.81 | 1.50 |
Variance (%) | 27 | 20 | 15.5 | 12.8 | 8.31 | 28.6 | 19.2 | 17.4 | 9.49 | 8.23 | 28.4 | 19.9 | 13.5 | 10 | 8.32 |
Accumulated (%) | 27 | 47 | 62.5 | 75.3 | 83.6 | 28.6 | 47.8 | 65.3 | 74.7 | 83 | 28.4 | 48.3 | 61.8 | 71.8 | 80.2 |
Scenarios | Traits | Factor | X0 | Xs | SD | SD% |
---|---|---|---|---|---|---|
MGIDI_mean | H2_mean | FA1 | 66.1 | 73.5 | 7.40 | 11.2 |
HS_mean | FA1 | 26.1 | 28.7 | 2.55 | 9.76 | |
BD2_mean | FA1 | 5.90 | 6.57 | 0.672 | 11.4 | |
BDS_mean | FA1 | 1.85 | 1.93 | 0.0839 | 4.53 | |
FW_mean | FA1 | 1.72 | 2.02 | 0.309 | 18 | |
DW_mean | FA1 | 0.865 | 1.03 | 0.168 | 19.5 | |
δ15N | FA2 | 2.54 | 2.98 | 0.435 | 17.1 | |
R15N:14N | FA2 | 1.30 | 1.46 | 0.16 | 12.3 | |
AT%15N | FA2 | 1.28 | 1.44 | 0.156 | 12.2 | |
Fm/Fo_mean | FA3 | 5.18 | 5.28 | 0.104 | 2.02 | |
Fv/Fo_mean | FA3 | 4.18 | 4.28 | 0.105 | 2.50 | |
Fv/Fm_mean | FA3 | 0.807 | 0.811 | 0.00402 | 0.499 | |
LA_mean | FA4 | 24.6 | 28 | 3.32 | 13.5 | |
LL_mean | FA4 | 5.51 | 6.33 | 0.82 | 14.9 | |
LW_mean | FA4 | 5.39 | 6.02 | 0.628 | 11.7 | |
PER_mean | FA4 | 59.4 | 71.9 | 12.5 | 21 | |
N content | FA5 | 1.89 | 1.94 | 0.0483 | 2.55 | |
15N abundance | FA5 | 0.239 | 0.273 | 0.0345 | 14.4 | |
MGIDI_LNindex | H2_LNindex | FA1 | 0.877 | 0.97 | 0.0932 | 10.6 |
HS_LNindex | FA1 | 0.685 | 0.771 | 0.0852 | 12.4 | |
BD2_LNindex | FA1 | 0.905 | 1.01 | 0.106 | 11.7 | |
BDS_LNindex | FA1 | 0.683 | 0.856 | 0.174 | 25.4 | |
FW_LNindex | FA1 | 0.843 | 1.13 | 0.291 | 34.5 | |
DW_LNindex | FA1 | 0.85 | 1.13 | 0.278 | 32.7 | |
δ15N | FA2 | 2.54 | 2.91 | 0.37 | 14.6 | |
R15N:14N | FA2 | 1.30 | 1.44 | 0.136 | 10.4 | |
AT%15N | FA2 | 1.28 | 1.42 | 0.133 | 10.3 | |
Fm/Fo_LNindex | FA3 | 0.771 | 0.788 | 0.0168 | 2.18 | |
Fv/Fo_LNindex | FA3 | 0.716 | 0.736 | 0.0201 | 2.81 | |
Fv/Fm_LNindex | FA3 | 0.927 | 0.933 | 0.00616 | 0.665 | |
N content | FA4 | 1.89 | 1.96 | 0.07 | 3.70 | |
15N abundance | FA4 | 0.239 | 0.273 | 0.0345 | 14.4 | |
LA_LNindex | FA5 | 0.853 | 1.07 | 0.213 | 25 | |
LL_LNindex | FA5 | 0.898 | 0.994 | 0.0964 | 10.7 | |
LW_LNindex | FA5 | 0.964 | 1.04 | 0.0713 | 7.39 | |
PER_LNindex | FA5 | 0.855 | 1.03 | 0.171 | 20 | |
MGIDI_BLUP | H2_BLUP | FA1 | 62 | 68 | 6.01 | 9.69 |
HS_BLUP | FA1 | 21.9 | 23 | 1.07 | 4.90 | |
BD2_BLUP | FA1 | 5.59 | 6.05 | 0.461 | 8.24 | |
BDS_BLUP | FA1 | 1.53 | 1.56 | 0.0299 | 1.96 | |
FW_BLUP | FA1 | 4.66 | 5.59 | 0.924 | 19.8 | |
DW_BLUP | FA1 | 2.36 | 2.85 | 0.493 | 20.9 | |
δ15N | FA2 | 2.54 | 2.95 | 0.409 | 16.1 | |
R15N:14N | FA2 | 1.30 | 1.45 | 0.15 | 11.6 | |
AT%15N | FA2 | 1.28 | 1.43 | 0.147 | 11.4 | |
Fm/Fo_BLUP | FA3 | 4.58 | 4.59 | 0.00667 | 0.145 | |
Fv/Fo_BLUP | FA3 | 3.58 | 3.59 | 0.00667 | 0.186 | |
Fv/Fm_BLUP | FA3 | 0.777 | 0.777 | 0.000023 | 0.00296 | |
LA_BLUP | FA4 | 22.5 | 25 | 2.46 | 10.9 | |
LL_BLUP | FA4 | 5.21 | 5.91 | 0.7 | 13.4 | |
LW_BLUP | FA4 | 5.25 | 5.78 | 0.533 | 10.1 | |
PER_BLUP | FA4 | 54.7 | 66.9 | 12.3 | 22.4 | |
N content | FA5 | 1.89 | 1.95 | 0.0595 | 3.14 | |
15N abundance | FA5 | 0.239 | 0.273 | 0.0339 | 14.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Jia, D.; Zhou, Z.; Cao, M.; Liu, C.; Huang, Q.; Li, J. Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties. Agronomy 2025, 15, 1754. https://doi.org/10.3390/agronomy15071754
Niu J, Jia D, Zhou Z, Cao M, Liu C, Huang Q, Li J. Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties. Agronomy. 2025; 15(7):1754. https://doi.org/10.3390/agronomy15071754
Chicago/Turabian StyleNiu, Jinhong, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang, and Jinhua Li. 2025. "Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties" Agronomy 15, no. 7: 1754. https://doi.org/10.3390/agronomy15071754
APA StyleNiu, J., Jia, D., Zhou, Z., Cao, M., Liu, C., Huang, Q., & Li, J. (2025). Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties. Agronomy, 15(7), 1754. https://doi.org/10.3390/agronomy15071754